ULTRASONIC MOTION DETECTOR

ABDUL HAKIM BIN KASSIM

This thesis is submitted as partial fulfillment of the requirements for the award of the Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

12 NOVEMBER 2008
“All the trademark and copyrights use herein are property of their respective owner. References of information from other sources are quoted accordingly; otherwise the information presented in this report is solely work of the author.”

Signature : ____________________________

Author : ABDUL HAKIM BIN KASSIM

Date : 12 NOVEMBER 2008
To my beloved father and mother....
Who always give me courage to finish this thesis.

Also, to those people who have guided and inspired me throughout my journey.
Thank you for the supports and advices that have been given.
ACKNOWLEDGEMENT

This project would not have been possible without considerable guidance and support. I would like to acknowledge those who have enabled me to complete this project.

In particular, I wish to express my sincere appreciation to my supervisor, Puan Nurul Hazlina Binti Noordin, for encouragement, guidance, critics and friendship towards me to finish up the entire requirement needed in completing the project.

Secondly, I would like to thank for all other University Malaysia Pahang staff members that I may have called upon for assistance since the genesis of this project. Their opinions and suggestions have helped me in realizing this project. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. To my friend, especially Muhammad Hafiz Abd Halim, my friend back in polytechnic for his idea, critic, and support.

Finally, I would like to thank to my big family for their understanding, encouragement and support towards the completion of my project.
The ultrasonic motion detector is a project that using an ultrasonic sensor as it’s base to detect movement or moving object in small places. It is design to be a low cost ultrasonic motion detector. The transmitter sensor use to generate signal in that area. When the signal is block by moving or movement the receiver will gets the signal and amplifies the signal using transistor. The transistor is use as an amplifier to the receiver circuit. The Led and buzzer in the circuit use to see if there is movement detect by the sensor. The relay use to trigger another circuit when there is movement detects. The signal generate by the sensor is about ±40khz. This is a fully hardware design project plus it is built to be a portable ultrasonic motion detector.
Pengesan gerakan ultrasonik merupakan satu projek yang menggunakan pengesan ultrasonik sebagai asas untuk mengesan sebarang pergerakan di dalam sesuatu kawasan ianya diletakkan. Ianya dibina supaya menjadi pengesan gerakan ultrasonik berkos rendah. Pengesan pemancar digunakan untuk menghantar isyarat ke udara. Apabila isyarat tersebut dihalang oleh sesuatu objek yang bergerak, isyarat itu akan diterima oleh pengesan penerima, seterusnya isyarat tersebut dibesarkan oleh transistor. Transistor digunakan untuk membesarkan isyarat yang diterima di dalam litar penerima. Bagi keluaran litar, lampu dan buzzer digunakan untuk tujuan pemberitahuan kepada pengguna. Isyarat yang dihasilkan oleh pengesan penerima serta penghantar berfrekuensi 40 KHz. Ini adalah projek yang berasaskan komponen elektronik sepenuhnya serta dibina supaya menjadi pengesan gerakan ultrasonik mudah alih.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Transmitter Circuit</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Part A of Receiver Circuit</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Part B of Receiver Circuit</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Part c of Receiver Circuit</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Actual picture of Crystal-Oscillator</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow Design of Circuit</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Block Diagram of Motion Sensor Circuit</td>
<td>12</td>
</tr>
<tr>
<td>3.3</td>
