Technip & Floating LNG
A Breakthrough for Natural Gas Development

Webcast, July 5, 2011
Safe Harbor

This presentation contains both historical and forward-looking statements. These forward-looking statements are not based on historical facts, but rather reflect our current expectations concerning future results and events and generally may be identified by the use of forward-looking words such as “believes”, “aim”, “expect”, “anticipate”, “intend”, “foresee”, “likely”, “should”, “planned”, “may”, “estimates”, “potential” or other similar words. Similarly, statements that describe our objectives, plans or goals are or may be forward-looking statements. These forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause our actual results, performance or achievements to differ materially from the anticipated results, performance or achievements expressed or implied by these forward-looking statements. Risks that could cause actual results to differ materially from the results anticipated in the forward-looking statements include, among other things: our ability to successfully continue to originate and execute large services contracts, and construction and project risks generally; the level of production-related capital expenditure in the oil and gas industry as well as other industries; currency fluctuations; interest rate fluctuations; raw material (especially steel) as well as maritime freight price fluctuations; the timing of development of energy resources; armed conflict or political instability in the Arabian-Persian Gulf, Africa or other regions; the strength of competition; control of costs and expenses; the reduced availability of government-sponsored export financing; losses in one or more of our large contracts; U.S. legislation relating to investments in Iran or elsewhere where we seek to do business; changes in tax legislation, rules, regulation or enforcement; intensified price pressure by our competitors; severe weather conditions; our ability to successfully keep pace with technology changes; our ability to attract and retain qualified personnel; the evolution, interpretation and uniform application and enforcement of International Financial Reporting Standards (IFRS), according to which we prepare our financial statements as of January 1, 2005; political and social stability in developing countries; competition; supply chain bottlenecks; the ability of our subcontractors to attract skilled labor; the fact that our operations may cause the discharge of hazardous substances, leading to significant environmental remediation costs; our ability to manage and mitigate logistical challenges due to underdeveloped infrastructure in some countries where we are performing projects.

Some of these risk factors are set forth and discussed in more detail in our Annual Report. Should one of these known or unknown risks materialize, or should our underlying assumptions prove incorrect, our future results could be adversely affected, causing these results to differ materially from those expressed in our forward-looking statements. These factors are not necessarily all of the important factors that could cause our actual results to differ materially from those expressed in any of our forward-looking statements. Other unknown or unpredictable factors also could have material adverse effects on our future results. The forward-looking statements included in this release are made only as of the date of this release. We cannot assure you that projected results or events will be achieved. We do not intend, and do not assume any obligation to update any industry information or forward looking information set forth in this release to reflect subsequent events or circumstances.

This presentation does not constitute an offer or invitation to purchase any securities of Technip in the United States or any other jurisdiction. Securities may not be offered or sold in the United States absent registration or an exemption from registration. The information contained in this presentation may not be relied upon in deciding whether or not to acquire Technip securities.

This presentation is being furnished to you solely for your information, and it may not be reproduced, redistributed or published, directly or indirectly, in whole or in part, to any other person. Non-compliance with these restrictions may result in the violation of legal restrictions of the United States or of other jurisdictions.
Table of contents

1. Worldwide Gas and LNG Market
2. LNG & FLNG Challenges
3. Technip: A Unique Combination of Expertise and Experience
4. Floating LNG: Today and Tomorrow
1. Worldwide Gas and LNG Market
Strong Increase in Gas Demand

Use of natural gas could rise by more than 50% by 2035

Geographical Mismatch Between Proven Gas Reserves and Demand

% of proven gas reserves by region, including unconventional gas
% of global gas consumption by region

Source: Cédigaz, April 2011
New LNG Opportunities to Meet Demand Beyond 2015

Source: Wood Mackenzie / Deutsche Bank, January 2010
Conventional LNG Supply Chain

Upstream Treatment, Liquefaction & Export

Transportation

Regasification Terminal

Distribution

Treatment, Liquefaction & Export

Transportation

Floating LNG
FLNG Supply Chain

Upstream, Treatment, Liquefaction & Export

Distribution

Regasification Terminal

Transportation
2. LNG & FLNG Challenges
From Wells to LNG, a Complex Process

- **Field Facilities**
- **Sulphur Recovery**
- **LNG Storage Loading**
- **Pipeline Reception**
- **Acid Gas Removal**
- **Dehydration**
- **Mercury Removal**
- **NGL Recovery**
- **Liquefaction**
- **Refrigeration Loop**
- **Fractionation**
- **Fuel gas (8 - 12% of feedstock)**
- **N2 Rejection**
- **Methane**
- **Ethane, Propane, Butane, Pentane…**
- **Condensates (C₄⁺)**
- **Refrigerant**
- **LPG Condensates**

