Before installing and using the software, please review the readme files, release notes, and the latest version of the applicable user documentation, which are available from the Trend Micro Web site at:

http://www.trendmicro.com/download

Trend Micro, the Trend Micro t-ball logo, DeepSecurity Control Server Plug-in, Damage Cleanup Service, eServer Plug-in, InterScan, Network VirusWall, ScanMail, ServerProtect, and TrendLabs are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.
Table of Contents

Introduction
- About This Document ... 6
- About Deep Security ... 8
- What’s New .. 11
- System Requirements ... 13

Preparation
- What You Will Need (VMware vShield) .. 18
- Database Considerations ... 21
- Minimum VMware Privileges for DSVA Deployment (vShield) 23
- Choosing Agentless Protection or Combined Mode 25
- Preparing a vShield Environment for Agentless Protection 26

Installation
- Installing the Deep Security Manager ... 29
- Manually Installing the Deep Security Agent 36
- Installing and Configuring a Relay-enabled Agent 47
- Deploying Agentless Protection in a vShield Environment 48
- Installing the Deep Security Notifier .. 52

Upgrading
- Planning Your Upgrade ... 55
- Upgrading to Full Agentless Protection .. 57
- Upgrading to Agentless Anti-Malware and Integrity Monitoring 58
- Upgrading to Combined Mode .. 63
- Upgrading from vCNS 5.5 to 6.0 ... 68

Appendices
- Deep Security Manager Memory Usage 70
- Deep Security Virtual Appliance Memory Usage 71
- Deep Security Manager Performance Features 73
- Upgrade Multi-Node Deep Security Manager 74
- Creating an SSL Authentication Certificate 75
Silent Install of Deep Security Manager ... 79
Deep Security Manager Settings Properties File .. 81
Enable Multi-Tenancy .. 87
Multi-Tenancy (Advanced) ... 95
Installing a Database for Deep Security (Multi-Tenancy Requirements) 97
Uninstalling Deep Security from your vShield Environment 101
Introduction
About This Document

Deep Security Installation Guide (VMware vShield)

This document describes the installation and configuration of the basic Deep Security software components.

1. The Deep Security Manager
2. The Deep Security Virtual Appliance
3. The Deep Security Agent (with Relay functionality)
4. The Deep Security Notifier

This document covers:

1. System Requirements
2. Preparation
3. Database configuration guidelines
4. Installing the Deep Security Manager management console
5. Installing a Relay-enabled Deep Security Agent
6. Integrating Deep Security with a VMware vShield environment
8. Guidelines for monitoring and maintaining your Deep Security installation

Intended Audience

This document is intended for anyone who wants to implement Agentless Deep Security protection in a VMware vShield environment. The information is intended for experienced system administrators who are familiar with virtual machine technology and virtual datacenter operations. This document assumes familiarity with VMware Infrastructure 5.x, including VMware ESXi, vCenter Server, and the vSphere Web Client.
Other Deep Security Documentation

About Deep Security

Deep Security provides advanced server security for physical, virtual, and cloud servers. It protects enterprise applications and data from breaches and business disruptions without requiring emergency patching. This comprehensive, centrally managed platform helps you simplify security operations while enabling regulatory compliance and accelerating the ROI of virtualization and cloud projects. The following tightly integrated modules easily expand the platform to ensure server, application, and data security across physical, virtual, and cloud servers, as well as virtual desktops.

Protection Modules

Anti-Malware

Integrates with VMware environments for agentless protection, or provides an agent to defend physical servers and virtual desktops.

Integrates new VMware vShield Endpoint APIs to provide agentless anti-malware protection for VMware virtual machines with zero in-guest footprint. Helps avoid security brown-outs commonly seen in full system scans and pattern updates. Also provides agent-based anti-malware to protect physical servers, Hyper-V and Xen-based virtual servers, public cloud servers as well as virtual desktops. Coordinates protection with both agentless and agent-based form factors to provide adaptive security to defend virtual servers as they move between the data center and public cloud.

Web Reputation

Trend Micro Web Reputation Service blocks access to malicious web sites.

Trend Micro assigns a reputation score based on factors such as a website’s age, historical location changes and indications of suspicious activities discovered through malware behavior analysis.

The Web Reputation Service:

- Blocks users from accessing compromised or infected sites
- Blocks users from communicating with Communication & Control servers (C&C) used by criminals
- Blocks access to malicious domains registered by criminals for perpetrating cybercrime

Firewall

Decreases the attack surface of your physical and virtual servers.

Centralizes management of server firewall policy using a bi-directional stateful firewall. Supports virtual machine zoning and prevents Denial of Service attacks. Provides broad coverage for all IP-based protocols and frame types as well as fine-grained filtering for ports and IP and MAC addresses.

Intrusion Prevention

Shields known vulnerabilities from unlimited exploits until they can be patched.

Helps achieve timely protection against known and zero-day attacks. Uses vulnerability rules to shield a known vulnerability -- for example those disclosed monthly by Microsoft -- from an unlimited number of exploits. Offers out-of-the-box vulnerability protection for over 100 applications, including database, web, email and FTP servers. Automatically delivers rules that shield newly discovered vulnerabilities within hours, and can be pushed out to thousands of servers in minutes, without a system reboot.

Defends against web application vulnerabilities
Enables compliance with PCI Requirement 6.6 for the protection of web applications and the data that they process. Defends against SQL injections attacks, cross-site scripting attacks, and other web application vulnerabilities. Shields vulnerabilities until code fixes can be completed.

Identifies malicious software accessing the network

Increases visibility into, or control over, applications accessing the network. Identifies malicious software accessing the network and reduces the vulnerability exposure of your servers.

Integrity Monitoring

Detests and reports malicious and unexpected changes to files and systems registry in real time.

Provides administrators with the ability to track both authorized and unauthorized changes made to the instance. The ability to detect unauthorized changes is a critical component in your cloud security strategy as it provides the visibility into changes that could indicate the compromise of an instance.

Log Inspection

Provides visibility into important security events buried in log files.

Optimizes the identification of important security events buried in multiple log entries across the data center. Forwards suspicious events to a SIEM system or centralized logging server for correlation, reporting and archiving. Leverages and enhances open-source software available at [OSSEC](https://www.ossec.net).

Deep Security Components

Deep Security consists of the following set of components that work together to provide protection:

- **Deep Security Manager** is the centralized Web-based management console which administrators use to configure security policy and deploy protection to the enforcement components: the Deep Security Virtual Appliance and the Deep Security Agent.

- **Deep Security Virtual Appliance** is a security virtual machine built for VMware vSphere environments that Agentlessly provides Anti-Malware and Integrity Monitoring to virtual machines. Agentless Anti-Malware, Integrity Monitoring, Firewall, Intrusion Prevention, and Web Reputation are available with NSX.

- **Deep Security Agent** is a security agent deployed directly on a computer which provides Anti-Malware, Web Reputation Service, Firewall, Intrusion Prevention, Integrity Monitoring, and Log Inspection protection to computers on which it is installed.

- **Deep Security Notifier** is a Windows System Tray application that communicates information on the local computer about security status and events, and, in the case of Relay-enabled Agents, also provides information about the Security Updates being distributed from the local machine.

Deep Security Manager

Deep Security Manager ("the Manager") is a powerful, centralized web-based management system that allows security administrators to create and manage comprehensive security policies and track threats and preventive actions taken in response to them. Deep Security Manager integrates with different aspects of the datacenter including VMware vCenter and Microsoft Active Directory. To assist in deployment and integration into customer and partner environments, Deep Security has a Web Service API that is exposed to allow for an easy, language-neutral method to externally access data and programming configurations.
Policies

Policies are templates that specify the settings and security rules to be configured and enforced automatically for one or more computers. These compact, manageable rule sets make it simple to provide comprehensive security without the need to manage thousands of rules. Default Policies provide the necessary rules for a wide range of common computer configurations.

Dashboard

The customizable, web-based UI makes it easy to quickly navigate and drill down to specific information. It provides:

- Extensive system, event and computer reporting
- Graphs of key metrics with trends
- Detailed event logs
- Ability to save multiple personalized dashboard layouts

Built-in Security

Role-based access allows multiple administrators (Users), each with different sets of access and editing rights, to edit and monitor different aspects of the system and receive information appropriate to them. Digital signatures are used to authenticate system components and verify the integrity of rules. Session encryption protects the confidentiality of information exchanged between components.

Deep Security Virtual Appliance

The Deep Security Virtual Appliance runs as a VMware virtual machine and protects the other virtual machines on the same ESXi Server, each with its own individual security policy.

Deep Security Agent

The Deep Security Agent ("the Agent") is a high performance, small footprint, software component installed on a computer to provide protection.

The Deep Security Agent contains a Relay module (off by default). At least one Relay-enabled Agent is required in any Deep Security installation to distribute Security and Software Updates throughout your Deep Security network. You can enable multiple Relay-enabled Agents and organize them into hierarchical groups to more efficiently distribute Updates throughout your network.

Deep Security Notifier

The Deep Security Notifier is a Windows System Tray application that communicates the state of the Deep Security Agent and Relay-enabled Agent to client machines. The Notifier displays pop-up user notifications when the Deep Security Agent begins a scan, or blocks malware or access to malicious web pages. The Notifier also provides a console utility that allows the user to view events and configure whether pop-ups are displayed.
What's New

Deep Security 9.6

VMware vSphere 6 Support

- NSX 6.1.4 Support and Integration:
 - Agentless Anti-Malware, Integrity Monitoring, Firewall, Intrusion Prevention, and Web Reputation are available with NSX.
- vCNS 5.5.4 Support:
 - Agentless Anti-Malware and Integrity Monitoring are available for vCNS.
 - Combined Mode with Agentless Anti-Malware and Integrity Monitoring and Agent-based support for Firewall, Intrusion Prevention, Web Reputation, and Log Inspection.

SAP Protection For Linux

Deep Security has integrated the SAP adapter into the Deep Security Agent. The SAP adapter works seamlessly with the SAP VSI interface (also referred to as NW-VSI-2.0). The VSI interface is available in applications and platforms such as NetWeaver, HANA and Fiori.

The SAP adapter has been fully incorporated into Deep Security 9.6 as part of the Red Hat Enterprise Linux and SUSE Enterprise Linux builds and can now be licensed directly through Deep Security Manager.

IBM QRadar Support

Deep Security can now output syslog messages in Log Event Extended Format (LEEF 2.0) for integration with IBM QRadar.

Real-Time Anti-Malware for CloudLinux

Real-time Anti-Malware is available on CloudLinux 7.

Additional Platform Support

Deep Security 9.6 adds support for the following platforms:

- Debian 6 and 7
- Windows 2012 Server Core
- CloudLinux 7
- Oracle Linux 7
- SUSE Enterprise Linux 12

Deep Security Database Support for Oracle 12c

Deep Security Manager now supports Oracle 12c for its back-end database.
Active Directory Synchronization on Login

New users created in Active Directory can now log in to Deep Security Manager before the Active Directory Synch task has been run.

Deep Security Relay Downloads from Trend Micro Download Center

In situations where the Deep Security Relay cannot directly access the Deep Security Manager, the Relay can now download updates from Trend Micro Download Center.

Minor Report Enhancements

The Security Module usage report now has columns for the Computer Group and the Instance Type (for AWS workloads).

Automatic Updates of Online Help

The Deep Security online help can now be updated seamlessly in Deep Security Manager through a new Online Help package.
System Requirements

Deep Security Manager

- **Memory**: 8GB, which includes:
 - 4GB heap memory
 - 1.5GB JVM overhead
 - 2GB operating system overhead

- **Disk Space**: 1.5GB (5GB recommended)

- **Operating System**:
 - Windows Server 2012 (64-bit), Windows Server 2012 R2 (64-bit)
 - Windows Server 2008 (64-bit), Windows Server 2008 R2 (64-bit)
 - Windows 2003 Server SP2 (64-bit), Windows 2003 Server R2 (64-bit)
 - Red Hat Linux 5/6 (64-bit)

 Note: If you are installing the AWS Marketplace version of Deep Security Manager, it must be installed on an AWS Linux instance.

- **Database**:
 - Oracle Database 12c
 - Oracle Database 11g, Oracle Database 11g Express
 - Microsoft SQL Server 2014, Microsoft SQL Server 2014 Express
 - Microsoft SQL Server 2012, Microsoft SQL Server 2012 Express
 - Microsoft SQL Server 2008, Microsoft SQL Server 2008 Express
 - Microsoft SQL Server 2008 R2, Microsoft SQL Server 2008 R2 Express

 Note: SQL Server Express is not recommended for production systems, especially in multi-tenant environments.

- **Web Browser**: Firefox 24+, Internet Explorer 9.x, Internet Explorer 10.x, Internet Explorer 11.x, Chrome 33+, Safari 6+.
 (Cookies enabled.)
 - **Monitor**: 1024 x 768 resolution at 256 colors or higher

Deep Security Agent

- **Memory**:
 - with Anti-Malware protection: 512MB
 - without Anti-Malware protection: 128MB

- **Disk Space**:
 - with Anti-Malware protection: 1GB
 - without Anti-Malware protection: 500MB
 - with Relay functionality enabled: 8GB

- **Windows**:
 - Windows Server 2012 (64-bit), Windows Server 2012 R2 (64-bit) - Full Server or Server Core
 - Windows 8.1 (32-bit and 64-bit)
 - Windows 8 (32-bit and 64-bit)
- Windows 7 (32-bit and 64-bit)
- Windows Server 2008 (32-bit and 64-bit)
- Windows Server 2008 R2 (64-bit)
- Windows Vista (32-bit and 64-bit)
- Windows Server 2003 SP2 (32-bit and 64-bit)
- Windows Server 2003 R2 SP2 (32-bit and 64-bit)
- Windows XP SP3 (32-bit and 64-bit)
- **With Relay functionality enabled:** All 64-bit Windows versions above

- **Linux:**
 - Red Hat 5 (32-bit and 64-bit)
 - Red Hat 6 (32-bit and 64-bit)
 - Red Hat 7 (64-bit)
 - Oracle Linux 5 (32-bit and 64-bit)
 - Oracle Linux 6 (32-bit and 64-bit)
 - Oracle Linux 7 (64-bit)
 - CentOS 5 (32-bit and 64-bit)
 - CentOS 6 (32-bit and 64-bit)
 - CentOS 7 (64-bit)
 - Debian 6 (64-bit)
 - Debian 7 (64-bit)
 - SUSE 10 SP3 and SP4 (32-bit and 64-bit)
 - SUSE 11 SP1, SP2, and SP3 (32-bit and 64-bit)
 - SUSE 12 (64-bit)
 - CloudLinux 5 (32-bit and 64-bit)
 - CloudLinux 6 (32-bit and 64-bit)
 - CloudLinux 7 (64-bit)
 - Amazon AMI Linux EC2 (32-bit and 64-bit)
 - Ubuntu 10.04 LTS (64-bit)
 - Ubuntu 12.04 LTS (64-bit)
 - Ubuntu 14.04 LTS (64-bit)
 - **With Relay functionality enabled:** All 64-bit Linux versions above

Note: The CentOS Agent software is included in the Red Hat Agent software package. To install a Deep Security Agent on CentOS, use the Red Hat Agent installer.

Note: For a list of supported Deep Security features by software platform, see the document titled *Deep Security 9.6 Supported Features and Platforms*. For a list of specific Linux kernels supported for each platform, see the document titled *Deep Security 9.6 Supported Linux Kernels*.

Deep Security Virtual Appliance

- **Memory:** 4GB (Memory requirements can vary depending on the number of VMs being protected).
- **Disk Space:** 20GB
- **VMware Environment:**
 - **NSX Environment:**
 - VMware vCenter 5.5, with ESXi 5.5
 - VMware vCenter 6.0, with ESXi 5.5 or 6.0
 - **vShield Environment:** VMware vCenter 5.5 or 6.0 with ESXi 5.5 or 6.0
- **Additional VMware Utilities:**
 - vShield Environment: VMware Tools, VMware vShield Manager 5.5.2 or higher (with vSphere 5.5) or VMware vShield Manager 5.5.4 or higher (with vSphere 6.0), VMware vShield Endpoint Security 5.5 or 6.0 (ESXi5 patch ESXi500-201109001 or later for vShield Endpoint Driver)
- **Supported guest platforms for which the Virtual Appliance can provide protection:**

 Note: Not all Deep Security features are supported on all platforms. For a list of supported Deep Security features by software platform, see the document titled Deep Security 9.6 Supported Features and Platforms.

- **Windows:**
 - Windows Vista (32-bit)
 - Windows 7 (32-bit and 64-bit)
 - Windows XP SP3 or higher (32-bit)
 - Windows 2003 SP2 or higher (32-bit and 64-bit)
 - Windows 2003 R2 (32-bit and 64-bit)
 - Windows 2008 (32-bit and 64-bit)
 - Windows 2008 R2 (32-bit and 64-bit)
 - Windows 8 (32-bit and 64-bit) (vSphere 5.5 only)
 - Windows 8.1 (32-bit and 64-bit) (vSphere 5.5 - ESXi build 1892794 or higher)
 - Windows 2012 (64-bit) (vSphere 5.5 only)
 - Windows 2012 R2 (64-bit) (vSphere 5.5 - ESXi build 1892794 or higher)

- **Linux:**
 - Red Hat Enterprise 5 (32-bit and 64-bit)
 - Red Hat Enterprise 6 (32-bit and 64-bit)
 - CentOS 5 (32-bit and 64-bit)
 - CentOS 6 (32-bit and 64-bit)
 - Oracle Linux 5 (32-bit and 64-bit) - RedHat kernel
 - Oracle Linux 6 (32-bit and 64-bit) - RedHat kernel
 - Oracle Linux 5 (64-bit) - Unbreakable Kernel
 - Oracle Linux 6 (64-bit) - Unbreakable Kernel
 - SUSE 10 SP3, SP4 (32-bit and 64-bit)
 - SUSE 11 SP1, SP2, SP3 (32-bit and 64-bit)
 - Ubuntu 10.04 LTS (64-bit)
 - Ubuntu 12.04 LTS (64-bit)
 - Ubuntu 14.04 LTS (64-bit)
 - CloudLinux 5 (32-bit and 64-bit)
 - CloudLinux 6 (32-bit and 64-bit)
Note: Your VMware vCenter must be either an NSX Environment or a vShield Environment, not a mixture of the two. If you want to use both NSX and vShield, they must be in separate vCenters. You can add more than one vCenter to Deep Security Manager.

Note: The Deep Security Virtual Appliance uses 64-bit CentOS/Red Hat (included in the Virtual Appliance software package). Because the Deep Security Virtual Appliance uses the same Protection Module plug-ins as Deep Security Agents, importing an update to the 64-bit Red Hat Agent software can lead to a notification that new software is available for the Virtual Appliance as for Red Hat Agents.

