IBC 2006 & ASCE 7-05
Structural Provisions

Martin Johnson, SE
&
Todd Erickson, SE
June 14, 2007
Schedule of Adoption

- 2006 IBC, ASCE 7-05 and material standard documents are available now.

- 2007 CBC will be published by ICC on or before July 1, 2007.

- From July 1 to Jan. 1 interval is “optional” to designers & building officials
What Books do I need..?

<table>
<thead>
<tr>
<th>Book</th>
<th>Typ. Member Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 IBC</td>
<td>$73</td>
</tr>
<tr>
<td>SEI/ASCE 7-05</td>
<td>$94</td>
</tr>
<tr>
<td>Material Standards:</td>
<td></td>
</tr>
<tr>
<td>AISC Manual</td>
<td>$175</td>
</tr>
<tr>
<td>AISC Seismic</td>
<td>$20</td>
</tr>
<tr>
<td>ACI 318-05</td>
<td>$98</td>
</tr>
<tr>
<td>MSJC Std. (ACI 530/ASCE5/TMS 402)</td>
<td>$72</td>
</tr>
<tr>
<td>AF&PA - NDS & SDPWS</td>
<td>$40</td>
</tr>
<tr>
<td>Approx. total</td>
<td>$572</td>
</tr>
<tr>
<td>Plus: SEAOC Design Manuals!</td>
<td>$130 for 3 vol. set</td>
</tr>
<tr>
<td>NEHRP 450-1&2</td>
<td>Free!</td>
</tr>
</tbody>
</table>
Changes to Load Combinations Strength (LRFD) Design

1997 UBC

1.4 D
1.2D + 1.6L + 0.5(L_r)
1.2D + 1.6(L_r) + (f_1L or 0.8W)
1.2D + 1.3W + f_1L + 0.5(L_r)
1.2D ± E + f_1L
0.9D ± (ρE_h or 1.3W)

2006 IBC

1.4 D
1.2D + 1.6 L + 0.5(L_r or R)
1.2D + 1.6(L_r or R) + (f_1L or 0.8W)
1.2D + 1.6W + f_1L + 0.5(L_r or R)
1.2D + E + f_1L
0.9D + 1.6W
0.9D + E

where E = ρE_h ± E_V
E_V = no longer includes Importance Factor

S, H, F, T combinations not shown
Changes to Load Combinations
Basic (ASD) Design

1997 UBC

<table>
<thead>
<tr>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td>D + L + L<sub>R</sub></td>
</tr>
<tr>
<td>D + (W or E/1.4)</td>
</tr>
<tr>
<td>D + 0.75[L + L<sub>R</sub> + (W or E/1.4)]</td>
</tr>
<tr>
<td>0.9D ± E/1.4</td>
</tr>
<tr>
<td>E<sub>V</sub> = 0</td>
</tr>
</tbody>
</table>

2006 IBC

<table>
<thead>
<tr>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td>D + L</td>
</tr>
<tr>
<td>D + (L<sub>R</sub> or R)</td>
</tr>
<tr>
<td>D + 0.75(L) + 0.75(L<sub>R</sub> or R)</td>
</tr>
<tr>
<td>D + (W or 0.7E)</td>
</tr>
<tr>
<td>D + 0.75[L + (L<sub>R</sub> or R) + (W or 0.7E)]</td>
</tr>
<tr>
<td>0.6D + W</td>
</tr>
<tr>
<td>0.6D + 0.7E</td>
</tr>
</tbody>
</table>

For this set of load combinations,
\[E = \rho E_h \pm E_V \text{ where } E_V = 0.14S_{DS}D \]

S,H,F,T combinations not shown
Changes to Load Combinations
Alternate (ASD) Design (IBC1605.3.2)

1997 UBC
- D + L + (L_R)
- D + L + W
- D + L + E/1.4
- 0.9D ± E/1.4
 - \(E_V = 0 \)
- 1/3 stress increase is permitted w/ W or E

2006 IBC
- D + L + (L_R or R)
- D + L + 1.3W
- Use 2/3D to counteract Wind uplift
- D + L + E/1.4
- 0.9D ± E/1.4
 - \(E_V = 0 \)
- 1/3 stress increase is permitted w/ W or E

The 25% reduction in E overturning from ASCE 7 Sect. 12.3.4 is **not** permitted with Alt. ASD comb.

