UNIFIED FACILITIES CRITERIA (UFC)

MECHANICAL ENGINEERING

Any copyrighted material included in this UFC is identified at its point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder.

U.S. ARMY CORPS OF ENGINEERS

NAVAL FACILITIES ENGINEERING COMMAND (Preparing Activity)

AIR FORCE CIVIL ENGINEER CENTER

Record of Changes (changes are indicated by \1\ ... /1/)

<table>
<thead>
<tr>
<th>Change No.</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>October 2015</td>
<td>Changes to Chapters 1, 2 and Appendix A in response to Criteria Change Requests (CCRs) and Tri-Service reviews.</td>
</tr>
</tbody>
</table>
FOREWORD

The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides planning, design, construction, sustainment, restoration, and modernization criteria, and applies to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with USD (AT&L) Memorandum dated 29 May 2002. UFC will be used for all DoD projects and work for other customers where appropriate. All construction outside of the United States is also governed by Status of Forces Agreements (SOFA), Host Nation Funded Construction Agreements (HNFA), and in some instances, Bilateral Infrastructure Agreements (BIA.) Therefore, the acquisition team must ensure compliance with the most stringent of the UFC, the SOFA, the HNFA, and the BIA, as applicable.

UFC are living documents and will be periodically reviewed, updated, and made available to users as part of the Services’ responsibility for providing technical criteria for military construction. Headquarters, U.S. Army Corps of Engineers (HQUSACE), Naval Facilities Engineering Command (NAVFAC), and Air Force Civil Engineer Center (AFCEC) are responsible for administration of the UFC system. Defense agencies should contact the preparing service for document interpretation and improvements. Technical content of UFC is the responsibility of the cognizant DoD working group. Recommended changes with supporting rationale should be sent to the respective service proponent office by the following electronic form: Criteria Change Request. The form is also accessible from the Internet sites listed below.

UFC are effective upon issuance and are distributed only in electronic media from the following source:

Hard copies of UFC printed from electronic media should be checked against the current electronic version prior to use to ensure that they are current.

AUTHORIZED BY:

JAMES C. DALTON, P.E.
Chief, Engineering and Construction
U.S. Army Corps of Engineers

JOSEPH E. GOTT, P.E.
Chief Engineer
Naval Facilities Engineering Command

JOE SCIABICA, SES
Director
Air Force Civil Engineer Center

MICHAEL McANDREW
Director, Facilities Investment and Management
Office of the Deputy Under Secretary of Defense (Installations and Environment)
Document: UFC 3-401-01, Mechanical Engineering

Superseding: None

Description: This UFC is the core document for the mechanical discipline. It is intended as a reference for all mechanical work. It is organized to provide the top-level minimum mandatory mechanical design and analysis requirements and refers to other criteria as appropriate.

Reasons for Document:
- This new UFC provides a central point reference for all mechanical design criteria.
- Establishes minimum design analysis and drawing requirements in support of design activities
- Helps direct designers to the appropriate mechanical discipline criteria document.

Impact:
- There are negligible cost impacts. Creation of a single-source reference for mechanical design discipline helps clarify requirements for the design of DoD facilities.

Unification Issues:
- The Navy uses MO-230, Petroleum Fuel Facilities for maintenance of petroleum fuel systems while the Air Force and Army use UFC 3-460-03, O&M: Maintenance of Petroleum Systems. There is a project pending by the tri-service Fuel Facility Engineering Panel to unify these documents.
- The Navy uses UFC 3-430-08N, Central Heating Plants for design of central heating plants while the Army and Air Force use 3-430-02FA, Central Steam Boiler Plants. There is an ongoing Army project to update and unify these documents.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1
 1-1 PURPOSE AND SCOPE ... 1
 1-2 APPLICABILITY ... 1
 1-3 GENERAL BUILDING REQUIREMENTS. .. 1
 1-4 REFERENCES. ... 1
 1-5 GLOSSARY .. 1

