SECTION – II

Q. 4. (A) Select and write the correct answer from the given alternatives in each of the following: (6)[12]

i. If \(y = 1 - \cos \theta, x = 1 - \sin \theta \), then \(\frac{dy}{dx} \) at \(\theta = \frac{\pi}{4} \) is
 (A) \(-1\)
 (B) 1
 (C) \(\frac{1}{2}\)
 (D) \(\frac{1}{\sqrt{2}}\)

ii. The integrating factor of linear differential equation
 \(\frac{dy}{dx} + y \sec x = \tan x \) is
 (A) \(\sec x - \tan x\)
 (B) \(\sec x \cdot \tan x\)
 (C) \(\sec x + \tan x\)
 (D) \(\sec x \cdot \cot x\)

iii. The equation of tangent to the curve \(y = 3x^2 - x + 1 \) at the point \((1, 3)\) is
 (A) \(y = 5x + 2\)
 (B) \(y = 5x - 2\)
 (C) \(y = \frac{1}{5}x + 2\)
 (D) \(y = \frac{1}{5}x - 2\)

(B) Attempt any THREE of the following: (6)

i. Examine the continuity of the function
 \(f(x) = \sin x - \cos x \), for \(x \neq 0 \)
 \(= -1 \), for \(x = 0 \)
 at the point \(x = 0 \).

ii. Verify Rolle’s theorem for the function
 \(f(x) = x^2 - 5x + 9 \) on \([1, 4]\)

iii. Evaluate: \(\int \sec^4 x \cdot \tan x \, dx \)

iv. The probability mass function (p.m.f.) of \(X \) is given below:

<table>
<thead>
<tr>
<th>(X = x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(X = x))</td>
<td>(\frac{1}{5})</td>
<td>(\frac{2}{5})</td>
<td>(\frac{2}{5})</td>
</tr>
</tbody>
</table>

Find \(E(X^2) \)

v. Given that \(X \sim B (n = 10, p) \). If \(E(X) = 8 \), find the value of \(p \).
Q.5. (A) Attempt any TWO of the following: (6)[14]

i. If \(y = f(u) \) is a differentiable function of \(u \) and \(u = g(x) \) is a differentiable function of \(x \), then prove that \(y = f[g(x)] \) is a differentiable function of \(x \) and
\[
\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.
\]

ii. Obtain the differential equation by eliminating the arbitrary constants \(A, B \) from the equation:
\(y = A \cos (\log x) + B \sin (\log x) \)

iii. Evaluate:
\[
\int \frac{x^2}{(x^2 + 2)(2x^2 + 1)} \, dx
\]

(B) Attempt any TWO of the following: (8)

i. An open box is to be made out of a piece of a square cardboard of sides 18 cms by cutting off equal squares from the corners and turning up the sides. Find the maximum volume of the box.

ii. Prove that:
\[
\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^{a} f(2a - x) \, dx
\]

iii. If the function \(f(x) \) is continuous in the interval \([-2, 2]\), find the values of \(a \) and \(b \), where
\begin{align*}
 f(x) &= \frac{\sin ax}{x} - 2, & \text{for } -2 < x < 0 \\
 &= 2x + 1, & \text{for } 0 \leq x \leq 1 \\
 &= 2b \sqrt{x^2 + 3} - 1, & \text{for } 1 < x < 2
\end{align*}

Q.6. (A) Attempt any TWO of the following: (6)[14]

i. Solve the differential equation:
\[
\frac{dy}{dx} = \frac{y + \sqrt{x^2 + y^2}}{x}
\]

ii. A fair coin is tossed 8 times. Find the probability that it shows heads at least once.

iii. If \(x^p y^q = (x + y)^{p+q} \), then prove that
\[
\frac{dy}{dx} = \frac{y}{x}.
\]

(B) Attempt any TWO of the following: (8)

i. Find the area of the sector of a circle bounded by the circle \(x^2 + y^2 = 16 \) and the line \(y = x \) in the first quadrant.

ii. Prove that:
\[
\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C
\]

iii. A random variable \(X \) has the following probability distribution:

<table>
<thead>
<tr>
<th>(X = x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P[X = x])</td>
<td>(k)</td>
<td>(3k)</td>
<td>(5k)</td>
<td>(7k)</td>
<td>(9k)</td>
<td>(11k)</td>
<td>(13k)</td>
</tr>
</tbody>
</table>

(a) Find \(k \)
(b) Find \(P(0 < X < 4) \)
(c) Obtain cumulative distribution function (c.d.f.) of \(X \).