<td>Basic Design Transistor Amplifier</td>
<td>13</td>
</tr>
<tr>
<td>3.4</td>
<td>Top view of HD4069UBP Hex Buffer</td>
<td>14</td>
</tr>
<tr>
<td>3.5</td>
<td>Transmitter Circuit Design</td>
<td>15</td>
</tr>
<tr>
<td>3.6</td>
<td>Total Beam Angle of sensor</td>
<td>16</td>
</tr>
<tr>
<td>3.7</td>
<td>Part A of Output Circuit</td>
<td>17</td>
</tr>
<tr>
<td>3.8</td>
<td>Part B of Output Circuit</td>
<td>18</td>
</tr>
<tr>
<td>4.1</td>
<td>Multisim Software</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Digital Oscilloscope in Multisim</td>
<td>21</td>
</tr>
<tr>
<td>4.3</td>
<td>Amplifier Design using Transistor</td>
<td>22</td>
</tr>
<tr>
<td>4.4</td>
<td>Adding Oscilloscope to the Amplifier circuit</td>
<td>23</td>
</tr>
<tr>
<td>4.5</td>
<td>Result simulation for Transistor</td>
<td>24</td>
</tr>
<tr>
<td>4.6</td>
<td>Design of Transmitter circuit in Multisim</td>
<td>25</td>
</tr>
<tr>
<td>4.7</td>
<td>Adding Oscilloscope to the circuit</td>
<td>26</td>
</tr>
<tr>
<td>4.8</td>
<td>Output signal of Transmitter circuit without sensor</td>
<td>27</td>
</tr>
<tr>
<td>5.1</td>
<td>Signal produce by the Transmitter circuit</td>
<td>32</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>5.2</td>
<td>Signal at Collector Q1</td>
<td>32</td>
</tr>
<tr>
<td>5.3</td>
<td>Signal at Collector Q2</td>
<td>33</td>
</tr>
<tr>
<td>5.4</td>
<td>Signal at Collector Q6</td>
<td>33</td>
</tr>
<tr>
<td>5.5</td>
<td>Signal at Collector Q1 when movement detect</td>
<td>34</td>
</tr>
<tr>
<td>5.6</td>
<td>Signal at Collector Q2 when movement detect</td>
<td>34</td>
</tr>
<tr>
<td>5.7</td>
<td>Actual picture</td>
<td>35</td>
</tr>
<tr>
<td>5.8</td>
<td>Circuit with Buzzer and Led</td>
<td>36</td>
</tr>
<tr>
<td>5.9</td>
<td>Portable Ultrasonic Motion Detector</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Measurement from Digital Oscilloscope</td>
<td>24</td>
</tr>
<tr>
<td>5.1</td>
<td>Problem and Solution of Design</td>
<td>28 - 29</td>
</tr>
<tr>
<td>5.2</td>
<td>Measurement of component</td>
<td>30</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Human, animal or anything can produce sound. This sound is created by the physical movement whether the movement is fast or slow depends on the medium that create the sound. Eventually these movements can be detected by using an ultrasound sensor. Ultrasonic sound waves are sound waves that are above the range of human hearing and, thus, have a frequency above about 20,000 hertz. Any frequency above 20,000 hertz may be considered ultrasonic.

An ultrasonic sensor typically comprises at least one ultrasonic transducer which transforms electrical energy into sound and, in reverse, sound into electrical energy, a housing enclosing the ultrasonic transducer or transducers, an electrical connection and, optionally, an electronic circuit for signal processing also enclosed in the housing. Ultrasonic sensors have typically been used in applications such as detecting and identifying solid objects, measuring the shape and orientation of a work piece, detecting possible collisions between objects to avoid the collisions, room surveillance, flow measurement, and determining a type of material by measuring the absorption of sound.

By combining parts of electronic to the ultrasonic sensor it become an ultrasonic motion detector. A motion detector is an electronic device that detects the physical movement in a given area and transforms motion into an electric signal. The motion detector may be electrically connected to devices such as security, lighting, audio
alarms. Motion sensors are used in a wide variety of applications. Motion detectors are mainly used in for security systems.

Now days in the market there are many kind of ultrasonic motion detector sell, basically this project is to design an ultrasonic motion detector use to detect physical movement of human, animal, or anything that move. The design is to improving the use of sensor in detecting motion. Also to reduce the cost to built an ultrasonic motion detector.

