Molecules and Molecular Compounds

In nature, matter takes many forms. The noble gas elements, such as helium and neon shown in Figure 8.1, exist as atoms. They are monatomic; that is, they consist of single atoms. You learned in the previous chapter that atoms of some elements combine to form ionic compounds. These compounds are crystalline solids with high melting points.

Other compounds, however, can have very different properties. Hydrogen chloride (HCl), for example, is a gas at room temperature. Water (H₂O) is a liquid at room temperature. These two compounds are so different from ionic compounds that you might correctly suspect that attractions between ions fail to explain their bonding. Such compounds are not ionic. Their combining atoms do not give up electrons or accept electrons.

Instead, a "tug of war" for the electrons takes place between the atoms, bonding the atoms together. The atoms held together by sharing electrons are joined by a covalent bond.

Figure 8.1 The noble gases, including helium and neon, are monatomic. That means they exist as single atoms. Helium, being less dense than air, is often used to inflate balloons. The colors produced in what we commonly call neon lights are a result of passing an electric current through one or more noble gases.
Chapter 8

Section 8.1 (continued)

Use Visuals

Figure 8.3

Ask students, How do the submicroscopic illustrations of NaCl and H₂O differ? (The ions of sodium and chlorine are separate and arrayed in a regular pattern; two hydrogen atoms and one oxygen atom are bonded together in one molecule.)

Compare the formulas for NaCl and H₂O. (They look similar, but NaCl represents just one unit in the array of sodium and chloride ions, whereas H₂O represents one separate molecule of water.)

Discuss Use the hydrogen molecule to introduce the shared nature of covalent bonding. Remind students that atoms bond to reach a more stable state, one in which the orbitals related to the highest energy levels of atoms are filled, as in the highly unreactive noble gases. A transfer of electrons between hydrogen atoms would not work; what factor could determine which hydrogen atom donated and which received an electron? However, if the hydrogen atoms share their electrons, they can each achieve the stable arrangement of a helium atom. Show the various ways that the bonding in a hydrogen molecule can be represented: molecular formula, structural formula, electron-dot structure, and orbital diagram showing the overlap of the 1s orbitals.

Then introduce the octet rule and repeat the exercise for a chlorine molecule.

Download a worksheet on Covalent Bonds for students to complete, and find additional teacher support from NSTA SciLinks.

Some elements found in nature are in the form of molecules. A molecule is a neutral group of atoms joined together by covalent bonds. For example, air contains oxygen molecules. Each oxygen molecule consists of two oxygen atoms joined by covalent bonds. A diatomic molecule is a molecule consisting of two atoms. An oxygen molecule is a diatomic molecule.

Atoms of different elements can combine chemically to form compounds. In many compounds, atoms are bonded to each other to form molecules. Examples include water and carbon monoxide, which are described in Figure 8.2. A compound composed of molecules is called a molecular compound. The molecules of a given molecular compound are all the same. Remember, there is no such thing as a molecule of sodium chloride or magnesium chloride. Instead, these ionic compounds exist as collections of positively and negatively charged ions arranged in repeating three-dimensional patterns. Recall from Chapter 7 that the composition of ionic compounds is expressed as formula units.

Molecular compounds tend to have relatively lower melting and boiling points than ionic compounds. Many molecular compounds are gases or liquids at room temperature. In contrast to ionic compounds, which are formed from a metal combined with a nonmetal, most molecular compounds are composed of atoms of two or more nonmetals. For example, one atom of carbon can combine with one atom of oxygen to produce one molecule of a compound known as carbon monoxide. Carbon monoxide is a poisonous gas produced by burning gasoline in internal combustion engines. Figure 8.3 illustrates some differences between ionic and molecular compounds, using sodium chloride and water as examples.
Molecular Formulas

A **molecular formula** is the chemical formula of a molecular compound. A molecular formula shows how many atoms of each element a molecule contains. For example, water is a compound consisting of two hydrogen atoms and one oxygen atom. The molecular formula of water is H₂O. Notice that a subscript written after the symbol indicates the number of atoms of each element in the molecule. If there is only one atom, the subscript 1 is omitted. The molecular formula of carbon dioxide is CO₂. This formula represents a molecule containing one carbon atom and two oxygen atoms. As shown in Figure 8.4, ethane, a component of natural gas, is also a molecular compound. The molecular formula for ethane is C₂H₆. According to this formula, one molecule of ethane contains two carbon atoms and six hydrogen atoms. A molecular formula reflects the actual number of atoms in each molecule. The subscripts are not necessarily lowest whole-number ratios.