CHAPTER 2 TECHNICAL REQUIREMENTS .. 3
 2-1 BASIC PRINCIPLES. .. 3
 2-1.1 Life Cycle Considerations. ... 3
 2-1.2 Maintainability. .. 3
 2-1.3 Seismic Protection .. 3
 2-1.4 Weather Data .. 3
 2-1.5 Conflicts in Design .. 3
 2-1.6 Conflicts in Criteria .. 4
 2-1.7 Specifications .. 4
 2-2 ASSOCIATED MECHANICAL SYSTEMS CRITERIA. 4
 2-2.1 Facility Plumbing Systems ... 4
 2-2.2 Facility HVAC Systems and Controls ... 4
 2-2.3 Utility Monitoring and Control Systems .. 4
 2-2.4 Exterior Mechanical Distribution Systems .. 4
 2-2.5 Petroleum Fuel Systems .. 4
 2-2.6 Industrial Ventilation Systems ... 5
 2-2.7 Compressed Air Systems .. 5
 2-2.8 Refrigeration Systems for Cold Storage Facilities............................. 5
 2-2.9 Central Plants .. 5
 2-2.10 Mechanical Systems for Health Care Facilities 5

CHAPTER 3 DOCUMENTATION REQUIREMENTS ... 7
 3-1 DESIGN ANALYSIS ... 7
 3-1.1 Basis of Design Narrative. ... 7
 3-1.2 Calculations and Analysis .. 8
 3-2 FINAL DRAWING REQUIREMENTS ... 8
CHAPTER 1 INTRODUCTION

1-1 PURPOSE AND SCOPE.

This Unified Facility Criteria (UFC) provides requirements and guidance for mechanical systems designed and constructed for the Department of Defense (DoD) together with criteria for selecting mechanical system materials and equipment. This information must be used by mechanical engineers to develop design calculations, specifications, plans, and design-build Requests for Proposal (RFPs) and must serve as the minimum mechanical design requirements.

This UFC is provided to ensure quality and consistency in design of mechanical systems with minimum life cycle costs which satisfy the functional and operational requirements of DoD facilities and which provide a healthy and safe environment for facility occupants. This UFC is intended as a reference for all mechanical work. Figure 1-1 shows the relationship of this UFC to other related mechanical UFCs.

1-2 APPLICABILITY.

This UFC is applicable to all service elements and contractors involved in the planning, design and construction of Department of Defense (DoD) facilities worldwide.

1-3 GENERAL BUILDING REQUIREMENTS.

Comply with UFC 1-200-01, General Building Requirements. UFC 1-200-01 provides applicability of model building codes and government unique criteria for typical design disciplines and building systems, as well as for accessibility, antiterrorism, security, high performance, sustainability, and safety. Use this UFC in addition to UFC 1-200-01 and the government criteria referenced therein.

1-4 REFERENCES.

Appendix A contains a list of references used in this document.

1-5 GLOSSARY.

Appendix C contains acronyms, abbreviations, and terms.
Figure 1-1 Mechanical UFC Delineation
2-1 BASIC PRINCIPLES.

2-1.1 Life Cycle Considerations.

Energy and water-efficient and sustainable design attributes for military construction must be based on the cost-benefit analysis, return on investment, total ownership costs, and demonstrated payback. Provide mechanical systems based on achieving the lowest life cycle cost of the approved alternatives. Ensure that all operation and maintenance costs are included in any life cycle cost analysis. Follow procedures for Life Cycle Cost Analysis (LCCA) stated in UFC 1-200-02. HVAC system (including fuel source) preliminary design must be determined at the concept stage justified by a LCCA.

2-1.2 Maintainability.

Maintainability and reliability are paramount to the operation of DoD buildings. Mechanical equipment not required to be located outside must be located in an equipment room. All mechanical equipment must be based on a minimum of three manufacturers. Catalog cuts from those three manufacturers must be included in the mechanical design analysis. Size the mechanical room to accommodate the space required to house all equipment and piping. A three dimensional envelope must be shown on the mechanical drawings for each item of equipment showing the maximum dimensions of those three manufacturers including the space necessary for maintenance and replacement. Verify adequate door dimensions to permit passage of equipment into mechanical spaces. Provide system designs with the features necessary for easy access for maintenance and for successful testing, adjusting, balancing, and system commissioning. Provide protection for equipment materials located in corrosive environments.

2-1.3 Seismic Protection

Design mechanical systems with respect to seismic protection in accordance with UFC 3-310-04. Provide details to structural engineer for support verification and sizing.