Note: If using **MTU 9000** (jumbo frames), you must use ESXi build 5.5.0.1797756 or later.

ESXi Requirements for the Deep Security Virtual Appliance

In addition to the ESXi standard system requirements, the following specifications must be met:

- **CPU:** 64-bit, Intel-VT or AMD-V present and enabled in BIOS
- **Supported vSwitches:**
 - **NSX:** vSphere Distributed Switch (vDS)
 - **vShield:** vSphere Standard Switch (vSS) or third party vSwitch (Cisco Nexus 1000v)

Note: VMware does not support running nested ESXi servers in production environments. For more information, see this [VMware Knowledge Base article](https://kb.vmware.com/s/article/556219).

Deep Security Notifier System Requirements

Note: On VMs protected by a Virtual Appliance, the Anti-Malware module must be licensed and enabled on the VM for the Deep Security Notifier to display information.
Preparation
What You Will Need (VMware vShield)

Deep Security Software Packages

Download the following software install packages from the Trend Micro Download Center:

- Deep Security Manager
- Deep Security Virtual Appliance
- Deep Security Agent

Note: Any Deep Security installation, regardless of whether it is providing Agentless or Agent-based protection, requires at least one Relay-enabled Agent to be installed to download and distribute Security and Software Updates. Any 64-bit Windows or Linux Agent can provide Relay functionality.

- Deep Security Notifier

The download center is located at:

http://downloadcenter.trendmicro.com/

Note: To manually confirm that you possess a legitimate version of each install package, use a hash calculator to calculate the hash value of the downloaded software and compare it to the value published on the Trend Micro Download Center Web site.

Once the Deep Security Manager is installed, you will need to manually import the Virtual Appliance from a local directory into the Manager.

To import the Deep Security Virtual Appliance software:

2. In the Deep Security Manager, go to the Administration > Updates > Software > Local page and click Import... in the toolbar and import the software packages to Deep Security. (The Deep Security Manager will then automatically download the latest 64-bit Red Hat agent software package which will later be used to upgrade the Virtual Appliance’s Protection Modules.)

To import the Deep Security Agent software, see Installing the Deep Security Agent (page 36) and Installing and Configuring a Relay-enabled Agent (page 47).

The Deep Security Notifier is an optional component that you can install on your protected Windows VMs. It displays local notifications of system Events in the notification area.

License (Activation Codes)

You will require Deep Security Activation Codes for the protection modules and a separate Activation Code for Multi-Tenancy if you intend to implement it.

(VMware Licenses will also be required for VMware components.)

Administrator/Root Privileges

You need to have Administrator/Root privileges on the computers on which you will install Deep Security software components.
SMTP Server

You will need an SMTP server to send alert emails. The DSM uses Port 25 by default for connection to the SMTP Server.

Available Ports

On the Deep Security Manager

You must make sure the following ports on the machine hosting Deep Security Manager are open and not reserved for other purposes:

- **Port 4120**: The "heartbeat" port, used by Deep Security Agents and Appliances to communicate with Deep Security Manager (configurable).
- **Port 4119**: Used by your browser to connect to Deep Security Manager. Also used for communication from ESXi.
- **Port 1521**: Bi-directional Oracle Database server port.
- **Ports 1433 and 1434**: Bi-directional Microsoft SQL Server Database ports.
- **Ports 389, 636, and 3268**: Connection to an LDAP Server for Active Directory integration (configurable).
- **Port 25**: Communication to a SMTP Server to send email alerts (configurable).
- **Port 53**: For DNS Lookup.
- **Port 514**: Bi-directional communication with a Syslog server (configurable).
- **Port 443**: Communication with VMware vCloud, vCenter, vShield/NSX Manager, Amazon AWS, Microsoft Azure, and other cloud accounts.

Note: For more details about how each of these ports are used by Deep Security, see *Ports Used by Deep Security* in the Reference section of the online help or the Administrator's Guide.

On the Relay-enabled Agents, Agents and Appliances

You must make sure the following ports on the machine hosting a Relay-enabled Agent are open and not reserved for other purposes:

- **Port 4122**: Relay to Agent/Appliance communication.
- **Port 4118**: Manager-to-Agent communication.
- **Port 4123**: Used for internal communication. Should not be open to the outside.
- **Port 80, 443**: connection to Trend Micro Update Server and Smart Protection Server.
- **Port 514**: bi-directional communication with a Syslog server (configurable).

The Deep Security Manager automatically implements specific Firewall Rules to open the required communication ports on machines hosting Relay-enabled Agent, Agents and Appliances.

Network Communication

Communication between Deep Security Manager and Relay-enabled Agents, Agents/Appliances and hypervisors uses DNS hostnames by default. In order for Deep Security Agent/Appliance deployments to be successful, you must ensure that each computer can resolve the hostname of the Deep Security Manager and a Relay-enabled Agent. This may require that the Deep Security Manager and Relay-enabled Agent computers have a DNS entry or an entry in the Agent/Appliance computer’s hosts file.

Note: You will be asked for this hostname as part of the Deep Security Manager installation procedure. If you do not have DNS, enter an IP address during the installation.
 Reliable Time Stamps

All computers on which Deep Security Software is running should be synchronized with a reliable time source. For example, regularly communicating with a Network Time Protocol (NTP) server.

Performance Recommendations

See Deep Security Manager Performance Features (page 73).

Deep Security Manager and Database Hardware

Many Deep Security Manager operations (such as Updates and Recommendation Scans) require high CPU and Memory resources. Trend Micro recommends that each Manager node have four cores and sufficient RAM in high scale environments.

The Database should be installed on hardware that is equal to or better than the specifications of the best Deep Security Manager node. For the best performance the database should have 8-16GB of RAM and fast access to the local or network attached storage. Whenever possible a database administrator should be consulted on the best configuration of the database server and a maintenance plan should be put in effect.

For more information, see Database Considerations (page 21).

Dedicated Servers

The Deep Security Manager and the database can be installed on the same computer if your final deployment is not expected to exceed 1000 computers (real or virtual). If you think you may exceed 1000 computers, the Deep Security Manager and the database should be installed on dedicated servers. It is also important that the database and the Deep Security Manager be co-located on the same network with a 1GB LAN connection to ensure unhindered communication between the two. The same applies to additional Deep Security Manager Nodes. A two millisecond latency or better is recommended for the connection from the Manager to the Database.

High Availability Environments

If you use VMware's High Availability (HA) features, make sure that the HA environment is established before you begin installing Deep Security. Deep Security must be deployed on all ESXi hypervisors (including the ones used for recovery operations). Deploying Deep Security on all hypervisors will ensure that protection remains in effect after a HA recovery operation.

Note: When a Virtual Appliance is deployed in a VMware environment that makes use of the VMware Distributed Resource Scheduler (DRS), it is important that the Appliance does not get vMotioned along with the virtual machines as part of the DRS process. Virtual Appliances must be "pinned" to their particular ESXi server. You must actively change the DRS settings for all the Virtual Appliances to "Manual" or "Disabled" (recommended) so that they will not be vMotioned by the DRS. If a Virtual Appliance (or any virtual machines) is set to "Disabled", vCenter Server does not migrate that virtual machine or provide migration recommendations for it. This is known as "pinning" the virtual machine to its registered host. This is the recommended course of action for Virtual Appliances in a DRS environment. An alternative is to deploy the Virtual Appliance onto local storage as opposed to shared storage. When the Virtual Appliance is deployed onto local storage it cannot be vMotioned by DRS. For further information on DRS and pinning virtual machines to a specific ESXi server, please consult your VMware documentation.

Note: If a virtual machine is vMotioned by DRS from an ESXi protected by a DSVA to an ESXi that is not protected by a DSVA, the virtual machine will become unprotected. If the virtual machine is subsequently vMotioned back to the original ESXi, it will not automatically be protected again unless you have created an Event-based Task to activate and protect computers that have been vMotioned to an ESXi with an available DSVA.
Database Considerations

Refer to your database provider’s documentation for instructions on database installation and deployment but keep the following considerations in mind for integration with Deep Security.

Install before Deep Security

You must install the database software, create a database instance for Deep Security (if your are not using the default instance), and create a user account for Deep Security prior to installing Deep Security Manager.

Location

The database must be located on the same network as the Deep Security Manager with a connection speed of 1Gb/s over LAN. (WAN connections are not recommended.)

Dedicated Server

The database should be installed on a separate dedicated machine.

Microsoft SQL Server

- The database account used by the Deep Security Manager must have **db_owner** rights.
- If using Multi-Tenancy, the database account used by the Deep Security Manager must have **dbcreator** rights.

Oracle Database

- Start the "Oracle Listener" service and make sure it accepts TCP connections.
- The database account used by the Deep Security Manager must be granted the **CONNECT** and **RESOURCE** roles and **UNLIMITED TABLESPACE**, **CREATE SEQUENCE**, **CREATE TABLE** and **CREATE TRIGGER** system privileges.
- If using Multi-Tenancy, the database account used by the Deep Security Manager must be granted the **CREATE USER**, **DROP USER**, **ALTER USER**, **GRANT ANY PRIVILEGE** and **GRANT ANY ROLE** system privileges.

Transport Protocol

The recommended transport protocol is **TCP**.

If using **Named Pipes** to connect to a SQL Server, a properly authenticated Microsoft Windows communication channel must be available between Deep Security Manager host and the SQL Server host. This may already exist if:

- The SQL Server is on the same host as Deep Security Manager.
- Both hosts are members of the same domain.
- A trust relationship exists between the two hosts.

If no such communication channel is available, Deep Security Manager will not be able to communicate to the SQL Server over named pipes.
Connection Settings Used During Deep Security Manager Installation.

During the Deep Security Manager installation, you will be asked for Database connection details. Enter the Database hostname under "Hostname" and the pre-created database for Deep Security under "Database Name".

The installation supports both SQL and Windows Authentication. When using Windows Authentication, click on the "Advanced" button to display additional options.

Avoid special Characters for the database user name (Oracle)

Note: Although Oracle allows special characters in database object names if they are surrounded by quotes, Deep Security does not support special characters in database object names. This page on Oracle's web site describes the allowed characters in non-quoted names: http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements008.htm#SQLRF00223

Keep the database Name Short (SQL Server)

If using Multi-Tenancy, keeping the main database name short will make it easier to read the database names of your Tenants. (ie. If the main database is "MAINDB", the first Tenant’s database name will be "MAINDB_1", the second Tenant’s database name will be "MAINDB_2", and so on.)

Note: If you are using a Pay-Per-Use license with the AWS Marketplace version of Deep Security Manager, Multi-Tenancy is not supported.

Oracle RAC (Real Application Clusters) Support

Deep Security supports:

- SUSE Linux Enterprise Server 11 SP1 with Oracle RAC 11g R2 (v11.2.0.1.0)
- Red Hat Linux Enterprise Server 5.8 with Oracle RAC 11g R2 (v11.2.0.1.0)

Note: Applying the default Linux Server Deep Security Policy to the Oracle RAC nodes should not cause any communication issues with Oracle Automated Storage Management (ASM) and cluster services. However if you experience issues, try customizing the Firewall settings according to the port requirements found in Oracle RAC documentation, or disabling the Firewall altogether.

http://docs.oracle.com/cd/E11882_01/install.112/e41962/ports.htm#BABECTIF

High Availability

The Deep Security database is compatible with database failover protection so long as no alterations are made to the database schema. For example, some database replication technologies add columns to the database tables during replication which can result in critical failures.

For this reason, database mirroring is recommended over database replication.
Minimum VMware Privileges for DSVA Deployment (vShield)

The following tables list the VMware environment privileges required by the VMware role assigned to the account used by the Deep Security Manager to deploy the Deep Security Virtual Appliance. (The account used to connect to the vCenter when adding the vCenter to the Deep Security Manager.)

These privileges must be applied at the data center level in the Hosts and Clusters view.

Note: During synchronization with a vCenter, if the Deep Security Manager receives information about a new folder that is not the child of an existing folder, it will need to trace its parent folders up to the datacenter to determine which datacenter the folder belongs to. Applying these privileges only at the cluster level could result in synchronization errors.

The tables list the required privilege and the function for which the privilege is required. To set the privilege, use the vSphere Web Client to edit the properties of the role used by the Deep Security Manager to access the vCenter. The required privileges can be found in the Privileges tree of the vSphere Role editor.

The tables are organized as follows:

1. **Preparation of the ESXi Server.** A kernel driver is loaded on the ESXi server, and a separate vSwitch is configured to facilitate internal connectivity for the DSVA.
2. **Deploying the Virtual Appliance.** The virtual appliance itself is deployed from an OVF file.
3. **Deploying into a DRS-enabled Cluster.**
4. **Activating the Virtual Machine (the protected computer).**
5. **Ongoing operations.** Day to day Deep Security operations.

Preparing the ESXi Server

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host > Configuration > Change Settings</td>
<td>Query Modules on ESXi</td>
</tr>
<tr>
<td>Host > Configuration > Maintenance</td>
<td>Enter and Exit Maintenance Mode</td>
</tr>
<tr>
<td>Host > Configuration > Network Configuration</td>
<td>Add new virtual switch, port group, virtual NIC etc.</td>
</tr>
<tr>
<td>Host > Configuration > Advanced Settings</td>
<td>Setup networking for dvfilter communication on ESXi</td>
</tr>
<tr>
<td>Host > Configuration > Query Patch</td>
<td>Install Filter Driver</td>
</tr>
<tr>
<td>Host > Configuration > Connection</td>
<td>Disconnect/reconnect a host</td>
</tr>
<tr>
<td>Host > Configuration > Security profile and firewall</td>
<td>Reconfiguration outgoing FW connections to allow retrieval of Filter Driver package from DSM</td>
</tr>
<tr>
<td>Global > Cancel Task</td>
<td>Required to cancel a task if required</td>
</tr>
</tbody>
</table>

Deploying the Virtual Appliance

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>vApp > Import</td>
<td>Deploy DSVA from OVF file</td>
</tr>
<tr>
<td>vApp > vApp application configuration</td>
<td>Upgrade the DSVA</td>
</tr>
<tr>
<td>Datastore > Allocate Space</td>
<td>Allocate space for DSVA on datastore.</td>
</tr>
<tr>
<td>Host > Configuration > Virtual machine autostart configuration</td>
<td>Set DSVA to autostart on ESXi</td>
</tr>
<tr>
<td>Network > Assign Network</td>
<td>Assign DSVA to networks</td>
</tr>
<tr>
<td>Virtual Machine > Configuration > Add new disk</td>
<td>Add disks to DSVA</td>
</tr>
<tr>
<td>Virtual Machine > Interaction > Power On</td>
<td>Power on DSVA</td>
</tr>
<tr>
<td>Virtual Machine > Interaction > Power Off</td>
<td>Power off DSVA</td>
</tr>
</tbody>
</table>
Deploying into a DRS-enabled Cluster

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host > Inventory > Modify Cluster</td>
<td>Deploy DSVA to DRS-enabled cluster</td>
</tr>
</tbody>
</table>

Activating the Virtual Machine (the protected computer)

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Machine > Configuration > Advanced</td>
<td>Reconfigure virtual machine for dvfilter</td>
</tr>
</tbody>
</table>

Ongoing Operations

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host > Configuration > Change Settings</td>
<td>Query Modules on ESXi</td>
</tr>
<tr>
<td>Virtual Machine > Configuration > Advanced</td>
<td>Reconfigure virtual machine for dvfilter</td>
</tr>
</tbody>
</table>
Choosing Agentless Protection or Combined Mode

In Deep Security 9.6, there are two options for protecting your virtual machines: Agentless Protection or Combined Mode.

Agentless Protection

In pre-9.6 versions of Deep Security, the Deep Security Virtual Appliance (DSVA) and Filter Driver worked together to protect virtual machines without requiring an in-guest Agent. The Virtual Appliance is installed on the ESXi server and uses VMware’s VMsafe-NET API to intercept network traffic at the hypervisor. Security policies are applied per virtual machine.

Deep Security 9.6 does not include a Filter Driver and you cannot use an older Filter Driver with the 9.6 DSVA. Without the Filter Driver, the 9.6 DSVA is limited to providing Anti-Malware and Integrity Monitoring protection for your VMs.

Alternatively, if you want full Agentless protection for your virtual machines, you can use Deep Security 9.0, 9.5, or 9.5 SP1 versions of the Filter Driver and DSVA with Deep Security Manager 9.6.

Combined Mode

If you are using a 9.6 version of the DSVA and you require more than the Anti-Malware and Integrity Monitoring modules, you will need to install the Deep Security Agent on each of your virtual machines. This way of protecting virtual machines using both the DSVA and Agent is known as “Combined Mode”.

With Combined Mode, the DSVA provides the Anti-Malware and Integrity Monitoring functionality. The Deep Security Agent provides Web Reputation, Firewall, Intrusion Prevention, and Log Inspection.

Note: If a Virtual Machine is running Linux, Anti-Malware support will be provided by Deep Security Agent, rather than DSVA.

Note: Deep Security 9.5 SP1 and earlier included the ability to protect virtual machines using the “Coordinated Approach”. With the Coordinated Approach, primary protection was provided by the Deep Security Agent, with the DSVA available as failover protection in case the Agent went offline. The Coordinated Approach is not available using Deep Security 9.6. If you are upgrading from a system that used the Coordinated Approach, your system will be migrated to Combined Mode.
Preparing a vShield Environment for Agentless Protection

The following describes a Deep Security deployment in a typical VMware environment.

Two ESXi servers are required:

- **Host A:** is an ESXi hypervisor on which are running individual virtual machines (VMs) for Deep Security Manager, vShield Manager, and vCenter Server. Optionally, Trend Micro Smart Protection Server and a Relay-enabled Agent can be installed on virtual machines on Host A. An additional virtual machine can also be provided for a second Deep Security Manager node. One VM should also be provided for installing the Deep Security Database.

- **Host B:** is an ESXi hypervisor on which are running Deep Security Virtual Appliance (DSVA) and the VMs requiring protection.

Note: The vCenter Server, the vShield Manager and the Deep Security Manager are installed on a separate ESXi because the protected ESXi must be restarted during the course of Deep Security deployment. The Deep Security database can be installed on a physical machine or on a VM.