S (snow) combinations not shown
Wind Design (ASCE 7-05)

- Simplified UBC wind method no longer exists; Efforts ongoing to re-introduce a simplified method
- Even “simplest” ASCE 7 method is lengthy and complex, but may not often govern within LA area.
- W load cases include
 - direct lateral force in each direction
 - 0.75 force + wind “torsion” component
 - (at least 4 W conditions to consider)
IBC seismic provisions
IBC Section 1613

- Scope *(next slide)*
- Definitions needed to determine Site Class (soil type).
- Definitions needed to determine Seismic Design Category (SDC).
- A few alternatives to ASCE 7.
- Copies of Ground Motion maps
IBC Section 1613.1 Scope.

“Every structure, and portion thereof, including nonstructural components that are permanently attached to structures and their supports at attachments, shall be designed and constructed in accordance with ASCE 7, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure is permitted to be determined in accordance with Section 1613 or ASCE 7.”

(IBC then lists 4 exceptions for some residential, prescriptive, agricultural shed and undefined construction)

(ASCE 7 Ch 14 contains exceptions to Material standards)
(ASCE 7 App 11A contains QA/QC Provisions)
Both are replaced by similar (not identical) IBC Provisions
Seismic Design Category (SDC) replaces Seismic “Zones”

Structure Occupancy Category

Structure Importance Factor

Structure Location (Latitude/Longitude)

Contour Acceleration Maps for S_s, S_1 (or usgs web site)

Site Soil Conditions determine S_{DS}, S_{D1}

Occupancy Category & $(S_{DS} \text{ or } S_{D1})$ determines SDC
IBC Table 1604.5
Occupancy Category (Partial List)

<table>
<thead>
<tr>
<th>Occupancy Category</th>
<th>Nature of Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Minor storage, agricultural & temporary facilities</td>
</tr>
<tr>
<td>II</td>
<td>Normal Buildings</td>
</tr>
<tr>
<td>III</td>
<td>Schools</td>
</tr>
<tr>
<td></td>
<td>Public assembly >300 occupants</td>
</tr>
<tr>
<td></td>
<td>Jails & detention facilities</td>
</tr>
<tr>
<td></td>
<td>Some types of healthcare > 50 occup.</td>
</tr>
<tr>
<td></td>
<td>Power-generation, water-treatment facilities</td>
</tr>
<tr>
<td></td>
<td>Any building > 5,000 occupants</td>
</tr>
<tr>
<td></td>
<td>Hazardous occupancies</td>
</tr>
<tr>
<td>IV</td>
<td>Hospitals, Fire, rescue, & police stations</td>
</tr>
<tr>
<td></td>
<td>Emergency preparedness centers, & more</td>
</tr>
</tbody>
</table>
Seismic Importance Factors

<table>
<thead>
<tr>
<th>Occupancy Category</th>
<th>I - Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>I or II</td>
<td>1.0</td>
</tr>
<tr>
<td>III</td>
<td>1.25</td>
</tr>
<tr>
<td>IV</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Definition of $S_S, S_1, S_{MS}, S_{M1}, S_{DS}$ and S_{D1}

- Traditional 10%/50 yr (475-year event) is history in building codes.
- ASCE 7-05 uses 2/3 of the 2%/50 yr (2,500 year event)
- S_S and $S_1 = \text{map values of 2,500 year event.}$
 - Maps assume Type B (rock) soil conditions
 - Default soil is Type D
- S_{MS} and S_{M1} are 2,500 year values adjusted for design soil conditions by coefficients F_a and F_v.
- $S_{DS} = 2/3 \; S_{MS}$ and $S_{D1} = 2/3 \; S_{M1} = \text{DESIGN VALUES}$
- Equiv. recurrence interval of the S_{DS}, S_{D1} in Calif. will vary depending on fault creep rate & characteristic interval.
 - Some sites < 300 years, others perhaps 750 years.
Deterministic “Cap” on S_S, S_1

- In near-fault zones, purely probabilistic acceleration contours become close and S_S, S_1 for 2,500 year event could become **VERY** large.

