The Satellite Economics – Beyond the Cost per MHz

Ababacar Gaye
Principal Customer Solutions Engineer, Intelsat Africa
Contents

• Procuring a satellite service: the full story
• The cost structure of a satellite network
• Comparison of different satellite networks
 • Dedicated SCPC links
 • Improving efficiency with better equipment
 • Not all satellites are equally performant
 • Sharing resources for better cost efficiency
 • Introducing contention in the network
• Keep in mind what satellite brings to your business
Procuring a Satellite Service: The Full Story
Procuring a Satellite Service: The Full Story

- **Alpha** and **Beta** are competing Mobile Network Operators.
- They both need satellite connectivity to support their operations.
- However, they have a very different procurement approach.

<table>
<thead>
<tr>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Selects the satellite operator which has the lowest price per MHz.</td>
<td>1. Designs the satellite network taking into consideration equipment and bandwidth requirements.</td>
</tr>
<tr>
<td>2. Then, buys the cheapest equipment available on the market.</td>
<td>2. Performs a Total Cost of Ownership analysis including CAPEX and OPEX.</td>
</tr>
<tr>
<td>3. Doesn’t fully take into account future requirements in terms of equipment, coverage and bandwidth.</td>
<td>3. Considers future requirements to select an effective invest-as-you-grow solution.</td>
</tr>
<tr>
<td>4. Trains in-house satellite experts to keep optimizing the network</td>
<td></td>
</tr>
</tbody>
</table>
Procuring a Satellite Service: The Full Story

What could be the consequences of the two different approaches?

• An initial “cheap” design may prove to be more expensive over time:
 • Company Alpha may need to invest more than Beta to expand the network
 • With limitations of ground equipment, bandwidth-saving techniques can hardly be implemented.

• Possible lower performance
 • Service availability, satellite performance, technical support, … matter.

Always compare apples with apples!
Procuring a Satellite Service: The Full Story

- Example with Alpha and Beta’s respective services:

<table>
<thead>
<tr>
<th></th>
<th>Alpha</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Rate</td>
<td>10 x 1 Mbps</td>
<td>10 x 1 Mbps</td>
</tr>
<tr>
<td>Efficiency</td>
<td>1.6 bps/Hz</td>
<td>2.8 bps/Hz</td>
</tr>
<tr>
<td>Required bandwidth</td>
<td>6.25 MHz</td>
<td>3.57 MHz</td>
</tr>
<tr>
<td>Price $/MHz</td>
<td>2,000 $/MHz*</td>
<td>2,500 $/MHz*</td>
</tr>
<tr>
<td>Bandwidth MRC</td>
<td>12,500 $/month</td>
<td>8,929 $/month</td>
</tr>
<tr>
<td>Equipment investment</td>
<td>100,000 $*</td>
<td>180,000 $*</td>
</tr>
<tr>
<td>Contract length</td>
<td>36 months</td>
<td>36 months</td>
</tr>
<tr>
<td>Total Cost of Ownership</td>
<td>550,000 $</td>
<td>501,429 $</td>
</tr>
<tr>
<td>Equipment feature</td>
<td>Entry-level modems, Modcod 8PSK 3/4, Roll-off factor 40%</td>
<td>Advanced modems with Carrier Cancellation Technique and ACM, Modcod QPSK 7/8, Roll-off 25%</td>
</tr>
<tr>
<td>Satellite performance</td>
<td>C-band global beam low EIRP</td>
<td>C-band zone beam high EIRP</td>
</tr>
</tbody>
</table>

*Indicative figures
Procuring a Satellite Service: The Full Story

• In addition to saving more money despite a higher initial investment:
 • Beta’s service reaches virtually 100% availability thanks to ACM (Adaptive Coding and Modulation)
 • Beta will require less bandwidth to increase the data rates, compared to Alpha → easier growth
 • Beta is more competitive in the market since its cost per Mbps is about 30% lower than Alpha’s
 • With the high performance satellite used by Beta, additional low-cost sites can be easily deployed with smaller antennas and less power.
The Cost Structure of a Satellite Network
The Cost Structure of a Satellite Network

• As seen in the previous example, several parameters must be considered
 - Equipment:
 • Antenna size
 • BUC size
 • Modem capabilities
 - Network topology:
 • Star or Mesh
 - Satellite bandwidth:
 • Performance of the satellite
 • Type of coverage: global, hemispheric, zone or spot beam
 • Dedicated or shared bandwidth
 - Other: license fees, installation, maintenance, international shipment, …

The performance requirements can significantly impact the network design thus the overall cost. Define them sensibly and be ready for tradeoffs!

