SECTION TABLE OF CONTENTS

DIVISION 26 - ELECTRICAL

SECTION 26 05 71.00 40

LOW VOLTAGE OVERCURRENT PROTECTIVE DEVICES

02/14

PART 1 GENERAL

1.1 REFERENCES
1.2 SUBMITTALS

PART 2 PRODUCTS

2.1 SYSTEM DESIGN
2.2 MOTOR CONTROL
 2.2.1 Manual Motor Controllers
 2.2.2 Magnetic Motor Controllers
 2.2.2.1 Full-Voltage Controllers
 2.2.2.2 Reduced-Voltage Starters
 2.2.3 Combination Motor Controllers
 2.2.3.1 Non-reversing Combination Motor Controllers
 2.2.3.2 Reversing Combination Motor Controllers
 2.2.3.3 Two-Speed Combination Motor Controllers
2.3 INSTRUMENT TRANSFORMERS
 2.3.1 Current Transformers
 2.3.2 Potential Transformers
2.4 ENCLOSURES
 2.4.1 Equipment Enclosures
 2.4.2 Remote-Control Station Enclosures
2.5 CIRCUIT BREAKERS
 2.5.1 Molded-Case Circuit Breakers
 2.5.2 Enclosed Molded-Case Circuit Breakers
2.6 FUSES
2.7 CONTROL DEVICES
 2.7.1 Magnetic Contactors
 2.7.2 Control-Circuit Transformers
 2.7.3 Magnetic Control Relays
 2.7.4 Pushbuttons and Switches
 2.7.4.1 Pushbuttons
 2.7.4.2 Selector Switches
 2.7.4.3 Ammeter Selector Switches
 2.7.4.4 Voltmeter Selector Switches
2.7.4.5 Miscellaneous Switches
2.8 TIME SWITCHES
2.9 PROTECTIVE RELAYS
 2.9.1 Overcurrent Relays
 2.9.2 Directional Overcurrent Relays
 2.9.3 Reclosing Relays
 2.9.4 Undervoltage Relays
2.10 INDICATING INSTRUMENTS
 2.10.1 Ammeters
 2.10.2 Voltmeters
 2.10.3 Watt-Hour Meters/Wattmeters
 2.10.4 Graphic Demand Meters
 2.10.5 Specialty-Type Meters
2.11 FACTORY TESTING
2.12 INDICATING LIGHTS
 2.12.1 General-Purpose Type
 2.12.2 Switchboard Indicating Lights
2.13 FINISH

PART 3 EXECUTION

 3.1 INSTALLATION
 3.2 FIELD TESTING

-- End of Section Table of Contents --
NOTE: This guide specification covers the requirements for circuit breakers, fuses, motor controls, and control devices. This section supports Section 26 05 00.00 40 COMMON WORK RESULTS FOR ELECTRICAL, Section 26 24 16.00 40 PANELBOARDS, Section 26 24 19.00 40 MOTOR CONTROL CENTERS. Accordingly, include it to the extent applicable to project requirements. Show frame and trip ratings, interrupting ratings, and NEMA types and sizes, as well as single-line and schematic diagrams, elevations, and details on drawings.

Adhere to UFC 1-300-02 Unified Facilities Guide Specifications (UFGS) Format Standard when editing this guide specification or preparing new project specification sections. Edit this guide specification for project specific requirements by adding, deleting, or revising text. For bracketed items, choose applicable items(s) or insert appropriate information.

Remove information and requirements not required in respective project, whether or not brackets are present.

Comments, suggestions and recommended changes for this guide specification are welcome and should be submitted as a Criteria Change Request (CCR).

PART 1 GENERAL

NOTE: If Section 26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS is not included in the project specification, insert applicable requirements and delete the following paragraph.

Section 26 00 00.00 20 BASIC ELECTRICAL MATERIALS AND METHODS applies to work specified in this section.
1.1 REFERENCES

**

NOTE: This paragraph is used to list the publications cited in the text of the guide specification. The publications are referred to in the text by basic designation only and listed in this paragraph by organization, designation, date, and title.

