Introduction to KDD and data mining

Nguyen Hung Son

This presentation was prepared on the basis of the following public materials:

1. Jiawei Han and Micheline Kamber, „Data mining, concept and techniques” http://www.cs.sfu.ca
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
Motivation: large scale databases

- Advanced methods in data extraction and data storing techniques
- Growth of many application areas

- More generated data:
 - Bank, telecom, other business transactions ...
 - Scientific data: astronomy, biology, etc
 - Web, text, and e-commerce
Massive data sources

- Huge number of records
 $10^6 - 10^{12}$ in case of databases about celestial objects (astronomy)

- Huge number of attributes (features, measurements, columns)
 Hundreds of variables in patient records corresponding to results of medical examinations
Motivation

- „We are melting in a ocean of data, but we need a knowledge”
- PROBLEM: How to get a useful information/knowledge from large databases?
- SOLUTION: Data wherehouse + data mining
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
What Is Data Mining?

An iterative and interactive process of discovering
- novel,
- valid,
- useful,
- comprehensive and
- understandable
patterns and models in
MASSIVE data sources (databases).

- Novel: something we are not aware of
- Valid: generalise to the future
- Useful: some reaction is possible
- Understandable: leading to insight
- Iterative: many steps and many passes
- Interactive: human is a part of the system
What is Data Mining

- Alternative names and their “inside stories”:
 - Data mining: a misnomer?
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

- What is not data mining?
 - (Deductive) query processing.
 - Expert systems or small ML/statistical programs
Evolution of Database Technology

- 1960s:
 - Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.) and application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s—2000s:
 - Data mining and data warehousing, multimedia databases, and Web databases
Big Data Examples

- Europe's Very Long Baseline Interferometry (VLBI) has 16 telescopes, each of which produces 1 Gigabit/second of astronomical data over a 25-day observation session
 - storage and analysis a big problem
- AT&T handles billions of calls per day
 - so much data, it cannot be all stored -- analysis has to be done “on the fly”, on streaming data
Largest databases in 2003

- Commercial databases:
 - Winter Corp. 2003 Survey: France Telecom has largest decision-support DB, ~30TB; AT&T ~ 26 TB

- Web
 - Alexa internet archive: 7 years of data, 500 TB
 - Google searches 4+ Billion pages, many hundreds TB
 - Internet Archive (www.archive.org), ~ 300 TB
5 million terabytes created in 2002

- UC Berkeley 2003 estimate: 5 exabytes (5 million terabytes) of new data was created in 2002.
- US produces ~40% of new stored data worldwide
Data Growth Rate

- Twice as much information was created in 2002 as in 1999 (~30% growth rate)
- Other growth rate estimates even higher
- Very little data will ever be looked at by a human
- Knowledge Discovery is **NEEDED** to make sense and use of data.
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
Data Mining

Application areas

- Science
 - astronomy, bioinformatics, drug discovery, …

- Business
 - advertising, CRM (Customer Relationship management), investments, manufacturing, sports/entertainment, telecom, e-Commerce, targeted marketing, health care, …

- Web:
 - search engines, bots, …

- Government
 - law enforcement, profiling tax cheaters, anti-terror(?)

KDD and DM 15
Data Mining for Customer Modeling

- Customer Tasks:
 - attrition prediction
 - targeted marketing:
 - cross-sell, customer acquisition
 - credit-risk
 - fraud detection

- Industries
 - banking, telecom, retail sales, …
Customer Attrition: Case Study

- Situation: Attrition rate at for mobile phone customers is around 25-30% a year!

Task:

- Given customer information for the past N months, predict who is likely to attrite next month.
- Also, estimate customer value and what is the cost-effective offer to be made to this customer.
Customer Attrition Results

- Verizon Wireless built a customer data warehouse
- Identified potential attriters
- Developed multiple, regional models
- Targeted customers with high propensity to accept the offer
- Reduced attrition rate from over 2%/month to under 1.5%/month (huge impact, with >30 M subscribers)
 (Reported in 2003)
Assessing Credit Risk: Case Study

- **Situation:** Person applies for a loan
- **Task:** Should a bank approve the loan?
- **Note:** People who have the best credit don’t need the loans, and people with worst credit are not likely to repay. Bank’s best customers are in the middle
Credit Risk - Results

- Banks develop credit models using variety of machine learning methods.
- Mortgage and credit card proliferation are the results of being able to successfully predict if a person is likely to default on a loan.
- Widely deployed in many countries.
Successful e-commerce – Case Study

- A person buys a book (product) at Amazon.com.
- Task: Recommend other books (products) this person is likely to buy
- Amazon does clustering based on books bought:
 - customers who bought “Advances in Knowledge Discovery and Data Mining”, also bought “Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations”
- Recommendation program is quite successful
Unsuccessful e-commerce case study (KDD-Cup 2000)