Required Resources Checklist

<table>
<thead>
<tr>
<th>Check</th>
<th>Software Requirements</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware vCenter 5.1, 5.5, or 6.0</td>
<td>Includes vCenter Server and vCenter Client GUI application. License is required during product installation.</td>
<td></td>
</tr>
<tr>
<td>VMware vShield Manager 5.5.2 or higher (with vSphere 5.5) or VMware vShield Manager 5.5.4 or higher (with vSphere 6.0)</td>
<td>License is required during product installation.</td>
<td></td>
</tr>
<tr>
<td>VMware vShield Endpoint 5.1, 5.5, or 6.0</td>
<td>Add the license to vCenter.</td>
<td></td>
</tr>
<tr>
<td>Trend Micro Deep Security Manager 9.6 (DSM)</td>
<td>License is required during product installation.</td>
<td></td>
</tr>
<tr>
<td>Trend Micro Deep Security Virtual Appliance 9.6 (DSVA)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Supported Guest OS

- vShield Endpoint drivers required on each guest VM. (Since ESXi 5.0 patch ESX500-201109001, the vShield Endpoint driver is included in VMware Tools).
- The names of drivers differ according to the ESXi version. If the ESXi version is earlier than 5.5 u2, the driver is named "vShield Endpoint Thin Agent". If the ESXi version is 5.5 u2 or later, it is named "Guest Introspection Thin Agent". For version 6.0 Patch 1 (ESXi-6.0.0-2015070401-standard) or later, the name of the driver is "NSX File Introspection Driver". Please note that the name of the driver may be changed without notice.

Install vShield Endpoint on ESXi server B

This section lists additional tasks necessary to complete the Deep Security integration with the VMware environment for Agentless protection.

At this point...

- The VMware Environment is already set up as described in Preparing a VMware Environment for Agentless Protection.
- Deep Security Manager (and database) is already installed.
- A Relay-enabled Agent has been installed and configured.

VMware vShield Endpoint Deployment on ESXi server B

1. Login to vShield Manager by browsing to https://<vSM-ip>
2. On the Settings and Reports > Configuration tab, enter your vCenter Server Information.

3. In the left navigation pane, select the ESXi hypervisor to be protected by Deep Security (Host B).

4. On the Summary tab, click the Install link for the vShield Endpoint Service.

5. Select the services to install/upgrade, check vShield Endpoint and click the Install button at the top right of the screen. Click OK.

6. After installing, make sure the Service vShield Endpoint correctly displays the installed version (The Install link will have changed to Uninstall).

Install vShield Endpoint Drivers on the VMs to be protected on ESXi server B

On each VM to be protected agentlessly by a Deep Security Virtual Appliance

1. Install guest OS.

2. Install the VMware vShield Endpoint driver to this machine. The vShield Endpoint driver is contained within the vShield Drivers in VMware Tools. (Note that vShield Drivers are not installed by default during the installation of VMware Tools.)
 1. Launch the VMware Tools installer and select to perform an Interactive Install.
 2. During VMware Tools installation, select the Full or Custom setup type.
 3. If you selected "Custom", expand VMware Device Drivers.
 4. If you selected "Custom", expand VMCI Driver.
 5. If you selected "Custom", select vShield Drivers (vShield Endpoint Thin Agent, Guest Introspection Thin Agent, or NSX File Introspection Driver) and choose Install to local hard drive or This feature will be installed on local drive.

 Note: The names of drivers differ according to the ESXi version. If the ESXi version is earlier than 5.5 u2, the driver is named "vShield Endpoint Thin Agent". If the ESXi version is 5.5 u2 or later, it is named "Guest Introspection Thin Agent". For version 6.0 Patch 1 (ESXi-6.0.0-20150704001-standard) or later, the name of the driver is "NSX File Introspection Driver". Please note that the name of the driver may be changed without notice.

6. After the installation has completed, click Yes to restart the machine.

Note: If you plan to use manual or scheduled scans be sure to turn off sleep and standby mode on the guest virtual machines. If a guest virtual machine goes into sleep or standby mode during a scan you will see an error indicating that the scan terminated abnormally. Virtual Machines must be in the running state for scans to complete successfully.

Note: In a High Availability environment, you must install Deep Security Virtual Appliances on all the ESXi hypervisors in a cluster in order to provide Agentless protection for vMotioned guests.
Installation
Installing the Deep Security Manager

Before You Begin

Database

Before you install Deep Security Manager, you must install database software, create a database and user account for Deep Security Manager to use. For information on installing a database, see Database Considerations (page 21).

Co-Located Relay-enabled Agent

A Deep Security deployment requires at least one Relay (a Deep Security Agent with Relay functionality enabled). Relays distribute Software and Security Updates to Agents/Appliances which keep your protection up to date. Trend Micro recommends installing a Relay-enabled Agent on the same computer as the Deep Security Manager to protect the host computer and to function as a local Relay.

During the installation of the Deep Security Manager, the installer will look in its local directory for an Agent install package (the full zip package, not just the core Agent installer). If it doesn't find an install package locally, it will attempt to connect to the Trend Micro Download Center over the Internet and locate an Agent install package there. If it locates an install package in either of those locations, it will give you the option to install a co-located Relay-enabled Agent during the installation of the Deep Security Manager. (If Agent install packages are found in both locations, the latest of the two versions will be selected.) The Agent can be used to protect the Deep Security manager host machine, however it will initially be installed with only the Relay module enabled. To enable protection you will have to apply an appropriate Security Policy.

If no Agent install package is available, the installation of the Deep Security Manager will proceed without it (but you will have to install a Relay-enabled Agent at a later time).

Note: Depending on your environment, additional Relay-enabled Agents can be installed at a later time. (For instructions on installing a Relay-enabled Agent, see Installing the Deep Security Agent (page 36) and Configuring a Relay (page 47).)

Proxy Server Information

If the Deep Security will need to use a proxy server to connect to Trend Micro Update Servers over the Internet, have your proxy server address, port, and log in credentials ready.

Multi-Node Manager

Deep Security Manager can be run as multiple nodes operating in parallel using a single database. Running the Manager as multiple nodes provides increased reliability, redundant availability, virtually unlimited scalability, and better performance.

Each node is capable of all tasks and no node is more important than any of the others. Users can sign in to any node to carry out their tasks. The failure of any node cannot lead to any tasks not being carried out. The failure of any node cannot lead to the loss of any data.

Each node must be running the same build number of the Manager software. When performing an upgrade of the Manager software, the first Manager to be upgraded will take over all Deep Security Manager duties and shut down all the other Deep Security Manager nodes. They will appear as “offline” in the Network Map with Activity Graph in the System Activity section of the System Information page with an indication that an upgrade is required. As the upgrades are carried out on the other nodes, they will automatically be brought back online and begin sharing in the DSM tasks.

To add a Deep Security Manager node to your installation, run the Manager install package on a new computer. When prompted, type the location of and login credentials for the database being used. Once the installer connects to the database, you can proceed with adding the node to the system.
You must be using either MS SQL Server or Oracle Database to run multiple nodes.

At no point should more than one instance of the installer be running at the same time. Doing so can lead to unpredictable results including corruption of the database.

Download the Installer Package

Download the latest version of the Deep Security Manager (and optionally the Deep Security Agent) software from the Trend Micro Download Center at:

http://downloadcenter.trendmicro.com/

Install the Deep Security Manager for Windows

2. License Agreement: If you agree to the terms of the license agreement, select I accept the terms of the Trend Micro license agreement.

3. Installation Path: Select the folder where Deep Security Manager will be installed and click Next.
4. **Database**: Select the database you installed previously.

 If your database is SQL Server, click **Advanced** to specify a **Named Instance**, a **Domain**, or the use of **Default Collation**. Collation determines how strings are sorted and compared. The default is "unselected", which means that Deep Security will use Latin1_General_CS_AS for collation on text-type columns. If you select **Use Default Collation**, Deep Security will use the collation method specified by your SQL Server database. For additional information on collation, refer to your SQL Server documentation.

5. **Product Activation**: Enter your Activation Code(s). Enter the code for All Protection Modules or the codes for the individual modules for which you have purchased a license. You can proceed without entering any codes, but none of the Protection Modules will be available for use. (You can enter your first or additional codes after installation of the Deep Security Manager by going to Administration > Licenses.)

6. **Address and Ports**: Enter the hostname, URL, or IP address of this computer. The Manager Address must be either a resolvable hostname, a fully qualified domain name, or an IP address. If DNS is not available in your environment, or if some computers are unable to use DNS, a fixed IP address should be used instead of a hostname. Optionally, change the default communication ports: The "Manager Port" is the port on which the Manager's browser-based UI is accessible through HTTPS. The "Heartbeat Port" is the port on which the Manager listens for communication from the Agents/Appliances.
7. **Administrator Account:** Enter a username and password for the Master Administrator account. Selecting the Enforce strong passwords (recommended) requires this and future administrator passwords to include upper and lower-case letters, non-alphanumeric characters, and numbers, and to require a minimum number of characters.

Note: The username and password are very important. You will need them to log in to Deep Security Manager.

Note: If you have admin rights on the Manager host machine, you can reset an account password using the `dsm_c - action unlockout -username USERNAME -newpassword NEWPASSWORD` command.

8. **Configure Security Updates:** Selecting the *Create Scheduled Task to regularly check for Security Updates* option will create a Scheduled Task to automatically retrieve the latest Security Updates from Trend Micro and distribute them to your Agents and Appliances. (You can configure Updates later using the Deep Security Manager.) If the Deep Security Manager will need to use a proxy to connect to the Trend Micro Update servers over the Internet, select *Use Proxy Server when connecting to Trend Micro to check for Security Updates* and enter your proxy information.

9. **Configure Software Updates:** Selecting the *Create Scheduled Task to regularly check for Software Updates* option will create a Scheduled Task to automatically retrieve the latest Software Updates from Trend Micro and make them available to your Agents and Appliances. (You can configure Updates later using the Deep Security Manager.) If the Deep Security Manager will need to use a proxy to connect to the Trend Micro Update servers over the Internet, select *Use Proxy Server when connecting to Trend Micro to check for Software Updates* and enter your proxy information.

10. **Co-Located Relay-enabled Agent:** If an Agent install package is available either in the local folder or from the Trend Micro Download Center, you will be given the option to install a co-located Relay-enabled Agent. Any Deep Security installation requires
at least one Relay to download and distribute Security and Software Updates. If you don’t install a Relay-enabled Agent now, you will need to do so at a later time.

Note: Installing a co-located Relay-enabled Agent is strongly recommended.

11. **Smart Protection Network:** Select whether you want to enable Trend Micro Smart Feedback (recommended). (You can enable or configure Smart Feedback later using the Deep Security Manager). Optionally enter your industry by selecting from the drop-down list.

12. **Installation Information:** Verify the information you entered and click **Install** to continue.

13. Select **Launch the Deep Security Manager console** to open web a browser to the Deep Security Manager URL when setup is complete. Click **Finish** to close the Setup wizard.
The Deep Security Manager service will start when setup is complete. The installer places a shortcut to Deep Security Manager in the program menu. You should take note of this URL if you want to access the Manager from a remote location.

Installing the Deep Security Manager for Linux

The sequence of steps for installing Deep Security Manager on a Linux OS with X Window System are the same as those described for Windows (above). For information on performing a silent Linux installation, see Silent Install of Deep Security Manager (page 79).

Note: If you are installing Deep Security Manager on Linux with iptables enabled, you will need to configure the iptables to allow traffic on TCP ports 4119 and 4120.

Starting Deep Security Manager

The Deep Security Manager service starts automatically after installation. The service can be started, restarted and stopped from the Microsoft Services Management Console. The service name is "Trend Micro Deep Security Manager".

To run the Web-based management console, go to the Trend Micro program group in the Start menu (MS Windows) or K-Menu (X Windows) and click Deep Security Manager.

To run the Web-based management console from a remote computer you will have to make note of the URL:

```
https://[hostname]:[port]/
```

where [hostname] is the host name of the server on which you have installed Deep Security Manager and [port] is the "Manager Port" you specified in step 8 of the installation (4119 by default).

Users accessing the Web-based management console will be required to sign in with their User Account credentials. (The credentials created during the installation can be used to log in and create other User accounts.)

Note: The Deep Security Manager creates a 10-year self-signed certificate for the connections with Agents/Appliances, Relays, and Users’ web browsers. However, for added security, this certificate can be replaced with a certificate from a trusted certificate authority (CA). (Such certificates are maintained after a Deep Security Manager upgrade.) For information on using a certificate from a CA, see Creating an SSL Authentication Certificate (page 75).

Manually Importing Additional Deep Security Software

Deep Security Agents and their supporting software packages can be imported from within the Deep Security Manager on the Administration > Updates > Software > Download Center page. Other software packages must be imported manually from the Trend Micro Download Center web site (http://downloadcenter.trendmicro.com/).

To manually import additional Deep Security software to the Deep Security Manager:

1. Download the software from the Trend Micro Download Center web site to a local directory.
2. In the Deep Security Manager, go to **Administration > Updates > Software > Local** and click **Import...** in the toolbar to display the **Import Software** wizard.

3. Use the **Browse...** option to navigate to and select your downloaded software.

4. Click **Next** and then **Finish** to exit the wizard.

The software is now imported into the Deep Security Manager.
Manually Installing the Deep Security Agent

This section describes how to install and activate Deep Security Agents and how to enable Relay functionality (if required).

Importing Agent Software

A Deep Security Agent is initially installed with core functionality only. It is only when a Protection Module is enabled on an Agent that the plug-ins required for that module are downloaded and installed. For this reason, Agent software packages must be imported into Deep Security Manager before you install the Agent on a computer. (A second reason for importing the Agent to Deep Security Manager is for the convenience of being able to easily extract the Agent installer from it using the Deep Security Manager’s UI.)

To import Agent software packages to Deep Security:

1. In Deep Security Manager, go to Administration > Updates > Software > Download Center. The Download Center page displays the latest versions all Agent software available from Trend Micro.
2. Select your Agent software package from the list and click Import in the menu bar. Deep Security will begin to download the software from the Trend Micro Download Center to the Deep Security Manager.
3. When the software has finished downloading, a green check mark will appear in the Imported column for that Agent.

To export the Agent installer:

1. In Deep Security Manager, go to Administration > Updates > Software > Local.
2. Select your Agent from the list and select Export > Export Installer... from the menu bar.

Note: If you have older versions of the Agent for the same platform, the latest version of the software will have a green check mark in the Is Latest column.
3. Save the Agent installer to a local folder.

Note: Only use the exported Agent installer (the .msi or the .rpm file) on its own to install the Deep Security Agent. If you extract the full Agent zip package and then run the Agent installer from the same folder that holds the other zipped Agent components, all the Security Modules will be installed (but not turned on). If you use the Agent installer, individual Modules will be downloaded from Deep Security Manager and installed on an as-needed basis, minimizing the impact on the local computer.

The Deep Security Agent “zip” files are made available on the Trend Micro Download Center for users who need to manually import the Agents into their Deep Security environment because their Deep Security Manager is air-gapped and cannot connect directly to the Download Center web site. Users whose Deep Security Manager is able to connect to the Download Center are strongly encouraged to import their Agent software packages using the Deep Security Manager console. Attempting to install an Agent when the corresponding software package has not been imported to Deep Security Manager can lead to serious issues.

Installing the Windows Agent

1. Copy the Agent installer file to the target machine and double-click the installation file to run the installer package. At the Welcome screen, click **Next** to begin the installation.

Note: On Windows Server 2012 R2 Server Core, you must launch the installer using this command: `msiexec /i Agent-Core-Windows-9.6.x-xxxx.x86_64.msi`

Note: When installing the Agent on Windows 2012 Server Core, the Notifier will not be included.

2. **End-User License Agreement:** If you agree to the terms of the license agreement, select *I accept the terms of the license agreement* and click **Next**
3. **Destination Folder:** Select the location where you would like Deep Security Agent to be installed and click **Next**.

4. **Ready to install Trend Micro Deep Security Agent:** Click **Install** to proceed with the installation.

5. **Completed:** when the installation has completed successfully, click **Finish**.

The Deep Security Agent is now installed and running on this computer, and will start every time the machine boots.

Note: During an install, network interfaces will be suspended for a few seconds before being restored. If you are using DHCP, a new request will be generated, potentially resulting in a new IP address for the restored connection.
Installing the Red Hat, SUSE, Oracle Linux, or Cloud Linux Agent

Note: You must be logged on as "root" to install the Agent. Alternatively, you can use "sudo".

1. Copy the installation file to the target machine.
2. Use "rpm -i" to install the ds_agent package:
   ```
   # rpm -i <package name>
   Preparing... ########################################## [100%]
   1:ds_agent ########################################## [100%]
   Loading ds_filter_im module version ELx.x [ OK ]
   Starting ds_agent: [ OK ]
   ```
 (Use "rpm -U" to upgrade from a previous install. This approach will preserve your profile settings)
3. The Deep Security Agent will start automatically upon installation.

Installing the Ubuntu or Debian Agent

Follow the instructions under "Importing Agent Software" (above) to import the appropriate Ubuntu or Debian Agent software package from the Download Center to Deep Security Manager and then export the installer (.deb file).

To install on Ubuntu or Debian, copy the installer file (.deb) to the target machine and use the following command:

```
sudo dpkg -i <installer file>
```

Starting, stopping and resetting the Agent on Linux:

Command-line options:

To start the Agent:

```
/etc/init.d/ds_agent start
```

To stop the Agent:

```
/etc/init.d/ds_agent stop
```

To reset the Agent:

```
/etc/init.d/ds_agent reset
```

To restart the Agent:

```
/etc/init.d/ds_agent restart
```

Installing the Solaris Agent

Requirements:

For Solaris Sparc/9:

- libiconv 1.11 or better
To install the Solaris 11 Agent:

1. Copy the installation file to the target machine
2. Install the agent:

   ```
   gunzip Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.p5p.gz
   pkg install -g Agent*p5p ds-agent
   svcadm enable ds_agent
   ```

To install the Solaris 10 Agent:

1. Copy the installation file to the target machine
2. Install the Agent:

   ```
   gunzip Agent-Solaris_5.10_U7-9.x.x-xxxx.x86_64.pkg.gz
   pkgadd -d Agent-Solaris_5.10_U7-9.x.x-xxxx.x86_64.pkg all
   ```

To install the Solaris Sparc 9 Agent:

1. Acquire all of the required packages (see above)
2. Copy the installation file to the target machine
3. Install libiconv-1.8-solx-sparc.gz:

   ```
   gunzip libiconv-1.8-solx-sparc.gz
   pkgadd -d libiconv-1.8-solx-sparc all
   ```

4. Install libgcc-3.4.6-solx-sparc.gz:

   ```
   gunzip libgcc-3.4.6-solx-sparc.gz
   pkgadd -d libgcc-3.4.6-solx-sparc all
   ```

5. Install pfil:
pkgadd -d pfil_Solaris_x.pkg all

6. Push the pfil stream module into the network interface:

 ifconfig <interface> modinsert pfil@2

 Note: pfil should go right after ip in the network interface stream. To determine where ip is, perform: ifconfig <interface> modlist and ensure that the number used on the modinsert is one higher than the number of ip in the modlist.