Use the Reference Wizard's Check Reference feature when you add a RID outside of the Section's Reference Article to automatically place the reference in the Reference Article. Also use the Reference Wizard's Check Reference feature to update the issue dates.

References not used in the text are automatically deleted from this section of the project specification when you choose to reconcile references in the publish print process.

**

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ASTM INTERNATIONAL (ASTM)

ELECTRONIC INDUSTRIES ALLIANCE (EIA)

EIA 443 (1979) NARM Standard for Solid State Relays Service

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE C37.90 (2005; R 2011) Standard for Relays and
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE C63.2</td>
<td>(2009) Standard for Electromagnetic Noise and Field Strength Instrumentation, 10 Hz to 40 GHz - Specifications</td>
</tr>
<tr>
<td>ANSI C78.23</td>
<td>(1995; R 2003) American National Standard for Incandescent Lamps - Miscellaneous Types</td>
</tr>
<tr>
<td>NEMA 250</td>
<td>(2014) Enclosures for Electrical Equipment (1000 Volts Maximum)</td>
</tr>
<tr>
<td>NEMA AB 3</td>
<td>(2013) Molded Case Circuit Breakers and Their Application</td>
</tr>
<tr>
<td>NEMA FU 1</td>
<td>(2012) Low Voltage Cartridge Fuses</td>
</tr>
<tr>
<td>NEMA ICS 2</td>
<td>(2000; R 2005; Errata 2008) Standard for Controllers, Contactors, and Overload Relays Rated 600 V</td>
</tr>
<tr>
<td>NEMA ICS 6</td>
<td>(1993; R 2011) Enclosures</td>
</tr>
<tr>
<td>NFPA 70</td>
<td>(2014; AMD 1 2013; Errata 1 2013; AMD 2 2013; Errata 2 2013; AMD 3 2014; Errata 3-4 2014; AMD 4-6 2014) National Electrical Code</td>
</tr>
</tbody>
</table>
1.2 SUBMITTALS

**
NOTE: Review Submittal Description (SD) definitions in Section 01 33 00 SUBMITTAL PROCEDURES and edit the following list to reflect only the submittals required for the project.

The Guide Specification technical editors have designated those items that require Government approval, due to their complexity or criticality, with a "G." Generally, other submittal items can be reviewed by the Contractor's Quality Control System. Only add a "G" to an item, if the submittal is sufficiently important or complex in context of the project.

For submittals requiring Government approval on Army projects, use a code of up to three characters within the submittal tags following the "G" designation to indicate the approving authority. Codes for Army projects using the Resident Management System (RMS) are: "AE" for Architect-Engineer; "DO" for District Office (Engineering Division or other organization in the District Office); "AO" for Area Office; "RO" for Resident Office; and "PO" for Project Office. Codes following the "G" typically are not used for Navy, Air Force, and NASA projects.

An "S" following a submittal item indicates that the submittal is required for the Sustainability Notebook to fulfill federally mandated sustainable requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

Choose the first bracketed item for Navy, Air Force and NASA projects, or choose the second bracketed item for Army projects.

**

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are [for Contractor Quality Control Standards].
approval.[for information only. When used, a designation following the "G" designation identifies the office that reviews the submittal for the Government.] Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals
 Connection Diagrams[; G[, [___]]]
 Fabrication Drawings[; G[, [___]]]
 Fuses[; G[, [___]]]

SD-02 Shop Drawings
 Control Devices[, G[, [___]]]
 Protective Devices[, G[, [___]]]

SD-03 Product Data
 Motor Control[, G[, [___]]]
 Instrument Transformers[, G[, [___]]]
 Enclosures[, G[, [___]]]
 Circuit Breakers[, G[, [___]]]
 Control Devices[, G[, [___]]]
 Time Switches[, G[, [___]]]
 Protective Relays[, G[, [___]]]
 Indicating Instruments[, G[, [___]]]
 Indicating Lights[, G[, [___]]]

SD-06 Test Reports
 Dielectric Tests[, G[, [___]]]
 Final Test Reports[, G[, [___]]]

SD-07 Certificates
 Circuit Tests[, G[, [___]]]
 Insulating Oil[, G[, [___]]]

SD-08 Manufacturer's Instructions
 Control Devices[, G[, [___]]]
 Protective Devices[, G[, [___]]]
PART 2 PRODUCTS

2.1 SYSTEM DESIGN

Submit Connection Diagrams showing the relations and connections of control devices and protective devices by showing the general physical layout of all controls, the interconnection of one system (or portion of system) with another, and internal tubing, wiring, and other devices.