2-1.4 Weather Data

Weather data needed for design calculations and analysis must be obtained from UFC 3-400-02.

2-1.5 Conflicts in Design

Avoid conflicts with other disciplines and building features.
2-1.6 Conflicts in Criteria.

Where, in any specific case, different sections of any mechanical UFC or referenced standards specify different materials, methods of construction or other requirements, the most restrictive requirement will govern.

2-1.7 Specifications

All projects including DBB and DB will use the applicable UFGS as part of the design and construction documentation. Construction specifications projects shall require all materials to be protected from moisture and conditions that have potential to result in deterioration of material properties or in mold growth during site storage and construction. Protective measures must be taken to ensure that the construction process adequately shelters the materials to prevent mold growth and material degradation during construction. /1/

2-2 ASSOCIATED MECHANICAL SYSTEMS CRITERIA.

2-2.1 Facility Plumbing Systems

Design and construct plumbing systems for facilities in accordance with this document and the current issue of UFC 3-420-01. When solar preheat and heating of domestic hot water is shown to be LCC effective, systems must be in accordance with UFC 3-440-01. /1/

2-2.2 Facility HVAC Systems and Controls.

Design and construct Heating, Ventilating, and Air Conditioning (HVAC) systems for facilities in accordance with this document and the current issues of UFC 3-410-01. Insulate piping with an operating temperature below dewpoint with jacketed insulation meeting the cold piping requirements. The insulation jacket must be sealed to provide an exterior vapor barrier. /1/

2-2.3 Utility Monitoring and Control Systems.

Utility Monitoring and Control System Front Ends must be designed and constructed in accordance with UFC 3-470-01 and UFGS 25 10 10.

2-2.4 Exterior Mechanical Distribution Systems.

Design and construct all exterior steam, chilled water, and hot water distribution systems in accordance with this document and UFC 3-430-01FA.

2-2.5 Petroleum Fuel Systems.

Design and construct petroleum fueling systems in accordance with this document and the current issue of UFC 3-460-01. Provisions for maintenance of fueling facilities must be provided in accordance with UFC 3-460-03 for the Air Force and Army. The maintenance aspects of Navy fuel facilities must follow MO-230.
2-2.6 **Industrial Ventilation Systems.**

Design industrial ventilation systems in accordance with UFC 3-410-04. Provide air flow and static pressure calculations with each design.

Mechanical requirements for stationary battery installations that do not perform battery maintenance must be designed in accordance with UFC 3-520-05.

2-2.7 **Compressed Air Systems.**

Design and construct exterior compressed air distribution systems in accordance with this document and the current issue of UFC 3-430-09. Interior distribution must be designed and constructed in accordance with the Compressed Air and Gas Institute’s Compressed Air and Gas Handbook and the ASME BPVC (Boiler and Pressure Vessel Codes).

2-2.8 **Refrigeration Systems for Cold Storage Facilities.**

Design and construct refrigeration systems for cold storage facilities in accordance with this document, UFC 3-410-01 and the current issue of UFC 4-826-10.

2-2.9 **Central Plants.**

Design and construct central heating plants in accordance with this document and the current issue of UFC 3-430-08N for the Navy or 3-430-02FA for the Army and Air Force.

When a central plant is provided to serve multiple buildings, meter all utility services (gas, oil, steam, chilled, and hot water) at the central plant (both supply and return) and at each building served (supply only). Provide flow and temperature measurement for steam, chilled and hot water demand and measure BTU for energy consumption.

2-2.10 **Mechanical Systems for Health Care Facilities.**

Mechanical system designs for health care facilities will be in accordance with the current issue of UFC 4-510-01.
CHAPTER 3 DOCUMENTATION REQUIREMENTS

3-1 DESIGN ANALYSIS.

The Design Analysis must be submitted at a preliminary design stage equivalent to 35% design for concurrence of the results. The Design Analysis must consist of a Basis of Design Narrative and Calculations. The analysis must be updated as necessary as the design progresses. The results of this analysis are used for design decision-making in reducing total life cycle cost, while meeting mission objectives.

3-1.1 Basis of Design Narrative.

Provide a Basis of Design narrative as part of all design analysis.

3-1.1.1 User Requirements.