 Note: pfil must be added to the network stack for each of the interfaces the Agent will be protecting. Touch /etc/ipf.conf /etc/init.d/pfil start (For more information, see “Notes on Installing PFIL on a Solaris (8 and 9 Sparc) Host”, below.)

7. Install the Agent:

 gunzip Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.pkg.gz
 pkgadd -d Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.pkg all

To start, stop and reset the Agent on Solaris 10 and 11:

- `svcadm enable ds_agent` - starts the Agent
- `svcadm disable ds_agent` - stops the Agent
- `/opt/ds_agent/dsa_control -r` - resets the Agent
- `svcadm restart ds_agent` - restarts the Agent
- `svcs -a | grep ds_agent` - displays Agent status

To start, stop and reset the Agent on Solaris 9:

- `/etc/init.d/ds_agent start` - starts the Agent
- `/etc/init.d/ds_agent stop` - stops the Agent
- `/opt/ds_agent/dsa_control -r` - resets the Agent
- `/etc/init.d/ds_agent restart` - restarts the Agent

 Note: Note that the filtering activity log files are in /var/log/ds_agent

Notes on Installing PFIL on a Solaris (8 and 9 Sparc) Host

The Solaris Agent uses the PFIL IP filter component developed by Darren Reed. Deep Security currently supports version 2.1.11. We have built this source code and provided a package on the Trend Micro Download Center, http://downloadcenter.trendmicro.com.

Further information can be found at: http://coombs.anu.edu.au/~avalon. (For a copy of the PFIL source code, contact your support provider.)

Notes on pfil

(The following assumes your interface is hme)

If you do "ifconfig modlist", you will see a list of STREAMS modules pushed onto the interface like this (for hme0):

```
7. Install the Agent:

    gunzip Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.pkg.gz
    pkgadd -d Agent-Solaris_5.x_sparc-9.x.x-xxxx.sparc.pkg all

To start, stop and reset the Agent on Solaris 10 and 11:

- `svcadm enable ds_agent` - starts the Agent
- `svcadm disable ds_agent` - stops the Agent
- `/opt/ds_agent/dsa_control -r` - resets the Agent
- `svcadm restart ds_agent` - restarts the Agent
- `svcs -a | grep ds_agent` - displays Agent status

To start, stop and reset the Agent on Solaris 9:

- `/etc/init.d/ds_agent start` - starts the Agent
- `/etc/init.d/ds_agent stop` - stops the Agent
- `/opt/ds_agent/dsa_control -r` - resets the Agent
- `/etc/init.d/ds_agent restart` - restarts the Agent

    **Note:** Note that the filtering activity log files are in /var/log/ds_agent

Notes on Installing PFIL on a Solaris (8 and 9 Sparc) Host

The Solaris Agent uses the PFIL IP filter component developed by Darren Reed. Deep Security currently supports version 2.1.11. We have built this source code and provided a package on the Trend Micro Download Center, http://downloadcenter.trendmicro.com.

Further information can be found at: http://coombs.anu.edu.au/~avalon. (For a copy of the PFIL source code, contact your support provider.)

Notes on pfil

(The following assumes your interface is hme)

If you do "ifconfig modlist", you will see a list of STREAMS modules pushed onto the interface like this (for hme0):