1.2 Objective

This project is design aim and objective is to:

i. To design a circuit that sense motion through movement of anything

ii. The circuit can be use to trigger another circuit whether to on or off depending on the circuit attach to it

iii. The design will be a low cost portable motion detector

1.3 Scope Project

This project is widely use depending on situation and places. For this project it is design to meet the following scope

i. Movement will be detected within the coverage area about ±4m.

ii. Total beam angle of transmitter and receiver sensor 45º

iii. The area of the room is 35m²

iv. Condition of room is solid wall
1.4 Thesis arrangement

To complete this thesis, I must completed 6 requirements which are Introduction, Literature Review, Hardware Design, Software Design, Result and Discussion, and the last chapter is a Conclusion and Further Development of the project.

Chapter 1 is about the introduction of the project. Basic idea of the project, the objective and overall view about the project.

Chapter 2 is about the literature review about the component that is use in this project. This section contains the literature review and the methodologies that have been collected from different sources for the development of the ultrasonic motion detector.

Chapter 3 is about the design and methodology of the project. General concept of the project like the component that have been use to the project.

Chapter 4 is about the simulation of the circuit. This chapter will explain the concept idea of simulation.

Chapter 5 is about the analysis all the result and the limitation barrier in completing this project.

Chapter 6 it consists of the conclusion and further development of the project.
CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In completing this project, some literature reviews have been done on several resources. The theory and description plus details about the project have taken as guidance in completing this project. By this chapter, an overview of some application that similar to the project and related project design is present.

2.2 Transmitter (BZ2*)

The transmitter is a crystal control oscillator build using 4049 hex buffer to drive the transmitter sensor to generate signal continuously. The crystal use to stabilize the level of frequency generate by the transmitter sensor. This is because the transmitter in the figure produces up to 40 KHz in frequency but not in the stable mode. By adding the crystal, when power supply is given the transmitter will start transmitting frequency continuously to the air. The use of capacitor in the circuit is to make as a load capacitance for the crystal. The inverter as we know will provide 180° phase shift from input to output, with additional of R21, R22, C11 and C12 the signal will be add to another 180° phase shift making it equal to 360° loop. There are many type of transmitter circuit that can be built, but the general concept of the circuit is likely the same. (Ronald A. Reis, 1997)
Figure 2.1: Transmitter circuit
2.3 Receiver (BZ1*)

2.3.1 PART A

This receiver circuit in the figure uses an op-amp as a method to amplify the signal sent by the receiver sensor. It can be divided into three main parts. Each part plays a different role in the circuit. For part A voltage input R1 and R2 is modulated by the receiver sensor then goes to the first op-amp to be amplified. When there is movement detected by the receiver sensor, the signal will go to the IC1-a to be amplified. Note that the design for the op-amp is a non-inverting concept. As we know it will generate a positive signal by the connection. When there is no movement the signal should just in straight line. The use of diode (D1) and resistor (R8) in the circuit is to act as a negative detector for the signal that has been amplified. When movement occurs the signal is in envelope signal. IC1-b also amplifies the signal and produces a DC level signal for the envelope signal. (Ronald A. Reis, 1997)

Figure 2.2 Part A of receiver circuit
2.3.2 PART B

As for the next stage of the circuit it comes from point A on figure 2.2, we can see a differential amplifier. D2 and D3 act as positive and negative pulse. When there are no movement, voltage at pin 7 of IC1-b is half the supply. When movement detected, signal rise above the forward–biased diode 0.7v making D3 to conduct making pin 8 to go high. But when signal below 0.7v D2 will conduct which we can call as a window detector because it detects voltage to a given range. (Ronald A. Reis, 1997)
2.3.3 PART C

In this stage the IC1-d build as a monostable flip flop. The signal comes from point B in figure 2.3. The signal that gets through the process then turn into large pulse enough to turn on the transistor Q1 and the Led will turn ‘ON’. (Ronald A. Reis, 1997)