Document ventilation, temperature and humidity requirements, occupancies, functions, usage schedules, equipment loads, and exhaust requirements by space.

3-1.1.2 Criteria / Codes.

Identify the governing codes and criteria utilized for the design. Include the titles and the date of the applicable edition or publication.

3-1.1.3 Site Conditions.

Conduct detailed field investigation and interview the appropriate field personnel. Do not rely solely on the as-built drawings.

Determine energy sources available at the project site. Describe the source of thermal energy that will be used (i.e. Extension of central high pressure steam, hot water, natural gas, or stand alone heat source with the type of fuel utilized). Use fuel conversion factors provided in Appendix B for the analysis.

3-1.1.4 System Selection.

Provide a narrative description of all system alternatives considered. Describe in detail all systems and components selected at a preliminary design stage equivalent to 35% design to include the results of the LCCA and modeled energy use.

3-1.1.5 Special Mechanical Systems

Provide a description of special mechanical systems such as compressed air, hydraulic, nitrogen, lubrication oil, etc.

3-1.1.6 Other Basis of Design Narrative Requirements.

Provide any additional basis of design documentation as required by the specific mechanical UFCs.
3-1.2 Calculations and Analysis.

Show calculations and assumptions supporting equipment selections in a clear and organized manner. When charts or tables are used in the design analysis, cite the source and date of the publication.

3-1.2.1 Sizing Calculations.

Provide calculations for sizing equipment, piping, ductwork and all accessories. Provide the model number and manufacturer of each major piece of equipment used as the basis for the design.

3-1.2.2 LCCA.

Provide LCCA on optimized system level alternatives modeled in accordance with UFC 1-200-02. Provide energy model, including model inputs and outputs, on optimized system level alternatives by energy type in accordance with UFC 1-200-02.

3-1.2.3 Energy Compliance Analysis (ECA).

If required by UFC 1-200-02, provide a computerized Energy Compliance Analysis. The ECA is a building level analysis which takes into account the interaction between architectural, electrical and mechanical components of the facility design and confirms compliance with the energy reduction goals.

3-1.2.4 Other Calculation Requirements.

Provide any additional calculation documentation as required by the specific mechanical UFCs.

3-2 FINAL DRAWING REQUIREMENTS.

Drawings must be accurate and to scale. Drawings must show equipment, ductwork, and piping sufficiently to indicate all aspects of installation. Where practical, group all notes, legends, and schedules at the right of the drawings above the title block.

3-2.1 Drawing Units.

Unless otherwise authorized, the IP System of measurement must be used on CONUS projects and the SI system of measurement must be utilized on OCONUS projects. Metric and English pipe sizes are listed in Appendix C.

3-2.2 Legend.

Provide legends to clarify all symbols and abbreviations used on the drawings.

3-2.3 Seismic.
Show all pertinent seismic detailing for the mechanical systems on the contract drawings.

3-2.4 Demolition Plans.

“Demolition” plans should be separate and distinct from “new work” plans.

3-2.5 Floor Plans and Site Plans.

Exercise judgment to avoid overly congested drawings. Provide north arrows an all building and site plans. The orientation of drawings must be arranged with the north arrow toward the top of the plotted sheets, unless overriding circumstances dictate otherwise. The orientation of all partial building or site plans must be identical to that of the larger plan from which it is derived or referenced. Consistency in drawing orientation must be maintained with all disciplines. Enlarged plans must be drawn at no less than 1:50 (¼” = 1'-0").

3-2.6 Sections and Elevations.

Provide as required to supplement plan views.

3-2.7 Access Space.

Identify space necessary to access and replace items that require maintenance, such as filters, coils, heat exchangers, tube bundles, strainers, and chillers on the drawings in three-dimensions.

3-2.8 Special Detailing

Provide details on the drawings necessary to ensure drainage for “winterizing” equipment where appropriate.

3-2.9 Equipment Schedules.

The equipment actually installed on a project may be different from that used as your basis of design. Therefore, mechanical equipment schedules must reflect actual required equipment capacities as calculated, not capacities provided by manufacturers’ catalog data. This helps ensure that the installed equipment is optimally sized for the application.

3-2.10 Other Drawing Requirements.