Submit Fabrication Drawings for control devices and protective devices consisting of fabrication and assembly details performed in the factory.

2.2 MOTOR CONTROL

Conform to NEMA ICS 1, NEMA ICS 2, and UL 508 for motor controllers. Ensure controllers have thermal overload protection in each phase.

2.2.1 Manual Motor Controllers

Provide full-voltage, manually operated manual motor controllers for the control and protection of single-phase 60-hertz ac small wattage rating fractional-horsepower squirrel-cage induction motors.

Provide single-throw, single- or double-pole, three-position controllers rated at not more than 750 watt rated 1 horsepower at 115- and 230-volts single phase. Include a supporting base or body of electrical insulating material with enclosed switching mechanism, yoke, thermal overload relay, and terminal connectors. Provide controllers that clearly indicate operating condition: on, off, or tripped.

Provide toggle- or key-operated type manual motor controllers as indicated and arrange so that they are lockable with a padlock in the "OFF" position.

Provide recessed manual motor controllers for single-speed, small wattage rating fractional-horsepower squirrel-cage induction motors. Include a single controller and indicating light in a 100 millimeter 4-inch square wall outlet box, for flush-wiring devices include matching corrosion-resistant steel flush cover plate. Provide surface-mounted manual motor controllers for single-speed, small wattage rating fractional-horsepower squirrel cage induction motors that include a single controller and indicating light in a NEMA 250, Type [1] general-purpose enclosure.
Provide recessed and surface-mounted manual motor controllers for two-speed, small wattage rating fractional-horsepower squirrel-cage induction motors; include two controllers, two indicating lights, and a selector switch in a multiple-gang wall outlet box for flush-wiring devices, with matching corrosion-resistant steel flush-cover plate. Provide surface-mounted manual motor controllers for two-speed small wattage rating fractional-horsepower squirrel-cage induction motors; include two controllers, two indicating lights, and a selector switch in a NEMA 250, Type [1] [_____] general-purpose enclosure.

2.2.2 Magnetic Motor Controllers

2.2.2.1 Full-Voltage Controllers

Provide full-voltage, full magnetic devices for the control and protection of single- and three-phase, 60-hertz, squirrel-cage induction motors in accordance with NEMA ICS 1, NEMA ICS 2, and UL 508 for magnetic motor controllers.

Ensure the operating coil assembly operates satisfactorily between 85 and 110 percent of rated coil voltage. Provide 120 volts, 60 hertz motor control circuits.

Provide controller with two normally open and two normally closed auxiliary contacts is rated per NEMA ICS 1 and NEMA ICS 2 in addition to the sealing-in contact for control circuits.

Provide solderless pressure wire terminal connectors for line-and load-connections to controllers.

Include three manual reset thermal overload devices for overcurrent protection, one in each pole of the controller. Provide thermal overload relays of [melting-alloy] [bimetallic nonadjustable] type with continuous current ratings and service-limit current ratings. Ensure ratings have a plus or minus 15 percent adjustment to compensate for ambient operating conditions.

Provide an externally operable manual-reset button to re-establish control power to the holding coil of the electromagnet. After the controller has tripped from overload, ensure that resetting the motor-overload device does not restart the motor.

Provide enclosure in accordance with NEMA 250, Type [____].