The good design of a network will consider the investment and recurring costs required to meet the requirements, while taking into consideration scalability.
The Cost Structure of a Satellite Network

- A link budget report typically provides information that help assessing the cost of the solution.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dakar to Bi, (15,000 Mbps, CH=0%)</td>
<td>5.714</td>
<td>1.46</td>
<td>8.000</td>
<td>24.3</td>
<td>11.8</td>
<td>12.9</td>
<td>7.6</td>
<td>8.7</td>
<td>99.96</td>
<td>66.6</td>
<td>65.4</td>
</tr>
<tr>
<td>Bi to Dakar, (15,000 Mbps, CH=0%)</td>
<td>5.714</td>
<td>1.46</td>
<td>8.000</td>
<td>21.0</td>
<td>11.8</td>
<td>13.1</td>
<td>7.6</td>
<td>8.9</td>
<td>99.96</td>
<td>63.0</td>
<td>37.8</td>
</tr>
</tbody>
</table>

- Carrier Information (depends on modem capabilities)
- Required Transponder Bandwidth Power (PEB)
- Designed Link Availability

<table>
<thead>
<tr>
<th>Antennas</th>
<th>Diameter [m]</th>
<th>TOTAL HPA Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>4.5</td>
<td>37.6</td>
</tr>
<tr>
<td>Dakar</td>
<td>8.0</td>
<td>55.4</td>
</tr>
</tbody>
</table>

- Antenna size and required BUC power

Satellite and Role: 10S-905 @ 335.50°E
Transponder: 104/104 (SE/SE)
Platform bias: -0.23°E; 0.00°N
Sat. TWT Power [Watts]: 61.8
Sat. D/L EIRP at 1 GHz [dBW]: 37.0 / 40.7
SFD at 1 GHz [dBW]: -73.6 / -83.1
Band Up/Dw [MHz]: (6184 - 6265) / (3959 - 4031)
Polarization Up/Dw: R / L

Intelsat
Comparison of Different Satellite Networks
Dedicated SCPC Links

- SCPC = Single Channel Per Carrier
- Typically used for point-to-point links with dedicated bandwidth
- Example of a network:
 - Dakar to Bamako: 2 Mbps
 - Dakar to Abidjan: 2 Mbps
 - Bamako to Dakar and Abidjan to Dakar: 1 Mbps each
 - All sites have a 2.4m antenna and entry-level modems.

For 99.96% availability
6.8 MHz are required for the total network

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Link 1</th>
<th>Link 2</th>
<th>Link 3</th>
<th>Link 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Rate</td>
<td>2000.0</td>
<td>1000.0</td>
<td>2000.0</td>
<td>1000.0</td>
</tr>
<tr>
<td>FEC Code Rate</td>
<td>.7500</td>
<td>.7500</td>
<td>.7500</td>
<td>.7500</td>
</tr>
<tr>
<td>R-S Code Rate</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Clear Sky Eb/No Available</td>
<td>5.6</td>
<td>5.6</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Number of Assigned Carriers</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Transmit ES Code</td>
<td>DAKAR</td>
<td>BAMAKO</td>
<td>DAKAR</td>
<td>ABIDJAN</td>
</tr>
<tr>
<td>Transmit ES Size</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Receive ES Code</td>
<td>BAMAKO</td>
<td>DAKAR</td>
<td>ABIDJAN</td>
<td>DAKAR</td>
</tr>
<tr>
<td>Receive ES Size</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Receive ES G/T</td>
<td>19.6</td>
<td>19.6</td>
<td>19.6</td>
<td>19.6</td>
</tr>
<tr>
<td>Coordination Limit Check</td>
<td>Passed</td>
<td>Passed</td>
<td>Passed</td>
<td>Passed</td>
</tr>
</tbody>
</table>