```
```
You need to insert pfil between ip and hme:

ifconfig hme0 modinsert pfil@2

Checking the list, you should see:

0 arp
1 ip
2 pfil
3 hme

To configure the pfil Streams module to be automatically pushed when the device is opened:

autopush -f /etc/opt/pfil/iu.ap

At this point,

strconf < /dev/hme

should return:

pfil
hme

Also, modinfo should show:

# modinfo | grep pfil
110 102d392c 6383 24 1 pfil (pfil Streams module 2.1.11)
110 102d392c 6383 216 1 pfil (pfil Streams driver 2.1.11)

Installing the HP-UX Agent

1. Log in as Root
2. Copy the installation file to the target machine
3. Copy the package to a temporary folder ("/tmp")
4. Unzip the package using gunzip:

   /tmp> gunzip Agent-HPUX_xx.xx-x.x.x-xxxx.ia64.depot.gz

5. Install the Agent: (Note that the package is referenced using the full path. Relative paths will not be accepted.)

   /tmp> swinstall -s /tmp/Agent-HPUX_xx.xx-x.x.x-xxxx.ia64.depot ds_agent

To start and stop the Agent on HP-UX, enter one of the following:

- /sbin/init.d/ds_agent start
- /sbin/init.d/ds_agent stop

Installing the AIX Agent

1. Log in as Root
2. Copy the installation file to the target machine
3. Copy the package to a temporary folder ("/tmp")
4. Unzip the package using gunzip:
   
   /tmp> gunzip Agent-AIX_x.x-x.x.x-xxxx.powerpc.bff.gz

5. Install the Agent:
   
   /tmp> installp -a -d /tmp/Agent-AIX_x.x-x.x.x-xxxx.powerpc.bff ds_agent

To start the Agent on AIX:

# startsrc -s ds_agent

To stop the Agent on AIX:

# stopsrc -s ds_agent

To load the driver on AIX:

# /opt/ds_agent/ds_fctrl load

To unload the driver on AIX:

# /opt/ds_agent/ds_fctrl unload

Using Deployment Scripts to Install Agents

Adding a computer to your list of protected resources in Deep Security and implementing protection is a multi-step process. Most of these steps can be performed locally from the command line on the computer and can therefore be scripted. The Deep Security Manager’s Deployment Script generator can be accessed from the Manager’s Support menu.

**Note:** When installing the Agent on Windows 2012 Server Core, the Notifier will not be included.

**To generate a deployment script:**

1. Start the Deployment Script generator by clicking Deployment Scripts... from the Deep Security Manager’s Support menu (at the top right of the Deep Security Manager window).
2. Select the platform to which you are deploying the software.

   **Note:** Platforms listed in the drop-down menu will correspond to the software that you have imported into the Deep Security Manager.

3. Select Activate Agent automatically after installation. [Optional, but Agents must be activated by the Deep Security Manager before a protection Policy can be implemented.]
4. Select the Policy you wish to implement on the computer (optional)
5. Select the computer Group (optional)
6. Select the Relay Group

As you make the above selections, the Deployment Script Generator will generate a script which you can import into your deployment tool of choice.

**Note:** The Deployment Script Generator can also be started from the menu bar on the Administration > Updates > Software > Local page.
The deployment scripts generated by Deep Security Manager for Windows Agents must be run in Windows PowerShell version 2.0 or later. You must run PowerShell as an Administrator and you may have to run the following command to be able to run scripts:

`Set-ExecutionPolicy RemoteSigned`

On windows machines, the deployment script will use the same proxy settings as the local operating system. If the local operating system is configured to use a proxy and the Deep Security Manager is accessible only through a direct connection, the deployment script will fail.

Iptables on Linux

Deep Security 9.5 or later does not disable Linux iptables during installation. Iptables will be disabled when the Web Reputation, Firewall, or Intrusion Prevention modules are used and the ds_filter service starts. For instructions on how to prevent the Deep Security Agent from changing iptables, see the Deep Security Best Practice Guide.

Activating the Agent

The Agent must be activated from the Deep Security Manager before it can be configured to act as a Relay or to protect the host computer.

To activate the newly installed Agent:

1. In the Deep Security Manager, go to the Computers page and click New > New Computer... to display the New Computer Wizard.

2. Enter the hostname or IP address of the computer. If you want to use the Agent to provide protection for the host computer as well as function as a Relay, select a Deep Security Policy from the Policy menu. Otherwise leave Policy set to "None".

Note: The deployment scripts generated by Deep Security Manager for Windows Agents must be run in Windows PowerShell version 2.0 or later. You must run PowerShell as an Administrator and you may have to run the following command to be able to run scripts:

`Set-ExecutionPolicy RemoteSigned`

Note: On windows machines, the deployment script will use the same proxy settings as the local operating system. If the local operating system is configured to use a proxy and the Deep Security Manager is accessible only through a direct connection, the deployment script will fail.
3. The wizard will confirm that it will activate the Agent on the computer and apply a Security Policy (if one was selected).

4. On the final screen, de-select "Open Computer Details on ‘Close’" and click Close.

5. The Agent is now activated. In the Deep Security Manager, go to the Computers screen and check the computer’s status. It should display “Managed (Online)”.

Enabling Relay Functionality

Any activated 64-bit Windows or Linux Agent can be configured to act as a Relay, downloading and distributing Security and Software Updates.

**Note:** Once enabled on an Agent, Relay functionality cannot be disabled.

To enable Relay functionality:

1. In the Deep Security Manager, go to the Computers page, double-click the computer with the newly-activated Agent to display its Details editor window.
2. In the computer editor, go to the Overview > Actions > Software area and click Enable Relay. Click Close to close the editor window.

3. In the Deep Security Manager on the Computers page, the computer's icon will change from ordinary computer ( ) to computer with Relay-enabled Agent ( ). Click the Preview icon to display the Preview Pane where you can see the number of Update components the Relay Module is ready to distribute.

Considerations for Windows 2012 Server Core

There are a few things you should keep in mind when running a Deep Security Agent with Windows 2012 Server Core:

- Deep Security does not support switching the Windows 2012 server mode between Server Core and Full (GUI) modes after the Deep Security Agent is installed.
- If you are using Server Core mode in a Hyper-V environment, you will need to use Hyper-V Manager to remotely manage the Server Core computer from another computer. When the Server Core computer has the Deep Security Agent installed and Firewall enabled, the Firewall will block the remote management connection. To manage the Server Core computer remotely, turn off the Firewall module.
- Hyper-V provides a migration function used to move a guest VM from one Hyper-V server to another. The Deep Security Firewall module will block the connection between Hyper-V servers, so you will need to turn off the Firewall module to use the migration function.
Installing and Configuring a Relay-enabled Agent

A Relay is a Deep Security Agent with Relay functionality enabled. Relays download and distribute Security and Software Updates to your Deep Security Agents and Appliances. You must have at least one Relay-enabled Agent to keep your protection up to date.

Install and Activate a Deep Security Agent

If you do not already have an agent installed on a computer, do so by following the instructions in Installing the Deep Security Agent (page 36). You skip ahead to the section on "Manual Installation".

Once the Agent is installed, you need to Activate it.

To Activate the Agent,

1. In the Deep Security Manager, go to the Computers page.
2. In the menu bar, click New > New Computer... to display the New Computer Wizard.
3. For Hostname, enter the hostname or IP address of the computer on which you just installed the Agent.
4. For Policy, select an appropriate policy.
5. For Download Security Updates From, leave the default setting (Default Relay Group).
6. Click Finish. Deep Security Manager will import the computer to its Computers page and activate the Agent.

Enable Relay Functionality on a Deep Security Agent

To enable Relay functionality on an installed Deep Security Agent:

1. The Adding a new computer and activation process should have finished by opening the Computer’s Editor window. If it hasn’t, follow step two (below) to open the window.
2. In the Deep Security Manager, go to the Computers screen, find the Agent on which you want to enable Relay functionality and double-click it to open its Computer Editor window.
3. In the Computer Editor window, go to Overview > Actions > Software and click Enable Relay.

Note: If you do not see the Enable Relay button, go to Administration > Updates > Software > Local to check whether the corresponding package has been imported. Also ensure that the computer running a 64-bit version of the Agent.

Deep Security Manager will install the plug-ins required by the Relay Module, and the Agent will begin to function as a Relay.

Note: If you are running Windows Firewall or iptables, you also need to add a Firewall Rule that allows TCP/IP traffic on port 4122 on the Relay-enabled Agents.

Note: Relay-enabled Agents are organized into Relay Groups. New Relay-enabled Agents are automatically assigned to the Default Relay Group. The Default Relay Group is configured to retrieve Security and Software Updates from the Primary Security Update Source defined in the Deep Security Manager on the Administration > System Settings > Updates tab. (The Primary Update Source by default is Trend Micro’s Update Servers, but this configurable.)
Deploying Agentless Protection in a vShield Environment

Requirements

VMware Requirements

You must be running the following VMware software:

- VMware vSphere 5.1, 5.5, or 6.0
  - VMware vCenter 5.5 or 6.0
  - VMware ESXi 5.1, 5.5, or 6.0
  - VMware vSphere Web Client
  - vShield Manager: If you are running vSphere 5.5, use vShield Manager 5.5.2 or higher. If you are running vSphere 6.0, use vShield Manager 5.5.4 or higher.

Your vShield datacenter must meet the following configuration requirements:

- VMware vShield Endpoint service must be installed on all ESXi servers.
- Virtual machines must have the latest VMware Tools installed, including the VMware Guest Introspection Driver.

Consult your VMware documentation for more detailed information on configuring your vShield environment to meet the above requirements.

Deep Security Requirements

The following Trend Micro Deep Security software must be installed or imported:

- The Deep Security Manager 9.6 must be installed, with a database. (See Installing the Deep Security Manager (page 29).)

  Note: Ideally, Deep Security Manager, the database, VMware vCenter, and vShield Manager should be installed on a dedicated infrastructure ESXi server in the same datacenter as your workload ESXi servers.

- A Deep Security Agent with Relay functionality enabled must be installed and activated, and all Updates must have completed downloading. (For instructions on installing and configuring an Agent with a Relay, see Installing the Deep Security Agent (page 36) and Configuring a Relay (page 47).)

- The Deep Security Virtual Appliance (DSVA) software package must be imported into Deep Security Manager. Once the Virtual Appliance is running in the datacenter, it will need to connect to a Relay-enabled Agent to have access to the latest Security and Software Updates.

  Note: VMware vSphere 6.0 does not support the Deep Security Filter Driver. With VMware vSphere 6.0, the Deep Security Virtual Appliance supports the use of the Anti-Malware and Integrity Monitoring modules. If you want to enable other protection modules, you will also need to install a Deep Security Agent on the guest VM and operate in combined mode. For details, see Choosing Agentless Protection or Combined Mode (page 25).

This section describes how to prepare the vShield environment for Agentless protection using the DSVA.

Add vCenter to the Deep Security Manager

Deep Security Manager configuration must be performed by using a Deep Security Manager user account with Full Access rights.
Deploy Agentless Protection in a vShield Environment

The next step is to deploy the Deep Security Virtual Appliance to the ESXi server. You can also install the Deep Security Filter Driver if it is supported by the version of vSphere that you are running.

2. Find the ESXi server in the Computers list (its Status column should read Unprepared), right-click and select Actions > Deploy Agentless Security to display the Deploy Agentless Security wizard. Click Next.

   Note: You can select multiple ESXi servers if they are all the same version and all have the same Filter Driver status.

3. On the next page, select the components that you want to deploy to the ESXi server(s). You can choose to deploy the Deep Security Virtual Appliance and/or the Deep Security Filter Driver. Click Next.

   Note: If the ESXi server already has a Filter Driver installed, that checkbox will be unavailable.

   Note: This page will not appear if you are installing on vSphere 6.

4. If you have chosen to install the Filter Driver, select Yes to allow the Deep Security Manager automatically bring the ESXi server(s) in and out of maintenance mode. If you select No, you will be responsible for putting the ESXi(s) into maintenance mode. Click Next.

5. If you have chosen to install the DSVA, enter an Appliance Name for the Appliance and select a Datastore for the Appliance. Select the Folder for the Datacenter and select the Management Network for the Appliance. Click Next.

6. If you have chosen to install the DSVA, define the Appliance Hostname. Enter the IPv4 Address and/or IPv6 Address for the Appliance. (DHCP is enabled by default). Click Next.

7. If you have chosen to install the DSVA, select a disk provisioning format. Click Next.

8. The next page summarized the actions that will be taken. Click Finish.

9. The Agentless Security deployment process will begin. When the process is complete, you will see a message stating that it was successful.

10. If you have chosen to install the DSVA and the installation was successful, you can choose to have the wizard activate the Deep Security Virtual Appliance now, or activate it later (the activation process is described later). Click Next.

11. Click Close.
The Virtual Appliance is now displayed along with the other computers in the vCenter Group in the Deep Security Manager Computers > vCenter list.

**Note:** When a Virtual Appliance is deployed in a VMware environment that makes use of the VMware Distributed Resource Scheduler (DRS), it is important that the Appliance does not get vMotioned along with the virtual machines as part of the DRS process. Virtual Appliances must be "pinned" to their particular ESXi server. You must proactively change the DRS settings for all the Virtual Appliances to "Manual" or "Disabled" (recommended) so that they will not be vMotioned by the DRS. If a Virtual Appliance (or any virtual machine) is set to "Disabled", vCenter Server will not migrate that virtual machine or provide migration recommendations for it. This is known as "pinning" the virtual machine to its registered host. This is the recommended course of action for Virtual Appliances in a DRS environment. (An alternative is to deploy the Virtual Appliance onto a local store as opposed to a shared store. When the Virtual Appliance is deployed onto a local store it cannot be vMotioned by DRS.) For further information on DRS and pinning virtual machines to a specific ESXi consult your VMware documentation.

**Note:** The Deep Security Manager puts the ESXi into maintenance mode during an install or upgrade of the Deep Security Filter Driver. When an ESXi already hosting a Virtual Appliance is put into maintenance mode, the Deep Security Manager will automatically power the Virtual Appliance off and back on again when exiting maintenance mode. If the ESXi is put into maintenance mode by means other than through the Deep Security Manager, the Virtual Appliance is not powered off/on automatically.

### Activate the Deep Security Virtual Appliance

**To activate the Virtual Appliance:**

1. From the Deep Security Manager, select Computers > vCenter
2. Right Click on the DSVA machine and select Actions > Activate Appliance. In the wizard that appears, click Next.
3. For Policy, select Deep Security Virtual Appliance.
4. Select the Relay Group this Virtual Appliance will communicate with for Security and Software Updates, then click Next to start the activation process.
5. The DSVA will register itself with vShield Manager. You will see multiple tasks being executed in vCenter Console.

**Note:** The DSVA requires vShield Manager to configure the VMX file of each machine that is on the ESXi. Depending on the number of Virtual Machines, it could take several hours to complete the activation.

If vShield Manager is experiencing problems, the DSVA may fail to activate. Check whether you can open the vShield Manager web console. If it is not responding, you can reboot the vShield Manager and wait for a few minutes after vShield is back on line to attempt DSVA activation again.

6. In Activate Virtual Machines, select the virtual machines that you want to activate and Finish.

The Virtual Appliance is now activated. You can confirm this by finding the Virtual Appliance on the Deep Security Manager’s Computers page and seeing that it is in the "Managed (Online)" state:

![Deep Security Virtual Appliance Activated](image)

Now that the Virtual Appliance is activated, all the VMs on the ESXi can be protected by assigning Deep Security Policies to them through the Deep Security Manager console.

If you did not activate some of your virtual machines in the final step of the "To activate the Virtual Appliance" procedure (above), you can manually activate them.

**To manually activate Virtual Appliance protection on virtual machines:**

1. Right-click on a virtual machine in the computer list and select Actions > Activate.
2. The Status column for the virtual machine will change to "Managed (Online)".
The virtual machine is now protected by the Virtual Appliance even though no in-guest Agent is installed on the virtual machine. Policies can be assigned to this virtual machine like any other computer being managed by Deep Security Manager.

Once the Virtual Appliance is activated, any virtual machines that are added to the ESXi server afterwards can be automatically activated and a Policy can be automatically applied. New virtual machines can automatically be assigned Policies when detected. For details on how to perform these automatic operations, see "Event-Based Tasks" in the Deep Security Manager Help.

**Note:** The Virtual Appliance requires that all VMs that are to be protected have been assigned unique UUIDs by the vCenter. A situation with duplicate UUIDs can occur if you copy a VM. After copying a VM, you are asked by vCenter whether the new VM is a copy or whether it was moved. If you select the **I copied it** option, vCenter will assign it a new UUID. However, if you select the **I moved it** option (when in fact it was copied), vCenter will not assign it a new UUID. You will then have two VMs with the same UUID which will cause problems for the Virtual Appliance. If the Virtual Appliance is instructed to protect multiple VMs with the same UUID, an Alert will be raised and the operation will fail.
Installing the Deep Security Notifier

The Deep Security Notifier is a utility for physical or virtual Windows machines which provides local notification when malware is detected or malicious URLs are blocked. The Deep Security Notifier is automatically installed as part of the Deep Security Agent on Windows machines. The stand-alone installation described here is intended for use on Agentless Windows VMs being protected by the Deep Security Virtual Appliance.

Copy the Installation Package

Copy the installation file to the target machine.

Installing the Deep Security Notifier for Windows

Note: Remember that you must have administrator privileges to install and run the Deep Security Notifier on Windows machines.

1. Double-click the installation file to run the installer package. Click Next to begin the installation.

2. Read the license agreement and click Next.

3. Click Install to proceed with the installation.
4. Click **Finish** to complete the installation.

The Deep Security Notifier is now installed and running on this computer, and the Notifier icon appears in the Windows System Tray. The Notifier will automatically provide pop-up notifications when malware is detected or a URL has been blocked. (You can manually disable notifications by double-clicking the tray icon to open the Notifier status and configuration window).

**Note:** On VMs protected by a Virtual Appliance, the Anti-Malware module must be licensed and enabled on the VM for the Deep Security Notifier to display information.
Upgrading
Planning Your Upgrade

The steps involved in upgrading to Deep Security 9.6 depend on your current configuration and how you want to configure Deep Security 9.6. This section assumes that you currently have Deep Security 9.0, 9.5, or 9.5 SP1 installed in a vShield 5.1 or 5.5 environment. You should also read Choosing Agentless Protection or Combined Mode (page 25) for information about these options.

Note: The upgrade process does not delete or overwrite any data but backing up your system before an upgrade is always a good idea. To back up your existing Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.0, 9.5, or 9.5 SP1 online help or Administrator’s Guide.

Upgrading from an Agentless Environment

If you are currently running Deep Security with Agentless protection provided by the Deep Security Virtual Appliance (DSVA) and the Filter Driver installed on your ESXi servers, you can upgrade to these supported scenarios:

- **Full Agentless Protection**: If you are using vSphere 5.1 or 5.5, you can upgrade Deep Security Manager to version 9.6 and not upgrade the 9.5 DSVA and Filter Driver on your ESXi servers. Your guest virtual machines will continue to be protected with Agentless protection, just as they were before you upgraded the Deep Security Manager. See Upgrading to Full Agentless Protection (page 57) for instructions.

  Note: Version 9.5 and 9.5 SP1 of the DSVA and Filter Driver are not supported with vSphere 6.0.

- **Agentless Anti-Malware and Integrity Monitoring**: If your virtual machines only require Anti-Malware and Integrity Monitoring protection, you can upgrade Deep Security Manager to 9.6, remove the Filter Driver from your ESXi servers, and upgrade the DSVA to 9.6. Your guest virtual machines will continue to be protected with Agentless protection, but only the Anti-Malware and Integrity Monitoring modules will be available. See Upgrading to Agentless Anti-Malware and Integrity Monitoring (page 58) for instructions.

  Note: The Filter Driver must be removed because there is no 9.6 version of the Filter Driver available, and your DSVA and Filter Driver versions must match.

- **Combined Mode**: If you want to upgrade the DSVA to 9.6 and protect your virtual machines with more than the Anti-Malware and Integrity Monitoring modules, you must also install version 9.6 Deep Security Agents on each of your guest VMs, and run in Combined Mode. See Upgrading to Combined Mode (page 63) for instructions.

Upgrading from a Coordinated Approach Environment

Deep Security 9.5 SP1 and earlier included the ability to protect virtual machines using the “Coordinated Approach”. With the Coordinated Approach, primary protection was provided by the Deep Security Agent, with the DSVA available as failover protection in case the Agent went offline.

If you are upgrading from a system that used the Coordinated Approach, your system will be migrated to Combined Mode. With Combined Mode, the DSVA provides the Anti-Malware and Integrity Monitoring functionality. The Deep Security Agent provides Web Reputation, Firewall, Intrusion Prevention, and Log Inspection. See Upgrading to Combined Mode (page 63) for instructions.

Note: If a Virtual Machine is running Linux, Anti-Malware functionality will be provided by Deep Security Agent, rather than DSVA.

If you are upgrading from an environment where your protected ESXi servers have VMs with Deep Security Agents that provide all protection modules, you will be migrated to Combined Mode. This means that the DSVA will provide Anti-Malware and Integrity Monitoring protection. If you do not want to use Combined Mode, please do not upgrade to Deep Security 9.6.
Upgrading from vCNS 5.5 to 6.0

Optionally, if you want to upgrade from vCNS 5.5 to 6.0 at the same time as your Deep Security upgrade, see *Upgrading from vCNS 5.5 to 6.0 (page 68)* for instructions.
Upgrading to Full Agentless Protection

If you are currently running Deep Security with Agentless protection provided by the Deep Security Virtual Appliance (DSVA) and the Filter Driver installed on your ESXi servers, you can upgrade Deep Security Manager to version 9.6 and not upgrade the 9.5 DSVA and Filter Driver on your ESXi servers. Your guest virtual machines will continue to be protected with Agentless protection, just as they were before you upgraded the Deep Security Manager.

Note: The upgrade process does not delete or overwrite any data but backing up your system before an upgrade is always a good idea. To back up your existing Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.0, 9.5, or 9.5 SP1 online help or Administrator’s Guide.

Upgrade to Deep Security Manager 9.6

Note: Deep Security 9.6 includes improvements to scalability and efficiency. Because of these changes, the upgrade can potentially take quite a long time (up to several hours depending on the size of your database). As usual, backup your database before upgrading and consider performing the upgrade during off-hours. To back up your 9.5 SP1 Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.5 SP1 online help or Administrator’s Guide. Your Deep Security Agents and Appliances will continue to provide protection during the upgrade process.

To upgrade to Deep Security Manager 9.6:

2. Run the installer package as described in Installing Deep Security Manager (page 29), but choose Upgrade instead of Change when given the option.

When the Deep Security Manager installer detects an older version of Deep Security Manager on your system, it will give you the option to "upgrade the existing installation", or to "change the existing installation". Upgrading the installation will upgrade the Deep Security Manager to the latest version but will not overwrite your policies, IPS Rules, Firewall Rules, Application Types, etc. or change any of the security settings that were applied to the computers on your network. Changing the existing installation will erase all data associated with the previous installation and then install the new rules, policies, etc.

Note: Do not delete any vCenters from the Deep Security Manager if you wish to continue providing the same protection as you did with version 9.5.
Upgrading to Agentless Anti-Malware and Integrity Monitoring

If you are currently running Deep Security with Agentless protection provided by the Deep Security Virtual Appliance (DSVA) and the Filter Driver installed on your ESXi servers, and your virtual machines only require Anti-Malware and Integrity Monitoring protection, you can upgrade Deep Security Manager to 9.6, remove the Filter Driver from your ESXi servers, and upgrade the DSVA to 9.6. Your guest virtual machines will continue to be protected with Agentless protection, but only the Anti-Malware and Integrity Monitoring modules will be available.

**Note:** The Filter Driver must be removed because there is no 9.6 version of the Filter Driver available, and your DSVA and Filter Driver versions must match.

**Note:** The upgrade process does not delete or overwrite any data but backing up your system before an upgrade is always a good idea. To back up your existing Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.0, 9.5, or 9.5 SP1 online help or Administrator’s Guide.

To upgrade to Agentless Anti-Malware and Integrity Monitoring:

2. Import the DSVA software.
3. Upgrade your version 9.0 Deep Security Relay or your version 9.5 or 9.5 SP1 Relay-enable Agent to a version 9.6 Relay-enabled Agent.
5. Remove the Filter Driver from your ESXi servers.

Upgrade to Deep Security Manager 9.6

**Note:** Deep Security 9.6 includes improvements to scalability and efficiency. Because of these changes, the upgrade can potentially take quite a long time (up to several hours depending on the size of your database). As usual, backup your database before upgrading and consider performing the upgrade during off-hours. To back up your 9.5 SP1 Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.5 SP1 online help or Administrator’s Guide. Your Deep Security Agents and Appliances will continue to provide protection during the upgrade process.

To upgrade to Deep Security Manager 9.6:

2. Run the installer package as described in Installing Deep Security Manager (page 29), but choose Upgrade instead of Change when given the option.

When the Deep Security Manager installer detects an older version of Deep Security Manager on your system, it will give you the option to "upgrade the existing installation", or to "change the existing installation". Upgrading the installation will upgrade the Deep Security Manager to the latest version but will not overwrite your policies, IPS Rules, Firewall Rules, Application Types, etc. or change any of the security settings that were applied to the computers on your network. Changing the existing installation will erase all data associated with the previous installation and then install the new rules, policies, etc.

**Note:** Do not delete any vCenters from the Deep Security Manager if you wish to continue providing the same protection as you did with version 9.5.
Import 9.6 versions of your Deep Security software

To download 9.6 versions of your Deep Security software:

1. In Deep Security Manager, go to Administration > Updates > Software > Download Center. The Download Center page displays the latest versions all software available from Trend Micro.

2. To upgrade the Deep Security Virtual Appliance, you may need to import the latest Red Hat 6 x64 Agent package. Select the package and click Import. Deep Security will use the package to upgrade the DSVA's protection modules to version 9.6.

3. To import the Deep Security Agent software, select the latest version and click Import. You can use this software to upgrade a Relay-enabled Agent.

   **Note:** 9.0 Deep Security Relays will be upgraded to Deep Security 9.6 Relay-enabled Agents.

4. When the software has finished downloading, a green check mark will appear in the Imported column for that package.

Upgrade to a version 9.6 Relay-enabled Agent

Upgrade your 9.5 or 9.5 SP1 Relay-enabled Agent

**Note:** Deep Security Agents and Relays must be of the same version or less than the Deep Security Manager being used to manage it. The Deep Security Manager must always be upgraded before the Deep Security Agents and Relays.

**Note:** When planning the upgrade of your Agents and Relays from 9.0, 9.5, or 9.5 SP1 to version 9.6, ensure that your 9.6 Agents are assigned to Relay Groups that contain only 9.6 Relays. You should upgrade all Relays in a Group to 9.6 (or create a new 9.6 Group) before configuring any 9.6 Agents to receive updates from the group.

To upgrade your 9.5 or 9.5 SP1 Relay-enabled Agent:

1. In the Deep Security Manager, go to the Computers page.

2. Find the computer on which you want to upgrade the Relay-enabled Agent.

3. Right-click the Deep Security Relay and click Actions > Upgrade Agent Software.

4. Follow the onscreen prompts.

   **Note:** You can manually upgrade the Relays locally on a computer. To do this, follow the instructions in Installing the Deep Security Agent (page 36).

Upgrade your 9.0 Deep Security Relay

Deep Security 9.0 Windows Relays can be upgraded to 9.6 Relay-enabled Agents using the Deep Security Manager console or by manual local upgrade. Deep Security 9.0 Linux Relays cannot be upgraded. They must be uninstalled and replaced with a fresh install of a 9.6 Linux Agent. (See "Upgrade a Relay on Linux", below, for instructions.)

**To upgrade a Deep Security 9.0 Relay on Windows:**

1. In the Deep Security Manager, go to the Computers page.


3. Follow the onscreen prompts. The 9.0 Deep Security Relay will be upgraded to a 9.5 SP1 Relay-enabled Agent.

**To upgrade a Deep Security 9.0 Relay on Linux:**
3. Deactivate the Relay that you want to upgrade and then uninstall it.
4. Install `Agent-Core-platform-9.6.build.rpm` on the Agent computer.
5. Activate the Agent.
6. Enable the Relay.

To convert a 9.0 Relay to a 9.6 Agent on Linux:

3. Deactivate the Relay that you want to upgrade.
5. Uninstall the Relay.
6. Install `Agent-Core-platform-9.6.build.rpm` on the Agent computer.

Upgrade the Deep Security Notifier

---

Note: Upgrading the Deep Security Notifier is only required on virtual machines being protected Agentlessly by a Deep Security Virtual Appliance. On machines with an in-guest Agent, the Notifier will be upgraded along with the Deep Security Agent.

To upgrade to Deep Security Notifier 9.6, install it according to the procedures described in Installing the Deep Security Notifier (page 52).

Remove the Filter Driver from your ESXi Servers

---

Note: Removing the Filter Driver will require that you reboot the ESXi server.

To remove the Filter Driver, in the Deep Security Manager, go to the Computers page, right-click the ESXi server and then click Actions > Remove Filter Driver.

Upgrade to Deep Security Virtual Appliance 9.6

Upgrading from a version 9.0 Deep Security Virtual Appliance

---

To upgrade your 9.0 Deep Security Virtual Appliance to 9.6:

1. This upgrade procedure requires that you reboot the ESXi host. Before beginning, vMotion your VMs to another protected host or shut them down.
2. In the Deep Security Manager, on the Computers page, deactivate all protected VMs by right-clicking them and selecting Actions > Deactivate.
3. In the Deep Security Manager, on the Computers page, deactivate your Virtual Appliance by right-clicking it and selecting Actions > Deactivate.
4. In the VMware vSphere Web Client, Power Off and Delete from Disk the Virtual Appliance from the vCenter.
5. The Filter Driver is not supported with the 9.6 version of the DSVA. To remove the Filter Driver, go to the Computers tab in the Deep Security Manager, right-click the ESXi server and click Actions > Remove Filter Driver. You will be required to reboot the ESXi server.

6. Right-click the ESXi server and select Actions > Deploy Agentless Security to display the Deploy Agentless Security wizard. Click Next.

   Note: You can select multiple ESXi servers if they are all the same version and all have the same Filter Driver status.

7. On the next page, select the Deploy the Deep Security Virtual Appliance to the ESXi Server(s) checkbox. Click Next.

   Note: This page will not appear if you are installing on vSphere 6.

8. Enter an Appliance Name for the Appliance and select a Datastore for the Appliance. Select the Folder for the Datacenter and select the Management Network for the Appliance. Click Next.

9. Define the Appliance Hostname. Enter the IPv4 Address and/or IPv6 Address for the Appliance. If you are deploying to multiple ESXi servers at the same time, select DHCP. If you are deploying to a single ESXi server, you can select DHCP or a Static IP. Click Next.

10. Select a provisioning type, either Thick or Thin. Click Next.

11. The next page summarized the actions that will be taken. Click Finish.

12. The Agentless Security deployment process will begin. When the process is complete, you will see a message stating that it was successful.

13. If the installation was successful, you can choose to have the wizard activate the Deep Security Virtual Appliance now, or activate it later (the activation process is described in Deploying Agentless Protection in a vShield Environment (page 40)). Click Next.

14. Click Close.

15. In the Deep Security Manager, on the Computers page, activate all guest VMs by right-clicking them and selecting Actions > Activate.

Upgrading from a version 9.5 or 9.5 SP1 Deep Security Virtual Appliance

To upgrade your Deep Security Virtual Appliance to 9.6:

1. This upgrade procedure requires that you reboot the ESXi host. Before beginning, vMotion your VMs to another protected host or shut them down.

2. The Filter Driver is not supported with the 9.6 version of the DSVA. To remove the Filter Driver, go to the Computers tab in the Deep Security Manager, right-click the ESXi server and click Actions > Remove Filter Driver.

3. Right-click the ESXi server and select Actions > Deploy Agentless Security to display the Deploy Agentless Security wizard. Click Next.

   Note: You can select multiple ESXi servers if they are all the same version and all have the same Filter Driver status.

4. On the next page, select the Deploy the Deep Security Virtual Appliance to the ESXi Server(s) checkbox. Click Next.

   Note: This page will not appear if you are installing on vSphere 6.

5. Enter an Appliance Name for the Appliance and select a Datastore for the Appliance. Select the Folder for the Datacenter and select the Management Network for the Appliance. Click Next.

6. Define the Appliance Hostname. Enter the IPv4 Address and/or IPv6 Address for the Appliance. If you are deploying to multiple ESXi servers at the same time, select DHCP. If you are deploying to a single ESXi server, you can select DHCP or a Static IP. Click Next.

7. Select a provisioning type, either Thick or Thin. Click Next.

8. The next page summarized the actions that will be taken. Click Finish.

9. The Agentless Security deployment process will begin. When the process is complete, you will see a message stating that it was successful.
10. If the installation was successful, you can choose to have the wizard activate the Deep Security Virtual Appliance now, or activate it later (the activation process is described in *Deploying Agentless Protection in a vShield Environment (page 48)*). Click Next.

11. Click Close.

12. Power on your protected guest VMs or vMotion them back to the original host.
Upgrading to Combined Mode

In Combined Mode, the Deep Security Virtual Appliance provides Anti-Malware and Integrity Monitoring protection, while the Deep Security Agent provides Web Reputation, Firewall, Intrusion Prevention, and Log Inspection.

**Note:** The upgrade process does not delete or overwrite any data but backing up your system before an upgrade is always a good idea. To back up your existing Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.0, 9.5, or 9.5 SP1 online help or Administrator’s Guide.

To upgrade to Combined Mode:

3. Upgrade your version 9.0 Deep Security Relay or your version 9.5 or 9.5 SP1 Relay-enabled Agent to a version 9.6 Relay-enabled Agent.
5. Upgrade the Deep Security Agent on your guest virtual machines.
6. Remove the Filter Driver from your ESXi servers.

Upgrade to Deep Security Manager 9.6

**Note:** Deep Security 9.6 includes improvements to scalability and efficiency. Because of these changes, the upgrade can potentially take quite a long time (up to several hours depending on the size of your database). As usual, backup your database before upgrading and consider performing the upgrade during off-hours. To back up your 9.5 SP1 Deep Security data, see "Database Backup and Recovery" in the your Deep Security 9.5 SP1 online help or Administrator’s Guide. Your Deep Security Agents and Appliances will continue to provide protection during the upgrade process.

To upgrade to Deep Security Manager 9.6:

2. Run the installer package as described in *Installing Deep Security Manager (page 29)*, but choose Upgrade instead of Change when given the option.

When the Deep Security Manager installer detects an older version of Deep Security Manager on your system, it will give you the option to "upgrade the existing installation", or to "change the existing installation". Upgrading the installation will upgrade the Deep Security Manager to the latest version but will not overwrite your policies, IPS Rules, Firewall Rules, Application Types, etc. or change any of the security settings that were applied to the computers on your network. Changing the existing installation will erase all data associated with the previous installation and then install the new rules, policies, etc.

**Note:** Do not delete any vCenters from the Deep Security Manager if you wish to continue providing the same protection as you did with version 9.5.

Import 9.6 versions of your Deep Security software

To download 9.6 versions of your Deep Security software:
1. In Deep Security Manager, go to Administration > Updates > Software > Download Center. The Download Center page displays the latest versions all software available from Trend Micro.

2. To upgrade the Deep Security Virtual Appliance, you may need to import the latest Red Hat 6 x64 Agent package. Select the package and click Import. Deep Security will use the package to upgrade the DSVA's protection modules to version 9.6.

3. To import the Deep Security Agent software, select the latest version and click Import. You can use this software to upgrade a Deep Security Agent or a Relay-enabled Agent.

   **Note:** 9.0 Deep Security Relays will be upgraded to Deep Security 9.6 Relay-enabled Agents.

4. When the software has finished downloading, a green check mark will appear in the Imported column for that package.

---

### Upgrade to a version 9.6 Relay-enabled Agent

#### Upgrade your 9.5 or 9.5 SP1 Relay-enabled Agent

**Note:** Deep Security Agents and Relays must be of the same version or less than the Deep Security Manager being used to manage it. The Deep Security Manager must always be upgraded before the Deep Security Agents and Relays.

**Note:** When planning the upgrade of your Agents and Relays from 9.0, 9.5, or 9.5 SP1 to version 9.6, ensure that your 9.6 Agents are assigned to Relay Groups that contain only 9.6 Relays. You should upgrade all Relays in a Group to 9.6 (or create a new 9.6 Group) before configuring any 9.6 Agents to receive updates from the group.

**To upgrade your 9.5 or 9.5 SP1 Relay-enabled Agent:**

1. In the Deep Security Manager, go to the Computers page.
2. Find the computer on which you want to upgrade the Relay-enabled Agent.
3. Right-click the Deep Security Relay and click Actions > Upgrade Agent Software.
4. Follow the onscreen prompts.

   **Note:** You can manually upgrade the Relays locally on a computer. To do this, follow the instructions in Installing the Deep Security Agent (page 36).

---

#### Upgrade your 9.0 Deep Security Relay

Deep Security 9.0 Windows Relays can be upgraded to 9.6 Relay-enabled Agents using the Deep Security Manager console or by manual local upgrade. Deep Security 9.0 Linux Relays cannot be upgraded. They must be uninstalled and replaced with a fresh install of a 9.6 Linux Agent. (See “Upgrade a Relay on Linux”, below, for instructions.)

**To upgrade a Deep Security 9.0 Relay on Windows:**

1. In the Deep Security Manager, go to the Computers page.
3. Follow the onscreen prompts. The 9.0 Deep Security Relay will be upgraded to a 9.5 SP1 Relay-enabled Agent.

**To upgrade a Deep Security 9.0 Relay on Linux:**

3. Deactivate the Relay that you want to upgrade and then uninstall it.
4. Install Agent-Core-platform-9.6.build.rpm on the Agent computer.
5. Activate the Agent.
6. Enable the Relay.

To convert a 9.0 Relay to a 9.6 Agent on Linux:
3. Deactivate the Relay that you want to upgrade.
5. Uninstall the Relay.
6. Install Agent-Core-platform-9.6.build.rpm on the Agent computer.

Upgrade the Deep Security Notifier

**Note:** Upgrading the Deep Security Notifier is only required on virtual machines being protected Agentlessly by a Deep Security Virtual Appliance. On machines with an in-guest Agent, the Notifier will be upgraded along with the Deep Security Agent.

To upgrade to Deep Security Notifier 9.6, install it according to the procedures described in *Installing the Deep Security Notifier (page 52)*.

Upgrade Your Deep Security Agents

**Note:** Deep Security Agents must be of the same version or less than the Deep Security Manager being used to manage them. The Deep Security Manager must always be upgraded before the Deep Security Agents.

**Note:** When planning the upgrade of your Agents and Relays from 9.0, 9.5, or 9.5 SP1 to version 9.6, ensure that your 9.6 Agents are assigned to Relay Groups that contain only 9.6 Relays. You should upgrade all Relays in a Group to 9.6 (or create a new 9.6 Group) before configuring any 9.6 Agents to receive updates from the group.

To upgrade Deep Security Agents using the Deep Security Manager:
1. In the Deep Security Manager, go to the Computers screen.
2. Find the computer on which you want to upgrade the Agent.
3. Right-click the computer and select Actions > Upgrade Agent software.
4. The new Agent software will be sent to the computer and the Agent will be upgraded.

**Note:** You can also manually upgrade Agents locally on a computer. To do this, follow the instructions in *Installing the Deep Security Agent (page 36)*.

Remove the Filter Driver from your ESXi Servers

**Note:** Removing the Filter Driver will require that you reboot the ESXi server.

To remove the Filter Driver, in the Deep Security Manager, go to the Computers page, right-click the ESXi server and then click Actions > Remove Filter Driver.
Upgrade to Deep Security Virtual Appliance 9.6

Upgrading from a version 9.0 Deep Security Virtual Appliance

To upgrade your 9.0 Deep Security Virtual Appliance to 9.6:

1. This upgrade procedure requires that you reboot the ESXi host. Before beginning, vMotion your VMs to another protected host or shut them down.

2. In the Deep Security Manager, on the Computers page, deactivate all protected VMs by right-clicking them and selecting Actions > Deactivate.

3. In the Deep Security Manager, on the Computers page, deactivate your Virtual Appliance by right-clicking it and selecting Actions > Deactivate.

4. In the VMware vSphere Web Client, Power Off and Delete from Disk the Virtual Appliance from the vCenter.

5. The Filter Driver is not supported with the 9.6 version of the DSVA. To remove the Filter Driver, go to the Computers tab in the Deep Security Manager, right-click the ESXi server and click Actions > Remove Filter Driver. You will be required to reboot the ESXi server.

6. Right-click the ESXi server and select Actions > Deploy Agentless Security to display the Deploy Agentless Security wizard. Click Next.

   **Note:** You can select multiple ESXi servers if they are all the same version and all have the same Filter Driver status.

7. On the next page, select the Deploy the Deep Security Virtual Appliance to the ESXi Server(s) checkbox. Click Next.

   **Note:** This page will not appear if you are installing on vSphere 6.

8. Enter an Appliance Name for the Appliance and select a Datastore for the Appliance. Select the Folder for the Datacenter and select the Management Network for the Appliance. Click Next.

9. Define the Appliance Hostname. Enter the IPv4 Address and/or IPv6 Address for the Appliance. If you are deploying to multiple ESXi servers at the same time, select DHCP. If you are deploying to a single ESXi server, you can select DHCP or a Static IP. Click Next.

10. Select a provisioning type, either Thick or Thin. Click Next.

11. The next page summarized the actions that will be taken. Click Finish.

12. The Agentless Security deployment process will begin. When the process is complete, you will see a message stating that it was successful.

13. If the installation was successful, you can choose to have the wizard activate the Deep Security Virtual Appliance now, or activate it later (the activation process is described in Deploying Agentless Protection in a vShield Environment (page 48)). Click Next.

14. Click Close.

15. In the Deep Security Manager, on the Computers page, activate all guest VMs by right-clicking them and selecting Actions > Activate.

Upgrading from a version 9.5 or 9.5 SP1 Deep Security Virtual Appliance

To upgrade your Deep Security Virtual Appliance to 9.6:

1. This upgrade procedure requires that you reboot the ESXi host. Before beginning, vMotion your VMs to another protected host or shut them down.

2. The Filter Driver is not supported with the 9.6 version of the DSVA. To remove the Filter Driver, go to the Computers tab in the Deep Security Manager, right-click the ESXi server and click Actions > Remove Filter Driver.

3. Right-click the ESXi server and select Actions > Deploy Agentless Security to display the Deploy Agentless Security wizard. Click Next.
4. On the next page, select the **Deploy the Deep Security Virtual Appliance to the ESXi Server(s)** checkbox. Click **Next**.

   **Note:** This page will not appear if you are installing on vSphere 6.

5. Enter an **Appliance Name** for the Appliance and select a **Datastore** for the Appliance. Select the **Folder** for the Datacenter and select the **Management Network** for the Appliance. Click **Next**.

6. Define the Appliance Hostname. Enter the IPv4 Address and/or IPv6 Address for the Appliance. If you are deploying to multiple ESXi servers at the same time, select DHCP. If you are deploying to a single ESXi server, you can select DHCP or a Static IP. Click **Next**.

7. Select a provisioning type, either Thick or Thin. Click **Next**.

8. The next page summarized the actions that will be taken. Click **Finish**.

9. The Agentless Security deployment process will begin. When the process is complete, you will see a message stating that it was successful.

10. If the installation was successful, you can choose to have the wizard activate the Deep Security Virtual Appliance now, or activate it later (the activation process is described in *Deploying Agentless Protection in a vShield Environment (page 48)*). Click **Next**.

11. Click **Close**.

12. Power on your protected guest VMs or vMotion them back to the original host.
Upgrading from vCNS 5.5 to 6.0

If you want to upgrade from vCNS 5.5 to 6.0 at the same time as your Deep Security upgrade, follow these steps:

1. Perform all of the Deep Security upgrade steps, including removing the Filter Driver and upgrading the DSVA to 9.6. Older versions of the DSVA are not supported with vCNS 6.0.

   **Note:** This step requires that you reboot the ESXi server

2. Upgrade the vShield Manager. For details, refer to the VMware documentation.
3. In vShield Manager, select the option to update the vShield Endpoint drivers on the ESXi host.
4. Upgrade the vCenter from version 5.x to 6.0. For details, refer to the VMware documentation.
5. Upgrade the ESXi Host to version 6.0. For details, refer to the VMware documentation.
Appendices
Deep Security Manager Memory Usage

Configuring the Installer's Maximum Memory Usage

The installer is configured to use 1GB of contiguous memory by default. If the installer fails to run you can try configuring the installer to use less memory.

To configure the amount of RAM available to the installer:
1. Go to the directory where the installer is located.
2. Create a new text file called "Manager-Windows-9.6.xxxx.x64.vmoptions" or "Manager-Linux-9.6.xxxx.x64.vmoptions", depending on your installation platform (where "xxxx" is the build number of the installer).
3. Edit the file by adding the line: "-Xmx800m" (in this example, 800MB of memory will be made available to the installer.)
4. Save the file and launch the installer.

Configuring the Deep Security Manager's Maximum Memory Usage

The Deep Security Manager default setting for heap memory usage is 4GB. It is possible to change this setting.

To configure the amount of RAM available to the Deep Security Manager:
2. Create a new file. Depending on the platform, give it the following name:
   - Windows: "Deep Security Manager.vmoptions".
   - Linux: "dsm_s.vmoptions".
3. Edit the file by adding the line: "-Xmx10g" (in this example, "10g" will make 10GB memory available to the Deep Security Manager.)
4. Save the file and restart the Deep Security Manager.
5. You can verify the new setting by going to Administration > System Information and in the System Details area, expand Manager Node > Memory. The Maximum Memory value should now indicate the new configuration setting.
Deep Security Virtual Appliance Memory Usage

The following table lists minimum recommended Deep Security Virtual Appliance memory allocation based on the number of VMs being protected:

<table>
<thead>
<tr>
<th>Number of virtual machines being protected by the Deep Security Virtual Appliance</th>
<th>Recommended memory allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-32</td>
<td>4GB</td>
</tr>
<tr>
<td>33-64</td>
<td>6GB</td>
</tr>
<tr>
<td>65+</td>
<td>10GB</td>
</tr>
</tbody>
</table>

The default configuration of the DSVA is to use 4GB of RAM. If you expect to need more than the default 4GB, you will need to modify the DSVA's configuration yourself. There are two options:

- Modify the configuration of the Virtual Appliance prior to being imported to Deep Security Manager and then to the vCenter, thereby setting the default configuration for all subsequent Deep Security Virtual Appliance service deployments in that vCenter.
- Modify the memory allocation of the Virtual Appliance on a cases by case basis after it has been imported to the vCenter and deployed as a service on a ESXi.

Configuring the DSVA's Memory Allocation (pre-deployment)

To change the Deep Security Virtual Appliance's default memory allocation, you must edit the allocation settings in the Appliance's OVF file before it gets imported to the vCenter.

To configure the memory allocation of a Deep Security Virtual Appliance prior to deployment to the vCenter:

1. Unzip the Virtual Appliance zip file you downloaded from the Trend Micro Download Center.
2. Open dsva.ovf in a text editor.
3. Edit the following section to modify the default memory allocation of 4096 MB to suit your environment ("4096" occurs in three locations):

   ```xml
 <Item>
 <rasd:AllocationUnits>byte * 2^20</rasd:AllocationUnits>
 <rasd:Description>Memory Size</rasd:Description>
 <rasd:Reservation>4096</rasd:Reservation>
 <rasd:ResourceType>4</rasd:ResourceType>
 <rasd:VirtualQuantity>4096</rasd:VirtualQuantity>
 </Item>
 ``
4. Save the ovf file and return it to the zip package.
5. Import the Virtual Appliance zip package to the Deep Security Manager from the Administration > Updates Software > Local page.