Figure 2.4 Part C of receiver circuit

2.4 XTAL

A crystal oscillator is an electronic circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a very precise frequency. This frequency is usually use in a wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters. The oscillator circuit is dependent on two key conditions: First, the loop gain needs to be greater than losses around the oscillator loop, or equal to unity. Second, the loop phase shift must be equal to 0 or 360 degrees. Loop phase angle shifts determine the frequency at which the oscillator will operate. A change in net loop phase angle results in a change in output frequency of the oscillator circuit. In order to minimize the net phase shift, a quartz crystal is placed in the feedback loop. The crystal
used there in is sometimes called a "timing crystal". On schematic diagrams a crystal is labeled Y. (Wikipedia, 2000)

Figure 2.5 Actual picture of crystal oscillator
CHAPTER 3

DESIGN

3.1 Block Diagram

Before starting with actual circuit design, we must first understand the basic principles behind the technology that is used this project. The project methodology flow chart is shown below:

![Diagram showing flow design of the circuit]

Figure 3.1 Flow design of the circuit
The flow design of the circuit consist of

1. Finding the right transmitter and receiver sensor for the circuit.
2. Designing the amplifier/receiver circuit
3. Design the transmitter circuit
4. Using simulation to verify the design
5. Implementation on board

Figure 3.2 Block Diagram of Motion Sensor Circuit
3.2 Block diagram description

3.2.1 Amplifier circuit

For the amplifier in this project, the transistor is use to act as amplifier. The basic transistor amplifier circuit is use act as an amplifier method to amplifying. H9013 series of transistor is use because the transistor is the general transistor use in amplifying concept. It is a BJT type of transistor. When the receiver sensor receive signal it will send the signal to the transistor to be amplified. In this project five transistors is use to amplified the signal send by the receiver sensor. The type of design for the transistor is a common emitter amplifier. Base from the design the input signal that come from the base of transistor will be amplified and produce at the collector transistor a larger output signal and the output will be more on positive side signal. Mean that the transistor will amplify current from a small input current to a high output current. It is use also to trigger the relay connected to it. Variable resistor is use to control the level of signal or the sensitivity signal send by the receiver sensor. Mean if no setting are made by the variable resistor the sensor is highly sensitive, even the air counts as a motion parts thus we will get false trigger by the circuit.
Figure 3.3 Basic design transistor amplifiers
3.2.2 Hex buffer circuit

This circuit consist a buffer, crystal and transmitter sensor in it. The crystal is use to drive the transmitter sensor into a steady frequency stability. It will ring the transmitter to continuous transmitting frequency. A voltage applied across the crystal will cause mechanical movement within the crystal. If an AC voltage is applied across the crystal, the crystal will begin to vibrate. Thus in this circuit it the buffer act as a driver to make sure that the sensor transmit the frequency. The crystal or XTAL is a 40 kHz in frequency. The buffer or hex inverter use in the circuit is single supplies IC mean single supply needed to make it work. It is use to change from high to low level logic conversion. The IC is HD4069UBP hex buffer converter. The supply can be 9Vdc or 12Vdc. It is 14 pin IC. In this project the pin 1 until pin 6 uses for the transmitter sensor to drive the frequency, the other pin use to drive transistor to supply enough current for the relay to energize.

![Figure 3.4 Top view of HD4069UBP buffer IC](image-url)
3.2.3 Sensor (Transmitter and Receiver)

Use to transmit and receive signal and send to the circuit. The sensor in this circuit is an ultrasonic sensor. The frequency generated by the sensor ±40kHz. The transmitter and receiver must be equal in frequency to make the circuit function. When power supply is given to the circuit, the transmitter will transform the electrical energy to sound wave and transmit it to the air. Thus when the sound wave or signal is blocking by something or someone, the signal will be detected by the receiver. Crucial thing is finding the right sensor for the right circuit. Moreover the sensor cannot be placed too far from each other. The