The Future of the ARM Processor in Military Operations

ARMs for the Armed

Mike Anderson
Chief Scientist
The PTR Group, Inc.
http://www.theptrgroup.com
What We Will Talk About

- The ARM architecture
- ARM performance
- ARM Extensions
- Power consumption
- ARM and the cloud
- CONOPs for the war fighter
- Summary
The ARM Architecture

The Advanced RISC Machine (ARM) architecture was first introduced in 1987 by Acorn Computers.

- 32-bit processor with both 32-bit (ARM) and 16-bit (Thumb) instructions.
 - Thumb instructions allow for very low memory footprints.

- Unlike x86, ARM, Ltd. licenses over 25 different companies.
 - Licensees include TI, FreeScale, IBM, Marvell, NXP, Samsung, Apple, Qualcomm, Nvidia, and more.
 - Each is free to develop silicon around the ARM core.
ARM in the Marketplace

ARM processors can be found in over 98% of all mobile phones and tablets

- ARM accounts for more than 90% of all embedded 32-bit RISC processors

Used in mobile phones, hand-held game consoles, music players, routers, hard drives and many other consumer electronics devices

- You’ve probably got many ARM-based devices already

Available in A (application), R (real-time), and M (microcontroller) variants
ARM Extensions

ARM cores have a number of extensions available:

- **Jazelle**
 - Allows direct execution of Java Bytecode

- **Vectorized Floating Point (VFP)**
 - High-performance floating-point operations

- **NEON**
 - Advanced SIMD supporting both 64- and 128-bit single instruction, multiple-data operations like DSP FFTs and multi-media applications

- **TrustZone**
 - Hardware-enforced, security execution mode
Supported Operating Systems

The ARM architecture is supported by a number of operating systems including:

- Google’s Android™
- Apple’s iOS™
- Linux
- FreeBSD, NetBSD, OpenBSD
- Windows Phone 7
- Windows 8
- Real-time O/S support from VxWorks™, Integrity™, ThreadX™, QNX™, Nucleus™ and more

Instruction Set Simulator (QEMU) available for Windows, Linux and OS/X
ARM Performance

Benchmarks show that ARM (Cortex A8) beats Intel Atom (N330) in a number of integer benchmarks
 - Intel still beats ARM in raw floating point performance

ARM Cortex A9 is 1/3 the size of Atom
 - More room on PCB for other components

Atom uses 6x the power of Cortex A9
 - Atom is getting better, but so is ARM
 - However, typical ARM platforms can run several days without charging

NEON unit allows for full 720p video in less than 253 mw of power on Cortex A8
Accelerator Support

Intel has had multi-processor and multi-thread support for some time

ARM supports both dual and quad-core processors now
 - Support is relatively new, however

Newer ARM cores from Nvidia are coming bundled with GPU and GPGPU support
 - Handheld super-computers are possible

Many ARM licensees are including hardware accelerators for radios, DSP, cameras and more into their SoCs
Typical ARM SoC

OMAP4470

- ARM Cortex®-A9 MPCore™
- ARM Cortex®-A9 MPCore™
- IVA3 Hardware accelerator
- 2D HW
- POWERVR™ SGX544 graphics accelerator
- Image Signal Processor (ISP)
- Shared memory controller/DMA
- Timers, Interrupt controller, mailbox
- Boot/secure ROM
- M-Shield™ Security Technology: SHA-1/MD5, DES/3DES, RNG, AES, PKA, secure WDT, keys

WiLink™ wireless connectivity
- GPS
- FM radio
- Wi-Fi®
- Bluetooth®
- 3G/4G Modem

Fast IRDA

Trace, Emulator pod, NOR flash, NAND flash, LPDDR2, LPDDR2

Keypad, USB

GPIO, MIPI™ CSI-2

Camera, MIPI™ CSI-2

Sub camera

TWL6032
- Power
- Monitor
- Charger

TWL6041
- Audio
- Headset
- Speakers
- Vibrators
- Amplifiers
- Micro

32 kHz Crystal

In/Out

HF Speakers

Handsset microphone

REF/CLK, CDC3S04 clock driver, MMC/SD card, eMMC

HDMI™, Display controller parallel-serial

TPD1S015, Touch screen controller

WUXGA, HD television

SPI
Trends that Favor ARM

- We’ve heard a lot of discussion about the “cloud”
 - High-speed back end with lower-power front end
- Small, hand-held computers are now commonplace
 - You’re probably carrying one of them now
- User base is already familiar with their use
 - Apple has seen to that
 - Training is minimal
- The move to an “AppStore” model
 - Smaller applications that are easily downloaded
 - No need for massive CPU horsepower
- We are entering into the “post-PC era”
 - Touch screens replace mice and keyboards
 - Desktop and laptop sales are declining in favor of tablets and smartphones
CONOPs for War Fighter

- Specialized “battle phone” running Android or similar platform
 - Capable of operating MLS with compartments
 - Recharge phone with solar panel in rucksack
- Syncs OTA with firebase main system
 - RoEs, mission objectives, waypoints, etc.
 - Built-in GPS and map support
- Mesh network established with squad
 - Allows for secure SMS with LPI/LPD
- Use orbital Predator for communications relay
 - Literally phone-in support missions
- War fighter can update Facebook from foxhole ;–)
Intel not Going Away, but…

- In spite of advances in the ARM architecture, Intel still has the highest overall processor performance
 - Ideally suited for back-end, cloud processing
- Intel has a large number of available developers
 - PC developers abound
- However, ARM Cortex A15 is approaching Intel’s performance numbers in floating point
 - Use of processing accelerators may surpass existing Intel performance in next year
Summary

- The ARM architecture is with us now
 - Many of us just didn’t know it
- The transition to cloud computing favors smaller hand-held devices
 - ARM is already there in the handset with great battery life
- Major players like Google, Apple and Microsoft already support ARM
 - Linux has been there for over a decade
- Software is available and developers are coming up to speed