Configuring the DSVA's Memory Allocation (post-deployment)

Note: Changing the Deep Security Virtual Appliance's memory allocation settings requires powering off the DSVA virtual machine. Virtual machines normally protected by the Virtual Appliance will be unprotected until it is powered back on.

To configure the memory allocation of an already deployed Deep Security Virtual Appliance:
1. In your VMware vSphere Web Client, right-click on the DSVA and select **Power > Shut Down Guest**.

2. Right-click on the DSVA again and select **Edit Settings...**. The Virtual Machine **Properties** screen displays.

3. On the **Hardware** tab, select **Memory** and change the memory allocation to the desired value.

4. Click **OK**.

5. Right-click the DSVA again and select **Power > Power On**.
Deep Security Manager Performance Features

Performance Profiles

Deep Security Manager uses an optimized concurrent job scheduler that considers the impacts of each job on CPU, Database and Agent/Appliances. By default, new installations use the “Aggressive” performance profile which is optimized for a dedicated Manager. If the Deep Security Manager is installed on a system with other resource-intensive software it may be preferable to use the “Standard” performance profile. The performance profile can be changed by navigating to Administration > Manager Nodes. From this screen select a Manager node and open the Properties window. From here the Performance Profile can be changed via the drop-down menu.

The Performance Profile also controls the number of Agent/Appliance-initiated connections that the Manager will accept. The default of each of the performance profiles effectively balances the amount of accepted, delayed and rejected heartbeats.

Low Disk Space Alerts

Low Disk Space on the Database Host

If the Deep Security Manager receives a “disk full” error message from the database, it will start to write events to its own hard drive and will send an email message to all Users informing them of the situation. This behavior is not configurable.

If you are running multiple Manager nodes, the Events will be written to whichever node is handling the Event. (For more information on running multiple nodes, see Multi-Node Manager in the Reference section of the online help or the Administrator's Guide.)

Once the disk space issue on the database has been resolved, the Manager will write the locally stored data to the database.

Low Disk Space on the Manager Host

If the available disk space on the Manager falls below 10%, the Manager generates a Low Disk Space Alert. This Alert is part of the normal Alert system and is configurable like any other. (For more information on Alerts, see Alert Configuration in the Configuration and Management section of the online help or the Administrator’s Guide.)

If you are running multiple Manager nodes, the node will be identified in the Alert.

When the Manager’s available disk space falls below 5MB, the Manager will send an email message to all Users and the Manager will shut down. The Manager cannot be restarted until the available disk space is greater than 5MB.

You must restart the Manager manually.

If you are running multiple nodes, only the node that has run out of disk space will shut down. The other Manager nodes will continue operating.
Upgrade Multi-Node Deep Security Manager

Upgrading a Multi-node Deep Security manager requires no special preparation.

To upgrade a Multi-node Manager:

1. Run the Deep Security Manager install package on any node.
 The installer will instruct the other nodes to shut down (there is no need to manually shut down the services).
 The installer will upgrade the local Deep Security Manager and update the database.

2. Run the Deep Security Manager installer on the remaining nodes.
 As each node is upgraded, the service will restart and the node will rejoin the network of Deep Security Managers.
Creating an SSL Authentication Certificate

The Deep Security Manager creates a 10-year self-signed certificate for the connections with Agents/Appliances, Relays, and Users’ web browsers. However, for added security, this certificate can be replaced with a certificate from a trusted certificate authority (CA). (Such certificates are maintained after a Deep Security Manager upgrade.)

Once generated, the CA certificate must be imported into the .keystore in the root of the Deep Security Manager installation directory and have an alias of "tomcat". The Deep Security Manager will then use that certificate.