2.2.2.2 Reduced-Voltage Starters

Conform to the requirements for full-voltage controllers for reduced-voltage starters, except for voltage, and to the following additional requirements:

a. Fully protect the motor during all phases of motor starting with an overload device in each motor leg. Rate starter contacts to withstand the switching surges during selector to full voltage. Provide starter that contains the necessary sensing and timing devices to monitor motor operation and select the correct time for selector to full voltage.

b. Adequately ventilate resistors and autotransformers used for starting. Ventilate solid-state starters for starting cycles as well as any follow-on restart-run cycles. Operate external control circuits or
solid-state starters at a maximum of 120 volts ac.

c. For solid-state starters, provide adjustable starting torque from 0 to 50 percent of applied voltage, minimum. Provide autotransformer starters with a minimum of three taps above 50 percent reduced voltage.

2.2.3 Combination Motor Controllers

Following requirements are in addition to the requirements specified for magnetic motor controller:

a. Provide combination motor controllers for the control and protection of single-and three-phase 60-hertz alternating-current squirrel-cage induction motors with branch-circuit disconnecting and protective devices in accordance with NEMA ICS 1, NEMA ICS 2, and NEMA ICS 6.

b. For combination motor controllers include magnetic motor controllers and molded-case circuit breakers or MCP in metal enclosures in accordance with NEMA 250 or motor-control center draw-out assemblies with control-power transformers, selector switches, pushbuttons, and indicating lights as follows:

(1) Provide full-voltage, full-magnetic devices as specified in this section under paragraph titled, "Remote-Control Station Enclosures." for magnetic motor controllers and enclosures.

(2) Provide thermal-magnetic breakers as specified in paragraph titled, "Manual Motor Controllers." for molded-case circuit breakers. Manufacturer's standard MCP may be used in lieu of molded-case circuit breakers.

(3) Provide control-power transformers 120-volt ac maximum, selector switches, pushbuttons, and pilot lights as required.

(4) Identify combination motor controllers with identification plates affixed to front cover of the controller.

2.2.3.1 Non-reversing Combination Motor Controllers

**

NOTE: Non-reversing, reversing, and two-speed combination motor controllers should be selected from the following paragraphs to suit the project requirements.

**

Following requirements are in addition to the requirements for magnetic motor controllers:

a. For the control and protection of single-speed squirrel-cage induction motors, include a magnetic controller with molded-case circuit breaker or MCP with selector switch or start/stop pushbutton and indicating light in the cover of the enclosure.

b. Provide rating of [single] [and] [three]-phase single-speed full-voltage magnetic controllers for nonplugging and nonjogging duty in accordance with NEMA ICS 1 and NEMA ICS 2.

c. Provide wiring and connections for full-voltage single-speed magnetic
controllers in accordance with NEMA ICS 1 and NEMA ICS 2.

2.2.3.2 Reversing Combination Motor Controllers

Following requirements are in addition to the requirements for magnetic motor controllers:

a. For the control and protection of single-speed squirrel-cage induction motors, include two interlocked magnetic controllers with molded-case circuit breaker or MCP, with selector switch or forward/reverse/stop pushbutton and two indicating lights in the cover of the enclosure. Identify with indicating lights the forward and reverse running connection of the motor controller.

b. Provide rating of [single] [and] [three]-phase single-speed full-voltage magnetic controllers for plug-stop, plug-reverse, or jogging duty in accordance with NEMA ICS 1 and NEMA ICS 2.

c. Provide wiring and connections for full-voltage single-speed magnetic controllers in accordance with NEMA ICS 1 and NEMA ICS 2.

2.2.3.3 Two-Speed Combination Motor Controllers

Following requirements are in addition to the requirements for magnetic motor controllers:

a. For the control and protection of single- and two-winding, two-speed, three-phase, squirrel-cage induction motors, include two magnetic controllers with molded-case circuit breaker or MCP, with selector switch or fast/slow/stop pushbutton and two indicating lights in the cover of the enclosure. Identify with indicating lights the high- and low-speed running connection of the motor controller.

b. Provide rating of three-phase, two-speed, full-voltage, magnetic controllers for nonplugging and nonjogging duty for constant- and variable-torque motors in accordance with NEMA ICS 1 and NEMA ICS 2.

c. Provide rating of three-phase, two-speed, full-voltage, magnetic controllers for nonplugging and nonjogging duty for constant-motors horsepower motors in accordance with NEMA ICS 1 and NEMA ICS 2.

d. Provide rating of three-phase, two-speed, full-voltage, magnetic controllers for plug-stop, plug-reverse, or jogging duty for constant-torque, variable-torque, and constant wattage horsepower motors in accordance with NEMA ICS 1 and NEMA ICS 2.