- Data: clickstream and purchase data from Gazelle.com, legwear and legcare e-tailer
- Q: Characterize visitors who spend more than $12 on an average order at the site
- Dataset of 3,465 purchases, 1,831 customers
- Very interesting analysis by Cup participants
 - thousands of hours - $X,000,000 (Millions) of consulting
- Total sales -- $Y,000
- Obituary: Gazelle.com out of business, Aug 2000
Genomic Microarrays – Case Study

Given microarray data for a number of samples (patients), can we

■ Accurately diagnose the disease?
■ Predict outcome for given treatment?
■ Recommend best treatment?
Example: ALL/AML data

- 38 training cases, 34 test, ~ 7,000 genes
- 2 Classes: Acute Lymphoblastic Leukemia (ALL) vs Acute Myeloid Leukemia (AML)
- Use train data to build diagnostic model

Results on test data:
33/34 correct, 1 error may be mislabeled
Security and Fraud Detection - Case Study

- Credit Card Fraud Detection
- Detection of Money laundering
 - FAIS (US Treasury)
- Securities Fraud
 - NASDAQ KDD system
- Phone fraud
 - AT&T, Bell Atlantic, British Telecom/MCI
- Bio-terrorism detection at Salt Lake Olympics 2002
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
Architecture of a Typical Data Mining System

- Graphical user interface
- Pattern evaluation
- Data mining engine
- Database or data warehouse server
- Knowledge-base
- Databases
- Data Warehouse
- Data cleaning & data integration
- Filtering
Data Mining: On What Kind of Data?

- Relational databases
- Data warehouses
- Transactional databases
- Advanced DB and information repositories
 - Object-oriented and object-relational databases
 - Spatial databases
 - Time-series data and temporal data
 - Text databases and multimedia databases
 - Heterogeneous and legacy databases
 - WWW
Data Mining Functionalities (1)

- **Concept description: Characterization and discrimination**
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions

- **Association** (correlation and causality)
 - Multi-dimensional vs. single-dimensional association
 - \(\text{age}(X, "20..29") \land \text{income}(X, "20..29K") \Rightarrow \text{buys}(X, "PC") \) [support = 2%, confidence = 60%]
 - \(\text{contains}(T, "computer") \Rightarrow \text{contains}(T, "software") \) [1%, 75%]
Data Mining Functionalities (2)

- **Classification and Prediction**
 - Finding models (functions) that describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on climate, or classify cars based on gas mileage
 - Presentation: decision-tree, classification rule, neural network
 - Prediction: Predict some unknown or missing numerical values

- **Cluster analysis**
 - Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
 - Clustering based on the principle: maximizing the intra-class similarity and minimizing the interclass similarity
Data Mining Functionalities (3)

- **Outlier analysis**
 - Outlier: a data object that does not comply with the general behavior of the data
 - It can be considered as noise or exception but is quite useful in fraud detection, rare events analysis

- **Trend and evolution analysis**
 - Trend and deviation: regression analysis
 - Sequential pattern mining, periodicity analysis
 - Similarity-based analysis

- **Other pattern-directed or statistical analyses**
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
Component of a Data Mining algorithm

- Knowledge representation model
- Evaluation criteria
- Search strategy
Knowledge representation

- Using logical language to describe mined patterns. E.g.,
 - Logical formulas
 - Decision tree
 - Neural networks (!)
Search strategy

- Parameter searching
- Model searching
Are All the “Discovered” Patterns Interesting?

- A data mining system/query may generate thousands of patterns, not all of them are interesting.
 - Suggested approach: Human-centered, query-based, focused mining

- **Interestingness measures**: A pattern is *interesting* if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm.

- **Objective vs. subjective interestingness measures**:
 - **Objective**: based on statistics and structures of patterns, e.g., support, confidence, etc.
 - **Subjective**: based on user’s belief in the data, e.g., unexpectedness, novelty, actionability, etc.
Can We Find All and Only Interesting Patterns?

- **Find all the interesting patterns: Completeness**
 - Can a data mining system find all the interesting patterns?
 - Association vs. classification vs. clustering

- **Search for only interesting patterns: Optimization**
 - Can a data mining system find only the interesting patterns?
 - Approaches
 - First general all the patterns and then filter out the uninteresting ones.
 - Generate only the interesting patterns—mining query optimization
Major Data Mining Methods

- **Classification:** predicting an item class
- **Clustering:** finding clusters in data
- **Associations:** e.g. A & B & C occur frequently
- **Visualization:** to facilitate human discovery
- **Summarization:** describing a group
- **Deviation Detection:** finding changes
- **Estimation:** predicting a continuous value
- **Link Analysis:** finding relationships
- …
Related techniques

- Neural Networks
- Fuzzy Sets
- Rough Sets
- Time series analysis
- Bayesian Networks
- Decision trees
- Evolutionary programming and GA
- Markov modelling
Example

Income

Debt

KDD and DM 40
Linear classification

![Diagram showing linear classification with axes for Income and Debt, and symbols representing loan and no loan.]