Windows

To create your SSL authentication certificate in a Windows environment:

1. Go to the Deep Security Manager installation directory [for the purpose of these instructions, we will assume it’s "C:\Program Files\Trend Micro\Deep Security Manager"] and create a new folder called Backupkeystore.
2. Copy .keystore and configuration.properties to the newly created folder Backupkeystore.
3. From a command prompt, go to the following location: C:\Program Files\Trend Micro\Deep Security Manager\jre\bin.
4. Run the following command, which will create a self-signed certificate:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -genkey -alias tomcat -keyalg RSA -dname cn=dsmserver
```

 Note:

 dname is the common name of the certificate your CA will sign. Some CAs require a specific name to sign the Certificate Signing Request (CSR). Please consult your CA Admin to see if you have that particular requirement.

5. When prompted, enter a password.
6. There is a new keystore file created under the user home directory. If you are logged in as "Administrator", You will see the .keystore file under C:\Documents and Settings\Administrator.
7. View the newly generated certificate using the following command:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -list -v
```
8. Run the following command to create a CSR for your CA to sign:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -certreq -keyalg RSA -alias tomcat -file certrequest.csr
```
9. Send the certrequest.csr to your CA to sign. In return you will get two files. One is a "certificate reply" (for example, certresponse.txt) and the second is the CA certificate itself (for example, cacert.crt or certnew.cer).
10. Copy the files to C:\Program Files\Trend Micro\Deep Security Manager\jre\bin\.
11. Navigate to the C:\Program Files\Trend Micro\Deep Security Manager\jre\lib\security\ folder and then rename the cacerts file to _cacerts.
12. Run the following command to import the CA cert in JAVA trusted keystore:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias root -trustcacerts -file cacert.crt -keystore "C:\Program Files\Trend Micro\Deep Security Manager\jre\lib\security\cacerts"
```
13. Run the following command to import the CA certificate in your keystore:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias root -trustcacerts -file cacert.crt
```

(say yes to warning message)

14. Run the following command to import the certificate reply to your keystore:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias tomcat -file certreply.txt
```

15. Run the following command to view the certificate chain in your keystore:

```
C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -list -v
```

16. Copy the .keystore file from your user home directory `C:\Documents and Settings\Administrator` to `C:\Program Files\Trend Micro\Deep Security Manager`.

17. Open the configuration.properties file in folder `C:\Program Files\Trend Micro\Deep Security Manager`. It will look something like:

```
keystoreFile=C:\Program Files\Trend Micro\Deep Security Manager\.keystore
port=4119
keystorePass=$1$85ef650a5c40bb0f914993ac1ad855f48216fd0664ed2544b6e6de80160b2f
installed=true
serviceName= Trend Micro Deep Security Manager
```

18. Replace the password in the following string:

```
keystorePass=xxxx
```

where "xxxx" is the password you supplied in step five

19. Save and close the file.

21. Connect to the Deep Security Manager with your browser and you will notice that the new SSL certificate is signed by your CA.

Linux

To create your SSL authentication certificate in a Linux environment:

1. Go to the Deep Security Manager installation directory (for the purpose of these instructions, we will assume it’s `/opt/dsm`) and create a new folder called `Backupkeystore`.

2. Copy `.keystore` and `configuration.properties` to the newly created folder `Backupkeystore`.

3. From a command prompt, go to the following location: `/opt/dsm/jre/bin`.

4. Run the following command, which will create a self-signed certificate:

```
opt/dsm/jre/bin# keytool -genkey -alias tomcat -keyalg RSA -dname cn=dsmserver
```

Note: `-dname` is the common name of the certificate your CA will sign. Some CAs require a specific name to sign the Certificate Signing Request (CSR). Please consult your CA Admin to see if you have that particular requirement.
5. When prompted, enter a password.
6. There is a new `keystore` file created under the user home directory. If you are logged in as "Administrator", You will see the `keystore` file under `/root/`
 If the file is hidden, use the following command: `find -type f -iname "*.keystore" -ls`
7. View the newly generated certificate using the following command:
   ```
   opt/dsm/jre/bin# keytool -list -v
   ```
8. Run the following command to create a CSR for your CA to sign:
   ```
   opt/dsm/jre/bin# keytool -certreq -keyalg RSA -alias tomcat -file certrequest.csr
   ```
 If you see "Keytool unrecognized option '-keyalg'", use `-sigalg` instead.
9. Send the `certrequest.csr` to your CA to sign. In return you will get two files. One is a "certificate reply" and the second is the CA certificate itself.
10. Run the following command to import the CA cert into the Java trusted keystore:
    ```
    /opt/dsm/jre/bin/keytool -import -alias root -trustcacerts -file cacert.crt -keystore "/opt/dsm/jre/lib/security/cacerts"
    ```
11. Run the following command to import the CA certificate in your keystore:
    ```
    /opt/dsm/jre/bin/keytool -import -alias root -trustcacerts -file cacert.crt
    ```
 (say yes to warning message)
12. Run the following command to import the certificate reply to your keystore:
    ```
    /opt/dsm/jre/bin/keytool -import -alias tomcat -file certreply.txt
    ```
13. Run the following command to view the certificate chain in you keystore:
    ```
    opt/dsm/jre/bin# keytool -list -v
    ```
14. Copy the `keystore` file from your home directory to `/opt/dsm/`
    ```
    cp $HOME/.keystore /opt/dsm/.keystore
    ```
15. Open the `/opt/dsm/configuration.properties` file. It will look something like:
    ```
    keystoreFile= opt/dsm/.keystore
    port=443
    keystorePass=xxxx
    installed=true
    serviceName= Trend Micro Deep Security Manager
    ```
16. Replace the password in the following string:
    ```
    keystorePass=xxxx
    ```
 where "xxxx" is the password you supplied in step five
17. Save and close the file.
19. Connect to the Deep Security Manager with your browser and you will notice that the new TLS certificate is signed by your CA.
Silent Install of Deep Security Manager

Windows

To initiate a silent install on Windows, open a command prompt in the same directory as the install package and run:

Manager-Windows-<Version>.x64.exe -q -console -Dinstall4j.language=<ISO code> -varfile <PropertiesFile>

Linux

Note: Before executing this command, grant execution permission to the installation package.

To initiate a silent install on Linux, use the command line to go to the same directory as the install package and run:

Manager-Linux-<Version>.x64.sh -q -console -Dinstall4j.language=<ISO code> -varfile <PropertiesFile>

Parameters

The "-q" setting forces install4j to execute in unattended (silent) mode.

The "-console" setting forces messages to appear in the console (stdout).

The -Dinstall4j.language=<ISO code> options lets you override the default installation language (English) if other languages are available. Specify a language using standard ISO language identifiers:

- Japanese: ja
- Simplified Chinese: zh_CN

The <PropertiesFile> argument is the complete/absolute path to a standard Java properties file. Each property is identified by its equivalent GUI screen and setting in the Windows Deep Security Manager installation (described above). For example, the Deep Security Manager address on the "Address and Ports" screen is specified as:

AddressAndPortsScreen.ManagerAddress=

Most of the properties in this file have acceptable defaults and may be omitted. The only required values for a simple installation using an embedded database are:

LicenseScreen.License
CredentialsScreen.Administrator.Username
CredentialsScreen.Administrator.Password

For a complete description of available settings, see Deep Security Manager Settings Properties File (page 81).

Sample Properties File

The following is an example of the content of a typical properties file:

AddressAndPortsScreen.ManagerAddress=10.201.111.91
AddressAndPortsScreen.NewNode=True
UpgradeVerificationScreen.Overwrite=False
LicenseScreen.License.-1=XY-ABCD-ABCDE-ABCDE-ABCDE-ABCDE-ABCDE
DatabaseScreen.DatabaseType=Oracle
DatabaseScreen.Hostname=10.201.xxx.xxx
DatabaseScreen.Transport=TCP
DatabaseScreen.DatabaseName=XE
DatabaseScreen.Username=DSM
DatabaseScreen.Password=xxxxxxx
AddressAndPortsScreen.ManagerPort=4119
AddressAndPortsScreen.HeartbeatPort=4120
CredentialsScreen.Administrator.Username=masteradmin
CredentialsScreen.Administrator.Password=xxxxxxx
CredentialsScreen.UseStrongPasswords=False
SecurityUpdateScreen.UpdateComponents=True
SoftwareUpdateScreen.Proxy=False
SoftwareUpdateScreen.ProxyAddress=""
SoftwareUpdateScreen.ProxyPort=""
SoftwareUpdateScreen.ProxyAuthentication="False"
SoftwareUpdateScreen.ProxyUsername=""
SoftwareUpdateScreen.ProxyPassword=""
SoftwareUpdateScreen.UpdateSoftware=True
RelayScreen.Install=True
SmartProtectionNetworkScreen.EnableFeedback=False
Deep Security Manager Settings Properties File

This section contains information about the contents of the Property file that can be used in a command-line installation (silent Install) of the Deep Security Manager. [See Silent Install of Deep Security Manager (page 79).]

Settings Properties File

The format of each entry in the settings property file is:

Screen Name.<Property Name>=<Property Value>

The settings properties file has required and optional values.

Required Settings

LicenseScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LicenseScreen.License.-1=<value></td>
<td><AC for all modules></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.0=<value></td>
<td><AC for Anti-Malware></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.1=<value></td>
<td><AC for Firewall/DPI></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.2=<value></td>
<td><AC for Integrity Monitoring></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.3=<value></td>
<td><AC for Log Inspection></td>
<td>blank</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LicenseScreen.License.0=<value></td>
<td><AC for Anti-Malware></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.1=<value></td>
<td><AC for Firewall/DPI></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.2=<value></td>
<td><AC for Integrity Monitoring></td>
<td>blank</td>
</tr>
<tr>
<td>LicenseScreen.License.3=<value></td>
<td><AC for Log Inspection></td>
<td>blank</td>
</tr>
</tbody>
</table>

CredentialsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CredentialsScreen.Administrator.Username=<value></td>
<td><username for master administrator></td>
<td>blank</td>
</tr>
<tr>
<td>CredentialsScreen.Administrator.Password=<value></td>
<td><password for the master administrator></td>
<td>blank</td>
</tr>
</tbody>
</table>

Optional Settings

LanguageScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
</table>
UpgradeVerificationScreen

Note: This screen/setting is not referenced unless an existing installation is detected.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpgradeVerificationScreen.Overwrite=<value></td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Note: Setting this value to True will overwrite any existing data in the database. It will do this without any further prompts.

DatabaseScreen

This screen defines the database type and optionally the parameters needed to access certain database types.

Note: The interactive install provides an "Advanced" dialog to define the instance name and domain of a Microsoft SQL server, but because the unattended install does not support dialogs these arguments are included in the DatabaseScreen settings below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatabaseScreen.DatabaseType=<value></td>
<td>Embedded, Microsoft SQL Server, Oracle</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>DatabaseScreen.Hostname=<value></td>
<td>The name or IP address of the database server Current host name</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>DatabaseScreen.DatabaseName=<value></td>
<td>Any string</td>
<td>dsm</td>
<td>Not required for Embedded.</td>
</tr>
<tr>
<td>DatabaseScreen.Transport=<value></td>
<td>Named Pipes, TCP</td>
<td>Named Pipes</td>
<td>Required for SQL Server only</td>
</tr>
<tr>
<td>DatabaseScreen.Username=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Username used by the Manager to authenticate to the database server. Must match an existing database account. Note that the Deep Security Manager database permissions will correspond to this user’s permissions. For example, if you choose a database account with read-only privileges, the Deep Security Manager will not be able to write to the database. Not required for Embedded. Mandatory for Microsoft SQL Server and Oracle.</td>
</tr>
<tr>
<td>DatabaseScreen.Password=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Password used by the Manager to authenticate to the database server. Not required for Embedded. Mandatory for Microsoft SQL Server and Oracle.</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.Instance=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Used only with Microsoft SQL Server, which supports multiple instances on a single server or processor. Only one instance can be the default instance and any others are named instances. If the Deep Security Manager database instance is not the default, enter the name of the instance here. The value must match an existing instance or be left blank to indicate the default instance.</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.Domain=<value></td>
<td>Any string</td>
<td>blank</td>
<td>Used only with Microsoft SQL Server. This is the Windows domain used when authenticating to the SQL Server. The DatabaseScreen.Username and DatabaseScreen.Password described above are only valid within the appropriate domain.</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.UseDefaultCollation=<value></td>
<td>True, False</td>
<td>False</td>
<td>Used only with Microsoft SQL Server. Collation determines how strings are sorted and compared. If the value is "False", Deep Security will use Latin1_General_CS_AS for collation on text-type columns. If the value is "True", Deep Security will use the...</td>
</tr>
</tbody>
</table>
collation method specified by your SQL Server database. For additional information on collation, refer to your SQL Server documentation.

AddressAndPortsScreen

This screen defines the hostname, URL, or IP address of this computer and defines ports for the Manager. In the interactive installer this screen also supports the addition of a new Manager to an existing database, but this option is not supported in the unattended install.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddressAndPortsScreen.ManagerAddress=<value></td>
<td><hostname, URL or IP address of the Manager host></td>
<td><current host name></td>
<td>None</td>
</tr>
<tr>
<td>AddressAndPortsScreen.ManagerPort=<value></td>
<td><valid port number></td>
<td>4119</td>
<td>None</td>
</tr>
<tr>
<td>AddressAndPortsScreen.HeartbeatPort=<value></td>
<td><valid port number></td>
<td>4120</td>
<td>None</td>
</tr>
<tr>
<td>AddressAndPortsScreen.NewNode=<value></td>
<td>True False</td>
<td>False</td>
<td>True indicates that the current install is a new node. If the installer finds existing data in the database, it will add this installation as a new node. (Multi-node setup is always a silent install). Note: The “New Node” installation information about the existing database to be provided via the DatabaseScreen properties.</td>
</tr>
</tbody>
</table>

CredentialsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CredentialsScreen.UseStrongPasswords=<value></td>
<td>True False</td>
<td>False</td>
<td>True indicates the DSM should be set up to enforce strong passwords</td>
</tr>
</tbody>
</table>

SecurityUpdateScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecurityUpdateScreen.UpdateComponents=<value></td>
<td>True False</td>
<td>True</td>
<td>True will instruct the Deep Security Manager to create a Scheduled Task to automatically check for Security Updates. The Scheduled Task will run when installation is complete.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.Proxy=<value></td>
<td>True False</td>
<td>False</td>
<td>True indicates that the Deep Security Manager uses a proxy to connect to the Internet to download Security Updates from Trend Micro.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyType=<value></td>
<td>HTTP SOCKS4 SOCKS5</td>
<td>blank</td>
<td>The protocol used by the proxy.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyAddress=<value></td>
<td>valid IPv4 or IPv6 address or hostname</td>
<td>blank</td>
<td>The IP or hostname of the proxy.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyPort=<value></td>
<td>integer</td>
<td>blank</td>
<td>The port number of the proxy.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyAuthentication=<value></td>
<td>True False</td>
<td>False</td>
<td>True indicates that the proxy requires authentication credentials.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyUsername=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication username.</td>
</tr>
<tr>
<td>SecurityUpdateScreen.ProxyPassword=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication password.</td>
</tr>
</tbody>
</table>
SoftwareUpdateScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftwareUpdateScreen.UpdateSoftware=<value></td>
<td>True False</td>
<td>True</td>
<td>True will instruct the Deep Security Manager to create a Scheduled Task to automatically check for Software Updates. The Scheduled Task will run when installation is complete.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.Proxy=<value></td>
<td>True False</td>
<td>False</td>
<td>True indicates that the Deep Security Manager uses a proxy to connect to the Internet to download Software Updates from Trend Micro.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyType=<value></td>
<td>HTTP SOCKS4 SOCKS5</td>
<td>blank</td>
<td>The protocol used by the proxy.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyAddress=<value></td>
<td>valid IPv4 or IPv6 address or hostname</td>
<td>blank</td>
<td>The IP or hostname of the proxy.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyPort=<value></td>
<td>integer</td>
<td>blank</td>
<td>The port number of the proxy.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyAuthentication=<value></td>
<td>True False</td>
<td>False</td>
<td>True indicates that the proxy requires authentication credentials.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyUsername=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication username.</td>
</tr>
<tr>
<td>SoftwareUpdateScreen.ProxyPassword=<value></td>
<td>any string</td>
<td>blank</td>
<td>The authentication password.</td>
</tr>
</tbody>
</table>

SmartProtectionNetworkScreen

This screen defines whether you want to enable Trend Micro Smart Feedback and optionally your industry.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartProtectionNetworkScreen.IndustryType=<value></td>
<td>blank</td>
<td>blank</td>
<td>blank corresponds to Not specified</td>
</tr>
</tbody>
</table>

Sample Properties Files

The following is an example of the content of a typical properties file:
AddressAndPortsScreen.ManagerAddress=10.201.111.91
AddressAndPortsScreen.NewNode=True
UpgradeVerificationScreen.Overwrite=False
LicenseScreen.License.-1=XY-ABCD-ABCDE-ABCDE-ABCDE-ABCDE-ABCDE
DatabaseScreen.DatabaseType=Oracle
DatabaseScreen.Hostname=10.201.xxx.xxx
DatabaseScreen.Transport=TCP
DatabaseScreen.DatabaseName=XE
DatabaseScreen.Username=DSM
DatabaseScreen.Password=xxxxxxx
AddressAndPortsScreen.ManagerPort=4119
AddressAndPortsScreen.HeartbeatPort=4120
CredentialsScreen.Administrator.Username=masteradmin
CredentialsScreen.Administrator.Password=xxxxxxxxx
CredentialsScreen.UseStrongPasswords=False
SecurityUpdateScreen.UpdateComponents=True
SoftwareUpdateScreen.UpdateSoftware=True
RelayScreen.Install=True
SmartProtectionNetworkScreen.EnableFeedback=False

Installation Output

The following is a sample output from a successful install, followed by an example output from a failed install (invalid license). The [Error] tag in the trace indicates a failure.