Provide any additional drawing requirements indicated in the specific mechanical UFCs.
APPENDIX A REFERENCES

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)
www.asme.org
ASME BPVC, Boiler and Pressure Vessel Codes

COMPRESSED AIR AND GAS INSTITUTE (CAGI)
www.cagi.org
The Compressed Air and Gas Handbook

UNITED STATES NAVY

MO-230, Maintenance and Operation of Petroleum Fuel Facilities,

UNITED STATES DEPARTMENT OF DEFENSE

MIL-STD 3007, Standard Practice for Unified Facilities Criteria and Unified Facilities

UNITED STATES DEPARTMENT OF DEFENSE, UNIFIED FACILITIES CRITERIA
http://dod.wbdg.org/

UFC 1-200-01, General Building Requirements
UFC 1-200-02, High Performance and Sustainable Building Requirements
UFC 3-310-04, Seismic Design for Buildings
UFC 3-400-02, Design: Engineering Weather Data
UFC 3-410-01, Heating, Ventilating, and Air Conditioning Systems
UFC 3-410-02, Lonworks (R) Direct Digital Control for HVAC and Other Local Building
Systems
UFC 3-410-04, Industrial Ventilation
UFC 3-420-01, Plumbing Systems
UFC 3-430-01FA, Heating and Cooling Distribution Systems
UFC 3-430-02FA, Central Steam Boiler Plants
UFC 3-430-07, Inspection and Certification of Boilers and Unfired Pressure Vessels
UFC 3-430-08N, Central Heating Plants
UFC 3-430-09, Exterior Mechanical Utility Distribution

UFC 3-430-11 Boiler Control Systems

UFC 3-440-01, Facility-Scale Renewable Energy Systems /1/

\1/ /1/

UFC 3-450-01, Noise and Vibration Control

UFC 3-460-01, Design: Petroleum Fuel Facilities

UFC 3-460-03, O&M: Maintenance of Petroleum Systems

UFC 3-470-01, Lonworks (R) Utility Monitoring and Control System (UMCS)

UFC 3-520-05, Stationary Battery Areas

UFC 4-510-01, Design: Medical Military Facilities

UFC 4-826-10, Design: Refrigeration Systems for Cold Storage

UNITED STATES DEPARTMENT OF DEFENSE, UNIFIED FACILITIES GUIDE SPECIFICATIONS (UFGS)
http://dod.wbdg.org/

UFGS 25 10 10, Utility Monitoring and Control System (UMCS) Front End Integration
APPENDIX B STANDARD CONVERSIONS AND TABLES

Table B-1 - Fuel Conversion Factors

<table>
<thead>
<tr>
<th>Type of Fuel</th>
<th>Conversion Factors (See note (a))</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracite Coal</td>
<td>28.4 Million Btu/Short Ton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29.9 kJ/kg</td>
<td></td>
</tr>
<tr>
<td>Bituminous Coal</td>
<td>24.6 Million Btu/Short Ton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25.9 kJ/kg</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>3413 Btu/KWH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3 MJ</td>
<td></td>
</tr>
<tr>
<td>No. 2 Distillate Fuel Oil</td>
<td>138,700 Btu/Gallon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.7 MJ/L</td>
<td></td>
</tr>
<tr>
<td>Residual Fuel Oil</td>
<td>149,700 Btu/Gallon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41.8 MJ/L</td>
<td></td>
</tr>
<tr>
<td>Kerosene</td>
<td>135,000 Btu/Gallon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.7 MJ/L</td>
<td></td>
</tr>
<tr>
<td>LP Gas</td>
<td>95,500 Btu/Gallon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.6 MJ/L</td>
<td></td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1,031 Btu/Cubic Foot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.5 MJ/L</td>
<td></td>
</tr>
<tr>
<td>Purchased or Steam from Central Plant</td>
<td>1,000 Btu/Pound</td>
<td>See note (b)</td>
</tr>
<tr>
<td></td>
<td>2.3 MJ/kg</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(a) At specific installations where the energy source Btu content is known to vary consistently by 10% or more from the values given below, the local value may be used provided there is adequate data on file for two years or more to justify the revision and that this value is expected to hold true for at least five years following building occupancy.