- S_S, S_1 values invisibly transition from a 2,500-year “probabilistic” event to a “deterministic” event defined as “150% of the median accelerations of the characteristic event.”

- Magnitude of Characteristic event is defined as equal to the maximum magnitude capable of occurring on the fault, but not less than the largest magnitude that has historically occurred on the fault.
Every structure must be assigned to a Seismic Design Category (SDC)

Determination of SDC uses two tables Based on S_{DS} and S_{D1}

SDC Based on Short-Period Response S_{DS}

<table>
<thead>
<tr>
<th>Value of S_{DS}</th>
<th>Occupancy Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{DS} < 0.167g$</td>
<td>I or II</td>
</tr>
<tr>
<td></td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>IV</td>
</tr>
<tr>
<td>$0.167g < S_{DS} < 0.33g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.33g < S_{DS} < 0.5g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.5g \leq S_{DS}$</td>
<td>D</td>
</tr>
<tr>
<td>mapped $S_{1} \geq 0.75g$</td>
<td>E</td>
</tr>
</tbody>
</table>

Many near-fault sites have $S_{1} \geq 0.75g$
Seismic Design Category (SDC)
Basic Method Cont’d

SDC Based on 1-Second Response Period

<table>
<thead>
<tr>
<th>Value of S_{D1}</th>
<th>Occupancy Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I or II</td>
</tr>
<tr>
<td>$S_{D1} < 0.067g$</td>
<td>A</td>
</tr>
<tr>
<td>$0.067g < S_{D1} < 0.133g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.133g < S_{D1} < 0.2g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.2g \leq S_{D1}$</td>
<td>D</td>
</tr>
<tr>
<td>mapped $S_1 \geq 0.75g$</td>
<td>E</td>
</tr>
</tbody>
</table>

Many near-fault sites have $S_1 \geq 0.75g$
Example Problem;
Calculation of design accelerations S_{DS} & S_{D1}
Site Data

Site Location: 24000 Hollyoak
Aliso Viejo, California

- Use “Terraserver” or other software to find:
 - Latitude = 33.57806
 - Longitude = -117.71010

- Site Class D (Per Soils Report or by default)
Ground Motion

- Using USGS ground motion JAVA application:
 - \(S_S = 1.462 \)
 - \(S_1 = 0.516 \)

- MCE for Site Class D
 - \(S_{MS} = 1.462 \times 1.0 = 1.462 \)
 - \(S_{M1} = 0.516 \times 1.5 = 0.774 \)

- DBE for Site Class D
 - \(S_{DS} = 0.975 \)
 - \(S_{D1} = 0.516 < 0.75 \)
Seismic Design Values for Buildings

New Earthquake Ground Motion Parameter Java Application

Hazard curves, uniform hazard response spectra, and design parameters are available for sites in the 50 states of the United States, Puerto Rico and the U.S. Virgin Islands. Additionally, design parameters are available for Guam and American Samoa.

We strongly recommend the use of this new application when calculating Ground Motion Parameters. The Java Application includes new data sets, allows searching by zip code or latitude and longitude, and displays graphs of the calculated information. Any information calculated in this application can also be saved and printed for later use.

To use this application, you must have Java installed. We recommend you choose Open or Run instead of saving to your computer so you will automatically receive any updates. If you save this application, please check this page for the latest updates regularly.

Java Ground Motion Parameter Calculator - Version 5.0.6 (2.8 MB)

Any comments or questions about this application should be sent to Nicolas Lucio (Research Structural Engineer).