Molecular formulas also describe molecules consisting of one element. Because the oxygen molecule consists of two oxygen atoms bonded together, its molecular formula is O₂. A molecular formula does not tell you about a molecule’s structure. In other words, it does not show either the arrangement of the various atoms in space or which atoms are covalently bonded to one another. A variety of diagrams and molecular models, some of them illustrated in Figure 8.5, can be used to show the arrangement of atoms in a molecule. Diagrams and models like these will be used throughout the textbook.

Checkpoint **What is the molecular formula for ethane?**

Ammonia

NH₃(g)

Molecular formula

H — N — H

Structural formula

NH₃

Perspective drawing

Space-filling molecular model

Ball-and-stick molecular model

Ethane

C₂H₆

Figure 8.4 Ethane is a component of natural gas. **Infer** what information about the ethane molecule given by its molecular formula C₂H₆ is also given by the drawing shown here?

Figure 8.5 Ammonia (NH₃) is used in solution as a cleaning agent. You can represent the ammonia molecule by its molecular formula, its structural formula, a space-filling molecular model, a perspective drawing, or by a ball-and-stick molecular model.
Section 8.1 (continued)

Figure 8.6 The formula of a molecular compound indicates the numbers and kinds of atoms. The arrangement of the atoms within a molecule is called its molecular structure. Using Models Which of these molecules has the greatest number of oxygen atoms?

<table>
<thead>
<tr>
<th>Model</th>
<th>Molecular Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (H₂O)</td>
<td>1 molecule of H₂O contains 2 hydrogen atoms 1 oxygen atom</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>1 molecule of CO₂ contains 2 oxygen atoms 1 carbon atom</td>
</tr>
<tr>
<td>Ethanol (C₂H₅O)</td>
<td>1 molecule of C₂H₅O contains 6 hydrogen atoms 2 carbon atoms 1 oxygen atom</td>
</tr>
</tbody>
</table>

Figure 8.6 shows the chemical formulas and structures of some other molecular compounds. Carbon dioxide, for example, is a gas produced by the complete burning of carbon. It is found in Earth’s atmosphere and dissolved in seawater. It is also used to carbonate many beverages. The molecular structure of carbon dioxide in Figure 8.6 shows how the carbon atom in each molecule has two oxygen atoms on opposite sides of it. It shows how the three atoms are arranged in a row. The molecular structure of water shows how the hydrogen atoms, in contrast, are mainly on one side of the water molecule. The molecular structure of ethanol is more complicated, but the molecular structure illustrated in Figure 8.6 also shows how many of each kind of atom are in each molecule, and how the atoms are arranged with respect to one another.

8.1 Section Assessment

1. **Key Concept** How are the melting points and boiling points of molecular compounds usually different from those of ionic compounds?
2. **Key Concept** What information does a molecular formula provide?
3. What are the only elements that exist in nature as uncombined atoms? What term is used to describe such elements?
4. Describe how the molecule whose formula is NO is different from the molecule whose formula is N₂O.
5. Give an example of a diatomic molecule found in Earth’s atmosphere.
6. What information does a molecule’s molecular structure give?

<table>
<thead>
<tr>
<th>Writing Activity</th>
<th>Molecular Compounds and Formulas Describe what a molecular compound is. Explain how a molecular formula is the chemical formula of a molecular compound.</th>
</tr>
</thead>
</table>

Assessment 8.1 Test yourself on the important concepts of Section 8.1.