(b) High temperature, medium temperature, or chilled water from a central plant must use the heat value of fluid based on the actual temperature and pressure delivered to the 1.5 m (5 ft) line.
Table B-2. Metric Pipe Size Equivalence

<table>
<thead>
<tr>
<th>NPS (Inches)</th>
<th>DN (mm)</th>
<th>NPS (Inches)</th>
<th>DN (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>6</td>
<td>2-1/2</td>
<td>65</td>
</tr>
<tr>
<td>3/16</td>
<td>7</td>
<td>3-1/2</td>
<td>80</td>
</tr>
<tr>
<td>1/4</td>
<td>8</td>
<td>4-1/2</td>
<td>90</td>
</tr>
<tr>
<td>3/8</td>
<td>10</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>1/2</td>
<td>15</td>
<td>6</td>
<td>115</td>
</tr>
<tr>
<td>5/8</td>
<td>18</td>
<td>8</td>
<td>125</td>
</tr>
<tr>
<td>3/4</td>
<td>20</td>
<td>10</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td>12</td>
<td>200</td>
</tr>
<tr>
<td>1-1/4</td>
<td>32</td>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>1-1/2</td>
<td>40</td>
<td>12</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes:
1. NPS is the inch-pound designation for “nominal pipe size”.
2. DN is the metric designation for “diameter nominal”.
3. For pipe sizes over 12 inches, use the conversion factor of 25 mm per inch.

Table B-3. Metric Ductwork Dimensions

<table>
<thead>
<tr>
<th>Inches</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>180</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
</tr>
</tbody>
</table>

Notes:
1. For dimensions over 12 inches, increase mm size in increments of 50
APPENDIX C GLOSSARY

ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFCEE</td>
<td>Air Force Center for Engineering and the Environment</td>
</tr>
<tr>
<td>AHJ</td>
<td>Authority Having Jurisdiction</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>BIA</td>
<td>Bilateral Infrastructure Agreement</td>
</tr>
<tr>
<td>BPVC</td>
<td>Boiler and Pressure Vessel Codes</td>
</tr>
<tr>
<td>BTU</td>
<td>British Thermal Unit</td>
</tr>
<tr>
<td>CAGI</td>
<td>Compressed Air and Gas Institute</td>
</tr>
<tr>
<td>CONUS</td>
<td>Continental United States</td>
</tr>
<tr>
<td>DB</td>
<td>Design Build</td>
</tr>
<tr>
<td>DBB</td>
<td>Design Bid Build</td>
</tr>
<tr>
<td>DN</td>
<td>Diameter Nominal</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>ECA</td>
<td>Energy Compliance Analysis</td>
</tr>
<tr>
<td>Ft</td>
<td>Foot</td>
</tr>
<tr>
<td>HQUSACE</td>
<td>Headquarters United States Army Corp of Engineers</td>
</tr>
<tr>
<td>HNFA</td>
<td>Host Nation Funded Construction Agreements</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilating and Air Conditioning</td>
</tr>
<tr>
<td>IP</td>
<td>Inch-Pound</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>Kj</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>Kwh</td>
<td>Kilowatt-Hours</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Cost</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LCCA</td>
<td>Life Cycle Cost Analysis</td>
</tr>
<tr>
<td>LP</td>
<td>Liquid Petroleum</td>
</tr>
<tr>
<td>Mil-Std</td>
<td>Military Standard</td>
</tr>
<tr>
<td>MJ</td>
<td>Million joules</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeters</td>
</tr>
<tr>
<td>MO</td>
<td>Maintenance & Operation</td>
</tr>
<tr>
<td>NAVFAC</td>
<td>Naval Facilities Engineering Command</td>
</tr>
<tr>
<td>NPS</td>
<td>Nominal Pipe Size</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>OCONUS</td>
<td>Outside the Continental United States</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposal</td>
</tr>
<tr>
<td>SOFA</td>
<td>Status of Forces Agreement</td>
</tr>
<tr>
<td>UFC</td>
<td>Unified Facility Criteria</td>
</tr>
<tr>
<td>UFGS</td>
<td>Unified Facilities Guide Specification</td>
</tr>
<tr>
<td>UMCS</td>
<td>Utility Monitoring & Control System</td>
</tr>
<tr>
<td>USD (AT&L)</td>
<td>Under Secretary of Defense for Acquisition, Technology, and Logistics</td>
</tr>
</tbody>
</table>