Electromechanical Sensors
and Actuators

Dr. Qing-Ming Wang
Professor of Mechanical Engineering and Materials Science
University of Pittsburgh

2016 Fall Term
Lecture 1
Introduction and Transducer Models
Definition of transducers
Sensors and actuators
Categories of sensors and actuators
Analog system
What is a Transducer?

There are many definitions of transducers in use:

Definition 1
- A transducer is a device which transforms non-electrical energy into electrical energy or vice versa.

Surface Acoustic Wave (SAW) Devices
Example 1: Acoustic Wave Transducers

- Bulk acoustic wave (BAW) and surface acoustic wave (SAW)-Based transducers:

 Transducers based on BAW and SAW devices are being developed for a wide range of transducer applications. The devices is an extremely sensitive gravimetric detector that can be coated with a film to collect chemical species of interest. Based on these devices, sensor systems have been developed that can detect trace (ppm to ppb) levels of airborne contaminants. Applications include combustible gas sensor, pressure sensors, temperature sensors, weapon state-of-health, environmental, and non-proliferation monitoring.
What is a Transducer?

Definition 2

- A transducer is a device which transforms energy from one domain into another. Typical energy domains are mechanical, electrical, chemical, fluid, and thermal.

Example — Thermal Actuator: Thermal Ink Jet Printheads

- To Paper
 - Ink Drop
 - Bubble
 - Thermal Region
 - Nozzle Plate
 - Power FETs immersed in caustic ink
 - Nozzle

Department of Mechanical Engineering
Example 2
Thermal Inkjet Printhead
Example 2
Thermal Inkjet Printhead

Power FETs immersed in caustic ink

To Paper

Ink Drop

Bubble

Thermal Region

Nozzle Plate

Nozzle

Protective Overcoats
Conductor
Resistive Film
Thermal Barrier
Example 2
Thermal Inkjet Printhead

Thermal - Bubble Formation

STEP1: Initial conditions

STEP2: Resistor heated upon command and liquid vaporizes instantly causing a vapor bubble to form.

STEP3: Vapor bubble grows to maximum size and ink ejected out of nozzle.

STEP4: The bubble collapses and breaks off. Nozzle returns to initial condition.
Example 2
Thermal Inkjet Printhead
A Semi Conductor Technology
Example 2
Thermal Inkjet Printhead

Inkjet Printhead

TECHNOLOGIES

INK

PRINTHEAD

DRIVER
Definition 3

- A transducer is a device which transforms energy from one type to another, even if both energy types are in the same domain.
The Digital Micromirror Device, or DMD chip, which was invented by Dr. Larry Hornbeck of Texas Instruments in 1987.

The DMD chip is probably the world's most sophisticated light switch. It contains a rectangular array of up to 1.3 million hinge-mounted microscopic mirrors; each of these micromirrors measures less than one-fifth the width of a human hair.

When a DMD chip is coordinated with a digital video or graphic signal, a light source, and a projection lens, its mirrors can reflect an all-digital image onto a screen or other surface. The DMD and the sophisticated electronics that surround it are what we call Digital Light Processing™ technology.

http://www.dlp.com/dlp_technology/dlp_technology_overview.asp
What is a Transducer?

- General view of a transducer: a 2-port device

- P_{in} is the input power
- f and e are two power conjugate variables which when multiplied yield the power in a given energy domain, such as a voltage and a current for an electrical port, or a force and a velocity for a mechanical port
- P_{out} is the output power
- The ratio analogous to the electrical impedance (voltage/current) is defined as the impedance

- We can define a transducer as a multiport device in which the input impedance(s) is (are) not equal to the output impedance(s)
What is a Transducer?

- Examples:
 - $P=V \cdot I =$ Voltage \cdot Current
 - $P=F \cdot v =$ Force \cdot Velocity

- Using the two conjugate power variables (time-dependent): an effort $e(t)$ and a flow $f(t)$, the time-dependent generalized displacement $q(t)$ is given by
 \[q(t) = \int_{t_0}^{t} f(t) \, dt + q(t_0) \]

- The time-dependent generalized moment $p(t)$ is given by
 \[p(t) = \int_{t_0}^{t} e(t) \, dt + p(t_0) \]
Why Study Transducers?