Any questions regarding installation or other technical issues should be sent to Eric Martinez (IT Specialist).

Ground motion parameters available in the new application:

Calculate S_s and S_1
Calculate S_M and S_D
“SDC” A–F vs. “Site Class” A–F

- Will cause confusion
- Site Class = Soil Type
 - Default site class = D
- Seismic Design Category = SDC
 - Defines material structure detailing requirements
 - Limits permissible structural irregularities
 - Replaces Zone-dependent detailing
 - Traditional “Zone 4 detailing” similar to “SDC D detailing”
IBC 1613.5.6.1 defines an alternate method to determine Seismic Design Category

- Permitted to be used where \(S_1 \) is less than 0.75
- Four conditions must **ALL** be met
 - Rigid diaphragms
 - Approx. Fundamental Period \(T_a < 0.8T_s \)
 - Fundamental Period used to calculate story drift is less than \(T_s \)
 - Seismic Response Coeff. \(C_s \) calculated using ASCE 7-05 Eqn 12.8-2.
- Permits SDC to be determined using \(S_{D1} \) ONLY.
- Not likely within So.Cal. area
1613.6.1 Assumption of Flexible Diaphragm – w/ wood structural panels or untopped steel decking permitted to be idealized as flexible

- Concrete or similar wood topping permitted only as nonstructural no greater than 1.5 inch thick
- Each line of resistance complies with allowable story drift
- Vertical LFRS elements limited to light-framed walls w/ wood panel or steel sheet shear panels
- (modifies IBC 2305.2.5) Parts of diaphragm in rotation limited to 25 ft & length/width of diaph.<1 for 1-story or 0.67 for 2+-story

1613.6.2 Use of OCBF’s and OMF’s is permitted in seismically isolated structures (w/conditions).
IBC Chapter 17, “Structural Tests and Special Inspections”

- Much more extensive than 1997 UBC
 - 1997 UBC = 3 pages
 - 2006 IBC = 16 pages!!!
- Provides useful tables separated by basic material types, defining verification and inspection requirements, with reference standards and IBC section references.
- 1705.1 Requires “statement of special inspections” in construction documents
 - SDC D+ Includes significant special inspection for non-structural components such as cladding, ceilings and storage racks
- 1708.5 Seismic Qualification of mechanical and electrical equipment. “The registered design professional in responsible charge shall state the applicable seismic qualification requirements for designated seismic systems on the construction documents.”
- 1709 will require structural observation visits (with written statement) for SDC D+ or in high-wind regions for some Occupancy Categories, when height > 75 ft, or when building official requires.
Overview of
ASCE 7-05 Seismic Provisions
ASCE 7-05 Seismic Provisions

Table of Contents

- Ch. 11 Seismic Design Criteria
- Ch. 12 Seismic Design Requirements for Building Structures
- Ch. 13 Seismic Design Requirements for Nonstructural Components
- Ch. 14 Material Specific Design & Detailing Requirements (not used w/IBC)
- Ch. 15 Seismic Design Requirements for Non-Building Structures
ASCE 7 Table of Contents, Continued
Ch. 16 and up contains rarely-used material

- Ch 16 Seismic Response History Procedures (i.e., time-history seismic analysis)
- Ch 17 Seismic Design Requirements for Seismically Isolated Structures (base isolation)
- Ch 18 Seismic Design Requirements for Structures with Damping Systems (such as viscous dampers)
- Ch 19 Soil Structure Interaction for Seismic Design (not commonly used)
- Ch 20 Site Classification Procedure for Seismic Design (definitions for soil types A-F)
ASCE 7 Table of Contents, Continued

- Ch 21 Site-Specific Ground Motion Procedures
- Ch 22 Seismic Ground Motion and Long Period Transition Maps
 (use http://earthquake.usgs.gov/research/hazmaps/design/ instead.)
- Ch 23 Reference Documents
 (not used w/IBC)
- App. 11B Existing Building Provisions
 (replaced by IBC Ch. 34)
Ch. 11 contains