Efficiency is only 0.88 bps/Hz
Improving Efficiency with Better Equipment

- Same network as previously, but with different hardware configuration

<table>
<thead>
<tr>
<th>Antenna sizes</th>
<th>Modems</th>
<th>Bandwidth</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial network</td>
<td>2.4m Entry-level</td>
<td>6.8 MHz</td>
<td>0.88 bps/Hz</td>
</tr>
<tr>
<td>Larger antennas</td>
<td>3.7m Entry-level</td>
<td>4.8 MHz</td>
<td>1.25 bps/Hz</td>
</tr>
<tr>
<td>Lower roll-off factor</td>
<td>3.7m Advanced</td>
<td>4.3 MHz</td>
<td>1.40 bps/Hz</td>
</tr>
<tr>
<td>Carrier Cancellation Technique</td>
<td>3.7m Advanced with CCT</td>
<td>2.9 MHz</td>
<td>2.07 bps/Hz</td>
</tr>
</tbody>
</table>

- Now, if the requirements are modified a bit:
 - Using Adaptive Coding and Modulation (ACM) and Carrier Cancellation Technique
 - Maximum throughput 2 Mbps /1 Mbps (95% of the time)
 - Minimum throughput 1.6 Mbps /0.94 Mbps
 - Required bandwidth is 2.4 MHz and efficiency is 2.5 bps/Hz
Improving Efficiency with Better Equipment

• As seen in previous examples, using better equipment leads to higher efficiencies thus lower recurring costs.

• However:
 • Only a Total Cost of Ownership (TCO) analysis can determine whether the investment on hardware is worth the bandwidth savings
 • The size of the network, the required bandwidth and possible savings must be taken into consideration.
Not All Satellites are Equally Performant

The efficiency that can be achieved for a given satellite link also depends on the characteristics of the satellite and transponder:

- Power density and G/T
- Beam coverage:
 - The wider the beam, the larger the service area can be, but...
 - Wider beams (especially global beams) typically have lower power density
 - Note that some satellite operators only have global C-band beams for services in Africa
- Elevation angle: preferably above 20 degrees
- Available capacity

Intelsat’s EpicNG satellites represent a major step forward:

- High throughput, increased power density, flexibility, vendor-agnostic, etc.
Not All Satellites are Equally Performant

What about Ka-band? 1/2

- Ka-band is more susceptible to rain attenuation

Legend:
Link Margin required for 99.6% availability
Not All Satellites are Equally Performant

What about Ka-band? 2/2

- Most Ka-band spot beams are smaller than Ku-band beams: more beams required to cover an area
 - In an attempt to cover the globe, some operators are stretching their beams, which reduces their power and efficiency
- A few myths on Ka-band:
 - “Higher frequencies provide higher throughput”
 Myth: There is nothing fundamental in a frequency band which supports higher throughput
 - “Ka-band is more cost-effective because it allows us of smaller antennas”
 Myth: Higher frequencies result in greater path loss between the antenna and the satellite, which nullifies the increase in antenna performance. For similar link performance, larger Ka-band terminals are required
 - “Attenuation mitigating techniques can compensate Ka-band rain fade”
 Myth: There is a limit of how much rain fade ACM and UPC can address and these techniques are unlikely to be fully able to compensate for Ka-band rain fade.
 - “High Throughput Satellites (HTS) are Ka-band satellites”
 Myth: An HTS satellite is one that uses significant frequency reuse techniques to multiply the effective throughput capacity of the satellite. EpicNG HTS satellites use C-, Ku- and Ka-bands.
Sharing Resources for Better Cost Efficiency

• Dedicated SCPC links are well-suited to:
 • Connections that need to be up all the time
 • Traffic patterns that do not have dynamic variations