KDD and DM 41
Linear regression

Regression line

Debt

Income

X X O O X X O O O O O O
X X X X X X O O O O O O
X X

KDD and DM 42
Clustering

income

Debt
Single threshold (cut)
Nonlinear classifier
Nearest neighbour

- Income
- Debt

- No Loan
- Loan

KDD and DM 46
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
KDD

Artificial Intelligence

Database

High Performance Computing

Statistics

Soft Computing

KDD
Data Mining: a KDD process
Steps of a KDD Process

1. Learning the application domain:
 - relevant prior knowledge and goals of application
2. Creating a target data set: data selection
3. Data cleaning and preprocessing: (may take 60% of effort!)
4. Data reduction and transformation:
 - Find useful features, dimensionality/variable reduction, invariant representation.
5. Choosing functions of data mining
 - summarization, classification, regression, association, clustering.
6. Choosing the mining algorithm(s)
7. Data mining: search for patterns of interest
8. Pattern evaluation and knowledge presentation
 - visualization, transformation, removing redundant patterns, etc.
9. Use of discovered knowledge
The goals of Data Mining

- **Prediction**: To foresee the possible future situation on the basis of previous events.

 Given sales recordings from previous years can we predict what amount of goods we need to have in stock for the forthcoming season?

- **Description**: What is the reason that some events occur?

 What are the reasons for the cars of one producer to sell better than equal products of other producers?

- **Verification**: We think that some relationship between entities occur.

 Can we check if (and how) the thread of cancer is related to environmental conditions?

- **Exception detection**: There may be situations (records) in our databases that correspond to something unusual.

 Is it possible to identify credit card transactions that are in fact frauds?
Classification of Data Mining systems

- General functionality
 - Descriptive data mining
 - Predictive data mining

- Different views, different classifications
 - Kinds of databases to be mined
 - Kinds of knowledge to be discovered
 - Kinds of techniques utilized
 - Kinds of applications adapted
A Multi-Dimensional View of Data Mining Classification

- **Databases to be mined**
 - Relational, transactional, object-oriented, object-relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW, etc.

- **Knowledge to be mined**
 - Characterization, discrimination, association, classification, clustering, trend, deviation and outlier analysis, etc.
 - Multiple/integrated functions and mining at multiple levels

- **Techniques utilized**
 - Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, neural network, etc.

- **Applications adapted**
 - Retail, telecommunication, banking, fraud analysis, DNA mining, stock market analysis, Web mining, Weblog analysis, etc.
Lecture plan

- Motivations: why data mining?
- Definitions of data mining?
- Examples of applications
- Data mining systems and functionality
- Methods in data mining
- Data mining: a KDD process
- Data mining issues
Data Mining and Business Intelligence

Increasing potential to support business decisions

Making Decisions

Data Presentation
Visualization Techniques

Data Mining
Information Discovery

Data Exploration
Statistical Analysis, Querying and Reporting

Data Warehouses / Data Marts
OLAP, MDA

Data Sources
Paper, Files, Information Providers, Database Systems, OLTP

End User

Business Analyst

Data Analyst

DBA
Major Issues in Data Mining (1)

- **Mining methodology and user interaction**
 - Mining different kinds of knowledge in databases
 - Interactive mining of knowledge at multiple levels of abstraction
 - Incorporation of background knowledge
 - Data mining query languages and ad-hoc data mining
 - Expression and visualization of data mining results
 - Handling noise and incomplete data
 - Pattern evaluation: the interestingness problem

- **Performance and scalability**
 - Efficiency and scalability of data mining algorithms
 - Parallel, distributed and incremental mining methods
Major Issues in Data Mining (2)

- **Issues relating to the diversity of data types**
 - Handling relational and complex types of data
 - Mining information from heterogeneous databases and global information systems (WWW)

- **Issues related to applications and social impacts**
 - Application of discovered knowledge
 - Domain-specific data mining tools
 - Intelligent query answering
 - Process control and decision making
 - Integration of the discovered knowledge with existing knowledge: A knowledge fusion problem
 - Protection of data security, integrity, and privacy
References

- *Data Mining Techniques: for Marketing, Sales and Customer Support*. M. Berry, G. Linoff (Wiley)

- *Rough Sets in Knowledge Discovery I & II*. L. Polkowski, A. Skowron (Springer)