- Exponential growing number of transducers being found in common products

- The success of the conversion of electronics to microelectronic circuits
 - Most transducers have at least one electrical port and are packaged with significant electronics attached
 - Transducers are normally the weak link in a system, and the gap between transducers and processing electronics in terms of reliability, cost, and power is increasing at an alarming rate

- Escalating demand for automatic control of processes
 - All control need actuators and, if the control is closed-loop, sensors are needed as well

- The development of new materials and techniques
 - Materials capable of converting one form of energy to another is the heart of many transducers
Division of Transducers into Sensors and Actuators

- Transducers may generally be divided into two classes:
 - Sensors, which monitor the system
 - Actuators, which impose a condition on a system
- Sensors and actuators are comprehensive classes of transducers
- Some transducers can operate as a sensor or as an actuator, but not as both simultaneously

Division of Transducers into Sensors and Actuators

Stimuli

- Temp.
- Pressure
- Force
- Chemical
- Radiation

SENSORS

- Electric signal

ACTUATORS

- Electrical
- Magnetic
- Thermal
- Optic

- Force
- Displacement
- Torque
- Speed
Sensors and Actuators

- Sensor examples:
 - Hot-wire anemometers (measure flow velocity)
 - Microphones (measure fluid pressure)
 - Accelerometers (measure the acceleration of a structure)
 - Gas sensors (measure concentration of specific gas or gases)
 - Humidity sensor
 - Temperature sensors, etc.

- Ideally, a sensor monitors a parameter of a system without disturbing that parameter.

- We can minimize the effect of a sensor on the system by minimizing the energy exchange. For this reason, most sensors are low power, and small devices. Exactly what constitutes small or low power depends on the particular situation.
Sensors and Actuators

- Actuator examples
 - Motors (which impose a torque)
 - Force heads (which impose a force)
 - Pumps (which impose either a pressure or a fluid velocity)

- Ideally, actuators impose a state on a system that is independent of the load applied to them. In reality, this can never be achieved for a transducer with finite energy, because there will always be a load which exceeds its energy handling ability.

- The desire to minimize the effect of the load imposed by the system on the actuator performance usually leads to large, high power actuators. Exactly what constitutes large or high power depends on the particular circumstances.
Example 3
Piezoelectric Actuators
Piezoelectric Cantilever Actuators

\[z = \frac{3d_{31}L^2}{2t^2} V \]

\[F_{bl} = -\frac{3d_{31}wt}{8s_{11}E} V \]

(a) Bimorph in series connection

(b) Bimorph in parallel connection

(c) Unimorph

Piezoelectric/electrostrictive
PZT or PLZT layer

Piezoelectric ceramic plate

Metal plate

Poling direction

Reduced layer formed by high temperature reduction processing

(d) RAINGLOW actuator
Piezoelectric multilayer actuators

Actuator action of a PXE body

Stack of PXE discs

Transversal actuator action of a PXE 5 plate

Strain \(S = \frac{\delta L}{L} = d_{31} \times E \)

\(\delta L = L \times d_{31} \times E = \frac{L}{h} \times d_{31} \times V \)
Piezo Printheads

◆ Three Types:
 – Rod type.

Using multilayer piezoelectric (PZT) ceramic actuator arrays
Piezo Printheads

– Chip type

Using bending mode PZT ceramic actuators arrays
d31 Bending Actuators

Cross-Section of Ink Jet Piezo-actuators

- Ti-Pt metal
- PZT film
- SiO2
- P++ Si membrane
- Si (110)
- Nozzle plate
- Nozzles
- EDP or KOH etched Ink Chamber
Sensors and Actuators

- Transducers as part of a measurement or control system
Categories of sensors and actuators

Transducers have been classed in three ways

- Categorized by their use
 - Microphone, accelerometer, force sensor, displacement sensor, gas sensor, humidity sensor, temperature sensor, etc.
 - This is the most common classification scheme found in books on measurement or on sensors
 - Not good for a fundamental understanding of the transduction processes because physical principles may be quite similar in devices with very different applications

Example: Consider a sensor based on parallel plate capacitor

\[C = \frac{\varepsilon A}{d} \]

- \(\varepsilon \) is the dielectric permittivity
- \(A \) is cross section area of the plate
- \(d \) is the separation
- \(C \) is capacitance
Categories of sensors and actuators