- List of Definitions
- Defines S_S, S_1 etc. ground motion factors
- Defines site coefficients, F_a, F_v
- Defines Importance Factors, SDC’s
- Presents a simplified procedure for SDC A
- Contains requirements for geotechnical investigation reports (depending on SDC)
Chapter Detail: Chapter 12
“Seismic Design Requirements for Building Structures”

- Most ordinary buildings will only use this chapter & Ch. 13 (nonstructural components) & material stds.
- R-Factor and Ht. Limit tables (3 pages!)
- Definitions of Irregularity types
- Rules for Horizontal & Vertical combinations of structural systems
- Definitions of Rigid & Flexible Diaphragms
 - Introduces semi-rigid diaphragms
- Special Load Combinations incl. new redundancy-factor
- ELF & Response Spectrum Procedures
- More....
R-Factors

- Table is 3 pages long (vs. 1 in UBC)
- New Structural Systems
 - Unbonded bracing systems
 - Steel Plate Shear Walls
 - Precast Concrete Systems
 - Prestressed Masonry Shear Walls (not in SDC C-F)
New Precast Concrete Systems

- **Special Precast Shear Wall**
 - Based on UCSD Research

- **Intermediate Precast Shear Wall**
 - Traditional Tilt-Up Construction
 - SDC D-F Limited to 40 ft. height, except one-story warehouses to 45 ft.

- **Ordinary Precast Shear Wall**
 - Other types of precast
Changes to R-Factors

<table>
<thead>
<tr>
<th>Bearing Wall Systems</th>
<th>97 UBC R</th>
<th>ASCE 7-05 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-framed walls w/ wood structural panels or steel sheets</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Light Framed walls, using flat strap bracing</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>other shear panel types</td>
<td>4.5</td>
<td>2</td>
</tr>
<tr>
<td>CIP Concrete Shear Walls</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>Tilt-Up Concrete Shear Walls (Intermediate Precast)</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>Masonry Shear Walls</td>
<td>4.5</td>
<td>5</td>
</tr>
</tbody>
</table>
Changes to R-Factors, Cont’d.

<table>
<thead>
<tr>
<th>Building Frame Systems</th>
<th>97 UBC R</th>
<th>ASCE 7-05 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel EBF</td>
<td>7</td>
<td>7, w/o MF 8, w/ MF</td>
</tr>
<tr>
<td>Steel Ordinary Braced Frames</td>
<td>5.6 (160’ ht. limit)</td>
<td>5 (35’ ht. limit)</td>
</tr>
<tr>
<td>Steel Special Concentric Braced Frames</td>
<td>6.4</td>
<td>6</td>
</tr>
<tr>
<td>CIP Concrete Shear Walls</td>
<td>5.5</td>
<td>6</td>
</tr>
<tr>
<td>Masonry Shear Walls</td>
<td>5.5</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Changes to R-Factors, Cont’d.

<table>
<thead>
<tr>
<th>Moment Frame Systems</th>
<th>97 UBC R</th>
<th>ASCE 7-05 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Steel MRF</td>
<td>8.5</td>
<td>8</td>
</tr>
<tr>
<td>UBC: Ordinary Steel MRF Now: Intermediate Steel MRF</td>
<td>4.5</td>
<td>4.5 (plus height & weight limits)</td>
</tr>
<tr>
<td>Special Concrete MRF</td>
<td>8.5</td>
<td>8</td>
</tr>
<tr>
<td>Cantilevered Column Elements</td>
<td>2.2</td>
<td>Varies 1 to 2.5</td>
</tr>
</tbody>
</table>
Diaphragm Flexibility

12.3.1 “Unless a diaphragm can be idealized as either flexible or rigid …, the structural analysis shall explicitly include consideration of the stiffness of the diaphragm.