• Sharing resources:
 • Satellite bandwidth
 • Modulators and demodulators hub cards

• Solutions with shared resources are preferable when:
 • Network is large with a central hub: avoid having multiple modems at hub
 • Traffic demand is dynamic and varies within the network
Sharing Resources for Better Cost Efficiency

• Typical configuration:
 • Central hub with one or several modulator and demodulator cards
 • Remote sites equipped with modems and possibly DVB receivers
 • Shared outbound carrier (from hub to remotes), typically DVB-S2
 • Dedicated or shared inbound carriers (from remotes to hub):
 • TDMA, MF-TDMA, dSCPC, Mx-DMA

• Most equipment manufacturers have such solutions:
 • Comtech Heights, Newtec Dialog, iDirect Flex, Gilat SkyEdge, etc.
 • Intelsat offers solutions based on Newtec and iDirect hub equipment
Sharing Resources for Better Cost Efficiency

Intelsat’s platforms

- IntelsatOne® NBB Service
 - iDirect-based flexible and scalable platform.
 - Dedicated or Shared VNO offering
 - 55 hubs in 10 teleports
 - Typical dedicated configuration:
Sharing Resources for Better Cost Efficiency

Intelsat’s platforms

- New Shared NBB platform for Africa on IS-905

Remote Kit Options:
- Preferably: X1/X3/X5 modem + 2.4 m antenna with 5 W – 10 W BUC
- Option: X1/X3/X5 modem + 1.8 m antenna with 10 W BUC

Available Throughput:
- Forward: 30 Mbps → 74-84 Mbps IP rate
- Return: as required with following return carrier options (info rate at QPSK %):
 - 2.4 M 10 W 1.5 Mbps
 - 2.4 M 5 W 800 Kbps - 1 Mbps
 - 1.8 M 10 W 800 Kbps - 1 Mbps

Platform Software Rev: iDX 3.1.1.2

Satellite Connectivity:
- Forward: NW/SE. Shared carrier on a 36 MHz premium saturated transponder
- Return: SE/NW ~ as required
- Uplink: Mountainside teleport, USA

Low TCO: DVB-S2 with ACM forward link over saturated premium transponder to deliver lowest costs per Mbps and minimize remote kit sizing

Shared physical network per VNO with traffic segregation per VLAN and GQOS

Committed CIR with no oversubscription
Sharing Resources for Better Cost Efficiency

Intelsat’s platforms

• IntelsatOne® Internet Trunking Services
 • Dedicated Carrier (ITS-DC) or shared DVB service (ITS-DVB)

ITS-DVB coverage for Africa

• Shared DVB-S2 Forward Carrier with Committed Information Rates
• Dedicated SCPC return

Three DVB-SE hubs with US & Europe Connectivity
Sharing Resources for Better Cost Efficiency

Intelsat platforms

- Collocation Facilities at Teleports
 - Customer collocation facilities available at all teleports
 - Collocation capability at PoPs via PoP provider
 - Enables customization of basic transport services
 - Customer differentiation through addition of applications

Carrier Grade Collocation Facilities
- 24/7 on-site manning for “remote hands”
- Multi-layer physical security control procedures
- Redundant, secure power
- Cooling and fire suppression
- Resilient telco-grade backbone network
Satellite Brings Benefits to Your Business!
Satellite Brings Benefits to Your Business

- Satellite technology should not be seen as last resort. It offers:
 - Unmatched reliability
 - Very high availability
 - Short service implementation time in remote areas
 - Wide coverage
 - Easy point-to-multipoint communications
 - Good value for money with state-of-the-art technology
 - Opportunities for growth in untapped rural markets
 - And so much more …
Conclusion
Conclusion

- Do not focus solely on unit prices for satellite capacity
- Always ask:
 - What is the satellite performance?
 - What equipment takes full benefit of the satellite capacity?
 - What network topology do I need for the service?
 - What efficiency can I reach?
 - What is the Total Cost of Ownership?
 - What support can I get from the satellite operator?
 - What revenues and benefits can I drive from this service?
Questions?