Utility Production for the Plant
- Power Plant
- Cooling water
- Fire Fighting Systems
- Nitrogen Generation
- Flare
- Water Treatment

Methane rich gas

LNG Train

- 20°C, 50 bars
- -162°C, 1 bar
Onshore to Offshore: Volume Optimization

Onshore LNG: Yemen

From onshore to offshore plant: a space management challenge to control weight & center of gravity
Floating LNG: Marine Environment Challenges

Mechanical
- Offloading LNG between two vessels on the high seas
- Importing large quantities of high pressure feed gas on a floating facility
- Equipment and piping loads generated by motion
- LNG tank sloshing over 25 years without dry docking
- Maintenance
- Marine Environment (Salt, humidity…)

Process
- Gas processing facilities to be adapted to marine environment
- Compact design (Weight and volume)
- Designing for motion compared to static onshore plant

"ALLS" Cryogenic export system
Example of Floating LNG Layout

Source: 2009 Technip R&D Study
3. Technip: A Unique Combination of Expertise and Experience
Technip: Leading LNG Contractor for 45 Years

- EPC Contractor with the deep technical know-how of a licensor
- Developed and used our own liquefaction process
- Built the first ever LNG plant 45 years ago in Algeria
- Introduced many concepts that are widely used
- Involved in 30% of world LNG production capacity
Technip: Offshore Project Achievements

Akpo, Nigeria, World’s Largest FPSO

P-56, Brazil, World’s Heaviest Float-over

Perdido, GoM, World’s Deepest Spar Production Facility
Technip: Extensive Experience in Large FPSO’s

FPSO's Installed or Planned by Year and Size

Akpo FPSO, Nigeria, 320 x 60m, Largest ever

Built by Technip

N’Kossa
Girassol
Akpo
Dalia
P-58 & P-62

Source: Infield February 2008

FLNG forecast
Technip’s Unique Combination of Expertise

All the know-how and talents to better manage projects, risks and interfaces
Technip Group FLNG Capability

Technip & FLNG

FLNG Expertise & Support Center
Know-how and solid track-record across LNG, Offshore & Subsea

LNG: Developing
Offshore: Floating platforms (semi-sub & FPSO)
Subsea: Major center

Brazil

Gulf of Mexico

LNG: Liquefaction and regasification
Offshore: Floating platforms
Subsea: Major center

India

LNG
Offshore: FPSO’s

Detailed engineering support

Asia-Pacific

LNG: Liquefaction
Offshore: Floating platform expertise
Subsea: Developing

Paris
4. Floating LNG: Today and Tomorrow
FLNG: New Opportunities for Oil and Gas Producers

- Cost optimization in areas with high construction costs
- Deeper and further offshore reserves
- Pipeline too complicated or too long
- Insufficient reserves for dedicated onshore LNG plant
- Monetize associated gas rather than re-injection or flaring

- Environment
- Potential redeployment

Floating LNG mainly driven by economics
Floating LNG Today

- Floating LNG moving from concept to reality
 - Industry experience in large FPSO’s
 - Open sea transfer of LNG made possible
 - Processing challenges on moving platforms solved
 - Industrial momentum with many FLNG projects at FEED stage and Prelude Final Investment Decision

- **Shell FLNG**
 - 15 year master agreement
 - LNG capacity: 3.6 mtpa
 - Prelude FLNG in Australia in progress
 - 488 x 74 meters
 - 600,000 ton displacement with tanks full

- **Petrobras FLNG**
 - LNG capacity: 2.7 mtpa
 - Pre-salt basin, Brazil
 - FEED delivered 4Q 2010

- **Petronas FLNG**
 - LNG capacity: 1.0 mtpa
 - Offshore Malaysia
 - FEED in progress
Tomorrow: Drivers for FLNG Prospects

- Nearshore (W. coast)
- Offshore (E. coast)
- High cost of onshore construction

- Remote Fields

- Better security offshore
- Remote fields and deep water

- Many small fields
- Presence of subsea trenches

- Pre-Salt Associated Gas
- Difficult access to land
- Remote fields and deep water

- Remote fields
- Sensitivity to construction on the coastline
- High cost of onshore construction
Thank you

Technip, the leading player in FLNG