- 12.3.1.1 **Flexible Diaphragm Condition.** Diaphragms constructed of untopped steel decking or wood structural panels shall be permitted to be idealized as flexible in structures in which the vertical elements are steel braced frames, or concrete, masonry or steel shear walls.

Diaphragms of wood structural panels or untopped steel decks in one and two-family residential buildings of light-frame construction shall also be permitted to be idealized as flexible.”

- 12.3.1.2 **Rigid Diaphragm Condition.** Etc.…
Irregularity Tables

- Three new irregularity types
 - Extreme Torsional Irregularity
 - Extreme Soft Story Irregularity
 - Extreme Weak Story Irregularity

- Some changes in how irregularities are defined
 - Intended to simplify calculation checks
Example Problem

Vertical distribution of seismic lateral design forces
Seismic Design Criteria

- DBE for Site Class D
 - $S_{DS} = 0.975$
 - $S_{D1} = 0.516$

- Four Story Residential Building

- Occupancy Category II (Table 1-1)

- Importance Factor $I = 1.0$ (Table 11.5-1)

- Seismic Design Group: D (Table 11.6-1&2)
Building Information

Seismic Participating Weight

<table>
<thead>
<tr>
<th>Level</th>
<th>Seismic weight (kips)</th>
<th>Height (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>(W_r)</td>
<td>131</td>
</tr>
<tr>
<td>3rd</td>
<td>(W_3)</td>
<td>326</td>
</tr>
<tr>
<td>2nd</td>
<td>(W_2)</td>
<td>326</td>
</tr>
<tr>
<td>1st</td>
<td>(W_1)</td>
<td>326</td>
</tr>
<tr>
<td>Total</td>
<td>(W_{tot})</td>
<td>1110</td>
</tr>
</tbody>
</table>
Design Coefficients

- Light Framed Walls Sheathed with Wood Panels
 - $R = 6.5$ (Table 12.2-1- bearing wall system)
 - $\Omega_0 = 3$
 - $C_d = 4$

- Approximate Period
 - $T = C_t h^n_x$
 - $C_t = 0.02$ (Table 12.8-2)
 - $x = 0.75$
 - $h_n = 54$ ft
 - $T = 0.40$ s (Eqn.12.8-7)
Equivalent Lateral Force Procedure

Base Shear

\[V = C_S W = 0.15 \times W \]
(12.8-1)

Where:

\[C_S = \frac{S_{DS}}{R/I} = 0.15 \]
(12.8-2)

Not more than:

\[C_S = \frac{S_{D1}}{T(R/I)} = 0.2 \]
(12.8-3) for \(T < T_L = 8 \) (s)

Not less than:

\[C_S = \frac{0.5S_1}{R/I} = 0.04 \]
(12.8-6)
Load Distribution

- $V = 0.15xW = 166$ kips \hspace{1cm} (12.8-1)
- $T \leq 0.5 \text{ s} : \quad k = 1.0 \quad \text{ (12.8.3)}$

\[
F_x = C_{vx} V
\]

\[
C_{vx} = \frac{w_x h_x^k}{\sum w_i h_i^k}
\]

<table>
<thead>
<tr>
<th>Level</th>
<th>W_i</th>
<th>h_i</th>
<th>$W_i h_i^k$</th>
<th>C_{vx}</th>
<th>F_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>131</td>
<td>54</td>
<td>7,076</td>
<td>0.21</td>
<td>35</td>
</tr>
<tr>
<td>3rd</td>
<td>326</td>
<td>41</td>
<td>13,373</td>
<td>0.39</td>
<td>65</td>
</tr>
<tr>
<td>2nd</td>
<td>326</td>
<td>28</td>
<td>9,132</td>
<td>0.26</td>
<td>43</td>
</tr>
<tr>
<td>1st</td>
<td>326</td>
<td>15</td>
<td>4,892</td>
<td>0.14</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>1,110</td>
<td></td>
<td>34,474</td>
<td>1.00</td>
<td>166</td>
</tr>
</tbody>
</table>
Chapter Detail: Ch. 12 Continued