- Sensors can be designed by allowing any one of three parameters to vary in manner which provides a one-one correspondence between the parameter values and the desired quantity to be measured (the measurand)
 - A humidity sensor, which exploits a variation in permittivity ε. It uses a material in which ε is a function of moisture content
 - A position sensor, which exploits a variation in the effective area A in which one capacitor plate is fixed while the other moves laterally
 - A condenser microphone: one of the plate move in response to sound pressure, thus changing the gap d between the plates

 They are all based on the same transduction principle: Capacitive Sensor

- Categorized by the energy type their use
 - Capacitive devices rely energy in an electric field
 - Inductive devices rely on magnetic field
 - Resistive devices work through the irreversible conversion of energy

The categories are so broad as to make comparison of transducers difficult
Sensors and Actuators

- Categorized by material or structural behavior which leads to transduction. This effectively introduces subclass into
 - Capacitive device
 - Inductive devices
 - Resistive devices
 - Piezoelectric devices
 - Pyroelectric devices, etc.

There are many such subclasses.

We will use this classification in this course. By using this categories, people can see similarities between various transducers, while understanding the details of the transduction mechanisms associated with each class.
In developing a logical set of analogies between energy domains, we begin with the definition of fundamental variables. There are two sets of fundamental variables which are defined for each energy domain: power conjugate variables and Hamiltonian variables.

Power conjugate variables are two variables which when multiplied yield the power in a given energy domain. This definition permits a large number of choices of variable sets for any given energy domain, but it is traditional to choose those variables most easily measured. For example, in mechanical systems in translation, we could use force and velocity, or time rate of change of force and displacement. The former pair is the standard choice. The standard power conjugate variables are listed below:

- Translational: force, F, and velocity, V.
- Rotational: torque, τ, and angular velocity, Ω.
- Electrical: voltage, e, and current, i.
- Magnetic: magnetomotive force (also called magnetomotance), M, and time rate of change of magnetic flux, $d\phi/dt$.
- Fluid: pressure, P, and volume flow rate, Q.
- Thermal: temperature, T, and time rate of change of entropy, ds/dt.
System Analogies

Firestone or Mobility Analogy

- \(V\), \(\Omega\), \(Q\), and \(e\) are analogous.
- \(F\), \(\tau\), \(P\), and \(i\) are analogous.

Using this analogy, the electrical impedance, the ratio of voltage to current, is analogous not to the mechanical and fluid impedances but to the mechanical and fluid mobilities, ratios of velocity to force, and volume flow rate to pressure.

Through-and-Across Analogy

- \(V\), \(\Omega\), \(P\), and \(e\) are across-variables.
- \(F\), \(\tau\), \(Q\), and \(i\) are through-variables.

- \(V\), \(\Omega\), \(P\) and \(e\) are referred here as across-variables because they are relative measures typically referenced across an ideal element
- \(F\), \(\tau\), \(Q\), and \(i\) are called through variables because they are not relative measure and often transmitted through an ideal element
- In this analogy, the electrical and fluid impedances are analogue to the mechanical mobility
System Analogies

Maxwell or Impedance Analogy

- V, Ω, Q, and i are flow variables.
- F, τ, P, and e are effort variables.

In the Maxwell analogy, the electrical, fluid, and mechanical impedances are analogous.

- We can extend this analogy to include thermal and magnetic systems by declaring the magnetomotive force and temperature to be effort variables, and the time rates of changes of magnetic flux and entropy to be flow variables.

Expanded Maxwell or Impedance Analogy

- V, Ω, Q, i, $d\phi/dt$, and ds/dt are flow variables.
- F, τ, P, e, M, and T are effort variables.

Maxwell analogy is most frequently used.
Lumped element modeling

Motivation for Lumped Modeling with Circuit Elements

- Simplified device presentation
- Expressible with equivalent circuit model
 - Can be simulated by SPICE
- Powerful set of tools developed for understanding circuits (at least for EE majors)
- Interface with electronic circuits
 - Modeling of entire system by SPICE
Lumped element modeling

- One port circuit elements

Sources

![Effort source](image)

![Flow source](image)

Circuit Elements

![Resistor](image)

![Capacitor](image)

![Inductor](image)
Lumped element modeling

- Parallel Plate Capacitor

\[Q = CV \]
\[C = \frac{\varepsilon A}{g} \]
\[V = \frac{Q}{C} \]

Linear Capacitor:

<table>
<thead>
<tr>
<th>Energy</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>[W(Q) = \frac{Q^2}{2C}]</td>
<td></td>
</tr>
</tbody>
</table>