Successful Install

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopping Trend Micro Deep Security Manager Service...</td>
</tr>
<tr>
<td>Checking for previous versions of Trend Micro Deep Security Manager...</td>
</tr>
<tr>
<td>Upgrade Verification Screen settings accepted...</td>
</tr>
<tr>
<td>The installation directory has been set to C:\Program Files\Trend Micro\Deep Security Manager.</td>
</tr>
<tr>
<td>Database Screen settings accepted...</td>
</tr>
<tr>
<td>License Screen settings accepted...</td>
</tr>
<tr>
<td>Address And Ports Screen settings accepted...</td>
</tr>
<tr>
<td>Credentials Screen settings accepted...</td>
</tr>
<tr>
<td>Security Update Screen settings accepted...</td>
</tr>
<tr>
<td>Software Update Screen settings accepted...</td>
</tr>
<tr>
<td>Smart Protection Network Screen settings accepted...</td>
</tr>
<tr>
<td>All settings accepted, ready to execute...</td>
</tr>
<tr>
<td>Extracting files...</td>
</tr>
<tr>
<td>Setting Up...</td>
</tr>
<tr>
<td>Connecting to the Database...</td>
</tr>
<tr>
<td>Creating the Database Schema...</td>
</tr>
<tr>
<td>Creating MasterAdmin Account...</td>
</tr>
<tr>
<td>Recording Settings...</td>
</tr>
<tr>
<td>Creating Temporary Directory...</td>
</tr>
<tr>
<td>Installing Reports...</td>
</tr>
<tr>
<td>Installing Modules and Plug-ins...</td>
</tr>
<tr>
<td>Creating Help System...</td>
</tr>
<tr>
<td>Validating and Applying Activation Codes...</td>
</tr>
<tr>
<td>Configure Localizable Settings...</td>
</tr>
<tr>
<td>Setting Default Password Policy...</td>
</tr>
<tr>
<td>Creating Scheduled Tasks...</td>
</tr>
<tr>
<td>Creating Asset Importance Entries...</td>
</tr>
<tr>
<td>Creating Auditor Role...</td>
</tr>
<tr>
<td>Optimizing...</td>
</tr>
<tr>
<td>Importing Software Packages...</td>
</tr>
<tr>
<td>Configuring Relay For Install...</td>
</tr>
</tbody>
</table>

Deep Security 9.6 Installation Guide (VMware vShield)
Failed Install

This example shows the output generated when the properties file contained an invalid license string:

Stopping Trend Micro Deep Security Manager Service...
Detecting previous versions of Trend Micro Deep Security Manager...
Upgrade Verification Screen settings accepted...
Database Screen settings accepted...
[ERROR] License Screen settings accepted...
[ERROR] License Screen settings rejected...
Rolling back changes...
Enable Multi-Tenancy

To enable Multi-Tenancy:

1. In the Deep Security Manager, go to Administration > System Settings > Advanced and click Enable Multi-Tenant Mode in the Multi-Tenant Options area to display the Multi-Tenant Configuration wizard.

2. Enter the Activation Code and click Next.

3. Choose a license mode to implement:
 - Inherit Licensing from Primary Tenant: Gives all Tenants the same licenses as the Primary Tenant.
 - Per Tenant Licensing: In this mode, Tenants themselves enter a license when they sign in for the first time.

4. Click Next to finish enabling Multi-Tenancy in your Deep Security Manager.

Managing Tenants

Once Multi-Tenant mode is enabled, Tenants can be managed from the Tenants page that now appears in the Administration section.

Creating Tenants

To create a new Tenant:

1. Go to the Administration > Tenants page and click New to display the New Tenant wizard.

2. Enter a Tenant Account Name. The account name can be any name except "Primary" which is reserved for the Primary Tenant.

3. Enter an Email Address. The email address is required in order to have a contact point per Tenant. It is also used for two of the three different user account generation methods in the next step.

5. Select a Time Zone. All Tenant-related Events will be shown to the Tenant Users in the time zone of the Tenant account.

6. If your Deep Security installation is using more than one database, you will have the option to let Deep Security automatically select a database server on which to store the new Tenant account ("Automatic – No Preference") or you can specify a particular server.

 Database servers that are no longer accepting new Tenants will not be included in the drop-down list. The options will not appear if you only have a single database.

When you have made your selection, click Next to continue.
7. Enter a Username for the first User of the new Tenant account.

8. Select one of the three password options:
 - **No Email**: The Tenancy’s first User’s username and password are defined here and no emails are sent.
 - **Email Confirmation Link**: You set the Tenancy’s first User’s password. However the account is not active until the User clicks a confirmation link he will receive by email.
 - **Email Generated Password**: This allows the Tenant creator to generate a Tenant without specifying the password. This is most applicable when manually creating accounts for users where the creator does not need access.

**Note:** All three options are available via the REST API. The confirmation option provides a suitable method for developing public registration. A CAPTCHA is recommended to ensure that the Tenant creator is a human not an automated "bot". The email confirmation ensures that the email provided belongs to the user before they can access the account.

9. Click **Next** to finish with the wizard and create the Tenant. (It may take from 30 seconds to four minutes to create the new Tenant database and populate it with data and sample Policies.)

Examples of messages sent to Tenants

Email Confirmation Link: Account Confirmation Request

Welcome to Deep Security! To begin using your account, click the following confirmation URL. You can then access the console using your chosen password.

Account Name: AnyCo
Username: admin

Click the following URL to activate your account:
https://managername:4119/SignIn.screen?confirmation=1A16EC7A-D84F-D451-05F6-706095B6F646&tenantAccount=AnyCo&username=admin

Email Generated Password: Account and Username Notification

Welcome to Deep Security! A new account has been created for you. Your password will be generated and provided in a separate email.

Account Name: AnyCo
Username: admin

You can access the Deep Security management console using the following URL:
https://managername:4119/SignIn.screen?tenantAccount=AnyCo&username=admin

Email Generated Password: Password Notification

This is the automatically generated password for your Deep Security account. Your Account Name, Username, and a link to access the Deep Security management console will follow in a separate email.

Password: z3IgRUQ0jaFi

Managing Tenants

The Tenants page *(Administration > Tenants)* displays the list of all Tenants. A Tenant can be in any of the following States:
- **Created:** In the progress of being created but not yet active
- **Confirmation Required:** Created, but the activation link in the confirmation email sent to the Tenant User has not yet been clicked. (You can manually override this state.)
- **Active:** Fully online and managed
- **Suspended:** No longer accepting sign ins.
- **Pending Deletion:** Tenants can be deleted, however the process is not immediate. The Tenant can be in the pending deletion state for up to seven days before the database is removed.
- **Database Upgrade Failure:** For Tenants that failed the upgrade path. The Database Upgrade button can be used to resolve this situation

Tenant Properties

Double-click on a Tenant to view the Tenant's **Properties** window.

General

The Locale, Time zone and State of the Tenant can be altered. Be aware that changing the time zone and locale does not affect existing Tenant Users. It will only affect new Users in that Tenancy and Events and other parts of the UI that are not User-specific.

The Database Name indicates the name of the database used by this Tenancy. The server the database is running on can be accessed via the hyperlink.
The **Modules** tab provides options for protection module visibility. By default all unlicensed modules are hidden. You can change this by deselecting **Always Hide Unlicensed Modules**. Alternatively, selected modules can be shown on a per-Tenant basis.

If you select **Inherit License from Primary Tenant**, all features that you as the Primary Tenant are licensed for will be visible to all Tenants. The selected visibility can be used to tune which modules are visible for which Tenants.

If using the "Per Tenant" licensing by default only the licensed modules for each Tenant will be visible.

If you are evaluating Deep Security in a test environment and want to see what a full Multi-Tenancy installation looks like, you can enable Multi-Tenancy Demo Mode.

When in Demo Mode, the Manager populates its database with simulated Tenants, computers, Events, Alerts, and other data. Initially, seven days worth of data is generated but new data is generated on an ongoing basis to keep the Manager’s Dashboard, Reports and Events pages populated with data.

Demo Mode is not intended to be used in a production environment!

Statistics

The statistics tab shows information for the current Tenant including database size, jobs processed, logins, security events and system events. The small graphs show the last 24 hours of activity.
Agent Activation

The Agent Activation tab displays a command-line instruction that can be run from the Agent install directory of this Tenant's computers which will activate the agent on the computer so that the Tenant can assign Policies and perform other configuration procedures from the Deep Security Manager.

Primary Contact

Relay-enabled Agents

Each Deep Security Manager must have access to at least one Relay-enabled Agent, and this includes the Tenants in a Multi-Tenancy Deep Security installation. By default, the Relay-enabled Agents in the primary Tenant's "Default Relay Group" are available to the other Tenants. The setting is found in the primary Tenant's Deep Security Manager in the Administration > System Settings > Tenants > Multi-Tenant Options area. If this option is disabled, Tenants will have to install and manage their own Relay-enabled Agent.

The Tenant Account User's View of Deep Security

The Tenant "User experience"

When Multi-tenancy is enabled, the sign-in page has an additional Account Name text field:
Tenants are required to enter their account name in addition to their username and password. The account name allows Tenants to have overlapping usernames. (For example, if multiple Tenants synchronize with the same Active Directory server).

Note: When you (as the Primary Tenant) log in, leave the Account name blank or use "Primary".

When Tenants log in, they have a very similar environment to a fresh install of Deep Security Manager. Some features in the UI are not available to Tenant Users. The following areas are hidden for Tenants:

- Manager Nodes Widget
- Multi-Tenant Widgets
- Administration > System Information
- Administration > Licenses (If Inherit option selected)
- Administration > Manager Nodes
- Administration > Tenants
- Administration > System Settings:
 - Tenant Tab
 - Security Tab > Sign In Message
 - Updates Tab > Setting for Allowing Tenants to use Relay-enabled Agents from the Primary Tenant
 - Advanced Tab > Load Balancers
 - Advanced Tab > Pluggable

- Some of the help content not applicable to Tenants
- Some reports not applicable to Tenants
- Other features based on the Multi-Tenant settings you choose on the Administration > System Settings > Tenants tab
- Some Alert Types will also be hidden from Tenants:
 - Heartbeat Server Failed
 - Low Disk Space
 - Manager Offline
 - Manager Time Out Of Sync
 - Newer Version of Deep Security Manager available
 - Number of Computers Exceeds Database Limit
 - And when inherited licensing is enabled any of the license-related alerts

It is also important to note that Tenants cannot see any of the Multi-Tenant features of the primary Tenant or any data from any other Tenant. In addition, certain APIs are restricted since they are only usable with Primary Tenant rights (such as creating other Tenants).

For more information on what is and is not available to Tenant Users, see the online help for the Administration > System Settings > Tenants page in the Deep Security Manager.

All Tenants have the ability to use Role-Based Access Control with multiple user accounts to further sub-divide access. Additionally they can use Active Directory integration for users to delegate the authentication to the domain. The Tenant Account Name is still required for any Tenant authentications.

Agent-Initiated Activation

Agent-initiated activation is enabled by default for all Tenants.

Note: Unlike Agent-initiated activation for the Primary Tenant, a password and Tenant ID are required to invoke the activation for Tenant Users.
Tenants can see the arguments required for agent-initiated activation by going to **Administration > Updates > Software > Local Software**, selecting an Agent install package, and selecting **Generate Deployment Scripts** from the toolbar:

This will display the deployment script generator. If Tenants select their platform from the **Platform** menu and the select **Activate Agent Automatically**, the generated deployment script will include the **dsa_control** with the required parameters.

As an example, the script for Agent-Initiated Activation on a Windows machine might look as follows:

```
dsas_control -a dsm://manageraddress:4120/ "tenantID:7155A-D130-29F4-5FE1-8AFD102"
	"tenantPassword:98785384-3966-B9-1418-3E7D0D5"
```

Tenant Diagnostics

Tenants are not able to access manager diagnostic packages due to the sensitivity of the data contained within the packages. Tenants can still generate agent diagnostics by opening the Computer Editor and choosing **Agent Diagnostics** on the **Actions** tab of the **Overview** page.

Usage Monitoring

Deep Security Manager records data about Tenant usage. This information is displayed in the **Tenant Protection Activity** widget on the Dashboard, the Tenant **Properties** window's **Statistics** tab, and the Chargeback report. This information can also be accessed through the Status Monitoring REST API which can enabled or disabled by going to **Administration > System Settings > Advanced > Status Monitoring API**.

This chargeback (or viewback) information can be customized to determine what attributes are included in the record. This configuration is designed to accommodate various charging models that may be required in service provider environments. For enterprises this may be useful to determine the usage by each business unit.
Multi-Tenant Dashboard/Reporting

When Multi-Tenancy is enabled, Primary Tenant Users have access to additional Dashboard widgets for monitoring Tenant activity:

Some examples of Tenant-related widgets:

The same information is available on the Administration > Tenants page (some in optional columns) and on the Statistics tab of a Tenant’s Properties window.

This information provides the ability to monitor the usage of the overall system and look for indicators of abnormal activity. For instance if a single Tenant experiences a spike in Security Event Activity they may be under attack.

More information is available in the Tenant Report (in the Events & Reports section). This report details protection hours, the current database sizes, and the number of computers (activated and non-activated) for each Tenant.
Multi-Tenancy (Advanced)

APIs

Deep Security Manager includes a number of REST APIs for:

1. Enabling Multi-Tenancy
2. Managing Tenants
3. Accessing Monitoring Data
4. Accessing Chargeback (Protection Activity) Data
5. Managing Secondary Database Servers

In addition the legacy SOAP API includes a new authenticate method that accepts the Tenant Account Name as a third parameter.

For additional information on the REST APIs please see the REST API documentation.

Upgrade

Upgrade is unchanged from previous versions. The installer is executed and detects and existing installation. It will offer an upgrade option. If upgrade is selected the installer first informs other nodes to shutdown and then begins the process of upgrading.

The primary Tenant is upgraded first, followed by the Tenants in parallel (five at a time). Once the installer finishes, the same installer package should be executed on the rest of the Manager nodes.

In the event of a problem during the upgrade of a Tenant, the Tenant’s State (on the Administration > Tenants page) will appear as Database Upgrade Required (offline). The Tenants interface can be used to force the upgrade process. If forcing the upgrade does not work please contact support.

Supporting Tenants

In certain cases it may be required a Primary Tenant to gain access to a Tenant’s user interface. The Tenants list and Tenant properties pages provide an option to "Authenticate As" a given Tenant, granting them immediate read-only access.

Users are logged in as a special account on the Tenant using the prefix "support_". For example if Primary Tenant user jdoe logs on as a Tenant an account is created called "support_jdoe" with the "Full Access" role. The user is deleted when the support user times out or signs out of the account.

The Tenant can see this user account created, sign in, sign out and deleted along with any other actions in the System events.

Users in the primary Tenant also have additional diagnostic tools available to them:

1. The Administration > System Information page contains additional information about Tenant memory usage and the state of threads. This may be used directly or helpful to Trend Micro support.
2. The server0.log on the disk of the Manager nodes contains additional information on the name of the Tenant (and the user if applicable) that caused the log. This can be helpful in determining the source of issues.

In some cases Tenants will require custom adjustments not available in the GUI. This usually comes at the request of Trend Micro support. The command line utility to alter these settings accepts the argument:

-Tenantname "account name"

to direct the setting change or other command line action at a specific Tenant. If omitted the action is on the primary Tenant.
Load Balancers

By default, a multi-node Manager provides the address of all Manager nodes to all agents and virtual appliances. The agents and virtual appliances use the list of addresses to randomly select a node to contact and continue to try the rest of the list until no nodes can be reached (or are all busy). If it can't reach any nodes it waits until the next heartbeat and tries again. This works very well in environments where the number of Manager nodes is fixed and avoids having to configure a load balancer in front of the Manager nodes for availability and scalability.

In Multi-Tenant environments it may be desirable to add and remove Manager nodes on demand (perhaps using auto-scaling features of cloud environments). In this case adding and removing Managers would cause an update of every agent and virtual appliance in the environment. To avoid this update the load balancer setting can be used.

Load balancers can be configured to use different ports for the different types of traffic, or if the load balancer supports port re-direction it can be used to expose all of the required protocols over port 443 using three load balancers:

In all cases the load balancer should be configured as TCP load balancer (not SSL Terminating) with sticky-sessions. This ensures a given communication exchange will occur directly between Agent/Virtual Appliance and the Manager from start to finish. The next connection may balance to a different node.

Note: Each Tenant database has an overhead of around 100MB of disk space (due to the initial rules, policies and events that populate the system).

Note: Tenant creation takes between 30 seconds and four minutes due to the creation of the schema and the population of the initial data. This ensures each new Tenant has the most up to date configuration and removes the burden of managing database templates (Especially between multiple database servers).
Installing a Database for Deep Security (Multi-Tenancy Requirements)

Configuring Database User Accounts

SQL Server and Oracle Database use different terms for database concepts described below.

<table>
<thead>
<tr>
<th>Process where multiple Tenants execute</th>
<th>SQL Server</th>
<th>Oracle Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Tenant’s set of data</td>
<td>Database</td>
<td>Tablespace/User</td>
</tr>
</tbody>
</table>

The following section uses the SQL Server terms for both SQL Server and Oracle Database.

SQL Server

Note: When using Multi-Tenancy, keeping the main database name short will make it easier to read the database names of your Tenants. (ie. If the main database is "MAINDB", the first Tenant’s database name will be "MAINDB_1", the second Tenant’s database name will be "MAINDB_2", and so on.)

Since Multi-Tenancy requires the ability for the software to create databases, the dbcreator role is required on SQL Server. For example:

For the user role of the primary Tenant it is important to assign DB owner to the main database:
If desired, rights may be further refined to include only the ability to modify the schema and access the data.

With the **dbcreator** role the databases created by the account will automatically be owned by the same user. For example here are the properties for the user after the first Tenant has been created:
To create the first account on a secondary database server, only the **dbcreator** server role is required. No user mapping has to be defined.

Oracle Database

Multi-Tenancy in Oracle Database is similar to SQL Server but with a few important differences. Where SQL Server has a single user account per database server, Oracle Database uses one user account per Tenant. The user that Deep Security was installed with maps to the primary Tenant. That user can be granted permission to allocate additional users and table spaces.

Note: Although Oracle allows special characters in database object names if they are surrounded by quotes, Deep Security does not support special characters in database object names. This page on Oracle's web site describes the allowed characters in non-quoted names: http://docs.oracle.com/cd/B28359_01/server.111/b28286/sql_elements008.htm#SQLRF00223

Note: Deep Security derives Tenant database names from the main (Primary Tenant) Oracle database. For example, if the main database is "MAINDB", the first Tenant’s database name will be "MAINDB_1", the second Tenant’s database name will be "MAINDB_2", and so on. (Keeping the main database name short will make it easier to read the database names of your Tenants.)

If Multi-Tenancy is enabled, the following Oracle Database permissions must be assigned:

Tenants are created as users with long random passwords and given the following rights:
For secondary Oracle Database servers, the first user account (a bootstrap user account) must be created. This user will have an essentially empty tablespace. The configuration is identical to the primary user account.
Uninstalling Deep Security from your vShield Environment

To remove the Deep Security Virtual Appliance

To remove the Virtual Appliance:

1. Use the Deep Security Manager to "deactivate" the Virtual Appliance.
2. Log in to vCenter.
3. Stop the Appliance.
4. Delete from disk.

To remove the Deep Security Filter Driver from a prepared ESXi

To remove the Filter Driver:

1. From the Deep Security Manager Computers list, select the Virtual Center. Right-click the target ESXi server and select Actions > Remove Filter Driver.
2. Follow the wizard steps, accepting the defaults. Choose "Yes" to have the DSM handle the Filter Driver un-installation automatically or choose "No" to manually put the ESXi into/out of maintenance mode.

Note: If you choose Yes, the Deep Security Manager will attempt to bring the ESXi into and out of maintenance mode automatically. Any running virtual machines will need to be manually shutdown. At the end of the uninstallation process, the ESXi will be automatically rebooted and brought out of maintenance mode.