- 12.10 & 11 - Diaphragms, chords, collectors, wall anchorage.
- 12.12 - Drift & Bldg separations
- 12.13 - Foundation design
- 12.14 - Simplified Alternative Criteria
 - Self Contained
 - Must meet 12 conditions
 - Intimidating for rigid diaphragm structures
 - Not so bad for flexible diaphragm or “flexible diaphragm permitted” structures
12.14 Simplified Alternative Design

- 6½ -pages long (incl. tables & figures)
- Stands alone, other than Material Std. Requirements
 - Separate Load Combinations, R-Factor Table, etc.
 - Limited to 3 stories & less.
 - Wood diaphragms permitted to be considered flexible
- No redundancy factor
 (but must meet 12 conditions in 12.14.1.1)
- Force penalty for method
 - 1.0 for single-story
 - 1.1 for two story
 - 1.2 for three story
- Separate R-Factor Table
 - Only bearing wall & building frame systems permitted
 (no moment frames)
Example Problem

Flexible Diaphragm Structure checks to use simplified alternative criteria
Condition checks for flexible diaphragm structures

1. Occupancy Category I or II only
2. Site Class not E or F (i.e., no soft-soil sites)
3. Structure not exceeding 3 stories
4. Only bearing wall or building frame systems (no Moment frames)
5. At least 2 lines of resistance in each direction
6. At least 1 line of resistance on each side of center of mass in each direction
7. Maximum diaphragm overhang = 20% depth
8. (n/a – rigid diaphragm only)
9. Lines of resistance skewed no more than 15°
10. Simplified Method must be used for Both directions
11. In-Plane & Out-of-Plane irregularity types not permitted (Exception for light-frame structures)
12. Each story strength = at least 80% of story above
12.3.4 Redundancy Factor, ρ

- Still arbitrary
- Limited to SDC D-F.
- Separate ρ-factor is determined for each direction.
- ρ equal to either 1.0 or 1.3 – nothing in between.
- $\rho = 1$ if loss or removal of any one element would not result in more than a 33 percent reduction in story strength, for any story resisting more than 35 percent of the base shear (see also Table 12.3-3).
- Some specific calculations where ρ of 1 is permitted to be used (see section 12.3.4.1).
- Otherwise, $\rho = 1.3$
12.12 Drift and Deformation

- Drift limits in ASCE 7-05 reduced for Occupancy Category III and IV structures
- Permissible drift a function of building type & stories, not period
- Permissible drift varies from 0.025 to 0.010
- Note: ρ applied to drift limit of MRF in Design Category D-F! (12.12.1.1)
- Design story drift (Sec 12.8.6) $\delta_x = \frac{C_d \delta_{xe}}{I}$

- Minimum building separation
 - ASCE 12.12.3 “…distance sufficient to avoid damaging contact..”
 - Versus UBC $\Delta_{MT} = \sqrt{(\Delta_{M1})^2 + (\Delta_{M2})^2}$
Table 12.12-1 Allowable Story Drift

<table>
<thead>
<tr>
<th>Structure</th>
<th>Occupancy Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I or II</td>
</tr>
<tr>
<td>Structures, other than masonry shear wall structures, 4 stories or less</td>
<td>0.025h_{sx}</td>
</tr>
<tr>
<td>Masonry cantilever shear wall structures</td>
<td>0.010h_{sx}</td>
</tr>
<tr>
<td>Other masonry shear wall structures</td>
<td>0.007h_{sx}</td>
</tr>
<tr>
<td>All other structures</td>
<td>0.020h_{sx}</td>
</tr>
</tbody>
</table>

Note: 0.015 x 1.5 = 0.0225
0.010 x 1.5 = 0.015
Chapter Detail: Chapter 13

“Seismic Design Requirements for Nonstructural Components”