Generalized Capacitor:

Well-behaved function that goes through origin of the e-q plane

\[e = \Phi(q) \]

<table>
<thead>
<tr>
<th>Energy</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>[W(q_1) = \int_{0}^{q_1} e \cdot dq = \int_{0}^{q_1} \Phi(q) dq]</td>
<td></td>
</tr>
</tbody>
</table>
Lumped element modeling

- Equivalent circuit of a spring

<table>
<thead>
<tr>
<th>Effort</th>
<th>Flow</th>
<th>Momentum</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Circuit</td>
<td>Voltage</td>
<td>Current</td>
<td>Charge</td>
</tr>
<tr>
<td>Mechanical System</td>
<td>Force</td>
<td>Velocity</td>
<td>p = mv</td>
</tr>
</tbody>
</table>

\[
V = \frac{1}{C}Q \\
W(Q) = \frac{1}{2}\left(\frac{1}{C}\right)Q^2 \\
F = kx \\
W(x) = \frac{1}{2}kx^2 \\
C_{spring} = \frac{1}{k}
\]
Lumped element modeling

- Generalized Inductors

Stored Kinetic Energy: \[W(p_1) = \int_0^{q_1} f \cdot dp = \int_0^{q_1} \Psi(p) dp \]

Linear Inductor: \[W(Q) = \frac{1}{2} L I^2 = \frac{1}{2} L \left(\frac{dQ}{dt} \right)^2 \]

Inertia Mass: \[W(p) = \frac{1}{2} m v^2 = \frac{1}{2} m \left(\frac{dx}{dt} \right)^2 \]

Equivalent Circuit of a Spring: \[L_{spring} = m \]
Lumped element modeling

- Equivalent circuit for spring-mass-dashpot system,

- Connection rule for the equivalent circuit for $e \Box V$ convention:
 - Elements share a common flow or displacement \Box connected in Series
 - Element share a common effort \Box connected in Parallel
Lumped element modeling

- Kirchhoff’s Laws
 - Kirchhoff’s Current Law (KCL)
 - The sum of all currents (flow) entering a node is zero
 - Kirchhoff’s Voltage Law (KVL)
 - The oriented sum of all voltages (efforts) around any closed loop is zero
Lumped element modeling

- Dynamic Response from Equivalent circuit

\[KVL: \quad -F + e_k + e_m + e_b = 0 \]

Dynamic Response \(\rightarrow \) Laplace Transform

\[Z_c(s) = \frac{1}{sC} \]
\[Z_L(s) = sL \]
\[Z_b(s) = b \]

\[e(s) = Z(s) f(s) = \left(sL + b + \frac{1}{sC} \right) f(s) \]

Electrical-to-Mechanical Mapping

\[L \rightarrow m \]
\[b \rightarrow b \]
\[\frac{1}{C} \rightarrow k \]

\[e(s) \rightarrow F(s) \]
\[f(s) \rightarrow \dot{x}(s) \]

Second-order system

\[F(s) = \frac{1}{sm + b + k / s} = \frac{s}{s^2 m + sb + k} \]
Lumped element modeling

- Equivalent circuit of mechanical systems

Simple mechanical system.

Two resistors electrically in series.

Equivalent circuit
Example 4
Thickness Shear Mode (TSM)
Bulk Acoustic Wave (BAW) Resonator Sensor
Equivalent Circuit of TSM Sensor

◆ Near resonant frequency

◆ If the applied frequency is exactly equal to resonant frequency, the resonator is a pure resistance in parallel with a static capacitance C_o

$$f_r = \frac{1}{2\pi(LC_1)^{1/2}}$$
Theory of TSM resonator sensor

- The resonant frequency shift is linearly related to the mass changes

\[\Delta f = -\frac{2f_0^2}{(\rho_Q\mu_Q)^{1/2}} \times \frac{\Delta m}{A} \]

-Sauerbrey 1959

- The effects of the solution viscosity and density on the resonant frequency of TSM sensor are

\[\Delta f = -\frac{f_0^{3/2}(\rho_L\eta_L)^{1/2}}{(\pi\rho_Q\mu_Q)^{1/2}} \]

\[\cdot \rho_L \text{- density of liquids} \]
\[\cdot \eta_L \text{- viscosity of liquids} \]

-Kanasawa et al. 1985