<table>
<thead>
<tr>
<th>1997 UBC</th>
<th>2006 IBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>[F_p = 4.0 C_a I_p W_p]</td>
<td>[F_p = 1.6 S_{DS} I_p W_p]</td>
</tr>
<tr>
<td>[F_p = \frac{a_p C_a I_p}{R_p} \left(1 + 3 \frac{h_x}{h_r}\right) W_p]</td>
<td>[F_p = \frac{0.4 a_p S_{DS} W_p}{\frac{R_p}{I_p}} \left(1 + 2 \frac{z}{h}\right)]</td>
</tr>
<tr>
<td>[0.7 C_a I_p W_p \geq F_p \leq 4 C_a I_p W_p]</td>
<td>[0.3 S_{DS} I_p W_p \geq F_p \leq 1.6 S_{DS} I_p W_p]</td>
</tr>
</tbody>
</table>

Note that \(\frac{0.7}{0.3} \approx \frac{4.0}{1.6} = 2.5 \)
Comparing R_p values for selected nonstructural elements

<table>
<thead>
<tr>
<th></th>
<th>1997 UBC</th>
<th>2006 IBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Partitions</td>
<td>(not defined)</td>
<td>1.5</td>
</tr>
<tr>
<td>URM</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall Element</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Cantilever Parapet</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Penthouses</td>
<td>4.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Summary: Although the F_p “z/h” coefficient was reduced from 3 to 2, R_p was also reduced, so that the net change is less.
Chapter Detail:
Chapter 15 Nonbuilding Structures

- Far more extensive scope than ever before
 - Tanks, Vessels, Racks, Boilers, Spheres

- New type of R-Factor Table
 - Less Ductile Systems are permitted in high-seismicity areas, when lower R is used
Example from Ch. 15
Non-Building Structure R-Factor Table

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>R</th>
<th>Ω_o</th>
<th>C_d</th>
<th>SDC C</th>
<th>SDC D</th>
<th>SDC E</th>
<th>SDC F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary Steel Concentrically Braced Frame</td>
<td>$3^{1/4}$</td>
<td>2</td>
<td>$3^{1/4}$</td>
<td>NL</td>
<td>35'</td>
<td>35'</td>
<td>NP</td>
</tr>
<tr>
<td>With permitted height increase</td>
<td>$2^{1/2}$</td>
<td>2</td>
<td>$2^{1/2}$</td>
<td>NL</td>
<td>160'</td>
<td>160'</td>
<td>100'</td>
</tr>
<tr>
<td>With unlimited height</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
<td>NL</td>
</tr>
</tbody>
</table>

Compared to Ch. 12 Values for Buildings:

| OCBF | $3^{1/4}$ | 2 | $3^{1/4}$ | NL | 35' | 35' | NP |

Note: The table above provides an example of Non-Building Structure R-Factor Table from Chapter 15. It compares values for Ordinary Steel Concentrically Braced Frame with unlimited height, permitted height increase, and unlimited height to those in Chapter 12 for buildings.
Other

- T_L Maps
 - Very long period – 8 or 12 sec.
 - Tank sloshing
Warning: ASCE Supplement 2

- ASCE main committee is currently balloting a Supplement 2 change to seismic provisions.
- Would re-institute 2nd minimum base shear equation.
 - $V = 0.44 S_{DS} IW$
- ATC 63 preliminary finding that very tall buildings may need more min. lateral strength
- Bonus: would also result in compliance with Calif. 1933 Field Act (3% min. x 1.4)
Warning: Structure separations

- Traditional minimum separation requirement is vague in IBC & ASCE 7.
 - Vague limitation vs. UBC “SRSS” equation

- Existing UBC “SRSS” equation being submitted as correction for next cycle of ASCE 7-10.
ASCE 7-05 Errata

- Updated periodically and posted on www.SEInstitute.org
- Look in the “Publications” tab at the top of the page, under “Errata”
- Most recent posting May 3, 2007
 - 24 pages total!!
End of Presentation

Thank You for Staying Awake