2.3 INSTRUMENT TRANSFORMERS

Comply with the interference requirements listed below, measured in accordance with IEEE C63.2, IEEE C63.4, and NEMA 107 for Instrument transformers.
Insulation Class

<table>
<thead>
<tr>
<th>Insulation Class</th>
<th>Basic Insulation Level</th>
<th>Nominal System Voltage</th>
<th>Preferred Test Voltage for Potential Transformers</th>
<th>Test Voltage for Current Transformers</th>
<th>Radio Influence Voltage Level, Microvolts</th>
</tr>
</thead>
<tbody>
<tr>
<td>kV</td>
<td>kV</td>
<td>kV</td>
<td>kV</td>
<td>kV</td>
<td>Dry Type</td>
</tr>
<tr>
<td>0.6</td>
<td>10</td>
<td>----</td>
<td>----</td>
<td>0.76</td>
<td>250</td>
</tr>
<tr>
<td>1.2</td>
<td>30</td>
<td>0.208</td>
<td>0.132</td>
<td>0.76</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.416</td>
<td>0.264</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.832</td>
<td>0.528</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.04</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>45</td>
<td>2.40</td>
<td>1.52</td>
<td>1.67</td>
<td>250</td>
</tr>
<tr>
<td>5.0</td>
<td>60</td>
<td>4.16</td>
<td>2.64</td>
<td>3.34</td>
<td>250</td>
</tr>
<tr>
<td>8.7</td>
<td>75</td>
<td>7.20</td>
<td>4.57</td>
<td>5.77</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.32</td>
<td>5.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15L or 15H</td>
<td>95 - 110</td>
<td>12.00</td>
<td>7.62</td>
<td>9.41</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.47</td>
<td>7.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.40</td>
<td>9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>150</td>
<td>23.00</td>
<td>14.60</td>
<td>15.70</td>
<td>2500</td>
</tr>
<tr>
<td>34.5</td>
<td>200</td>
<td>34.50</td>
<td>21.90</td>
<td>23.0</td>
<td>----</td>
</tr>
<tr>
<td>46</td>
<td>250</td>
<td>46.00</td>
<td>29.20</td>
<td>29.30</td>
<td>----</td>
</tr>
<tr>
<td>69</td>
<td>350</td>
<td>69.00</td>
<td>43.80</td>
<td>44.00</td>
<td>----</td>
</tr>
<tr>
<td>92</td>
<td>450</td>
<td>92.00</td>
<td>58.40</td>
<td>58.40</td>
<td>----</td>
</tr>
<tr>
<td>115</td>
<td>550</td>
<td>115.00</td>
<td>73.40</td>
<td>73.40</td>
<td>----</td>
</tr>
<tr>
<td>138</td>
<td>650</td>
<td>138.00</td>
<td>88.00</td>
<td>88.00</td>
<td>----</td>
</tr>
</tbody>
</table>

2.3.1 Current Transformers

Ensure current transformers conform to IEEE C57.13 for installation in metal-clad switchgear. Use standard 3-A secondary transformer.

Provide [wound] [bushing] [bar] [window] type transformers.

Provide transformers that have [single] [double] secondary winding.

Provide transformers that are complete with secondary short-circuiting device.

For window-type current transformers, provide indoor dry type construction with secondary current ratings as indicated with specified burden, frequency, and accuracy.

2.3.2 Potential Transformers

For potential transformers, conform to IEEE C57.13 for installation in metal-clad switchgear. Use standard 120-volt secondary transformers.
Provide transformers that have [single] [tapped] [double] secondary.

Provide burden, frequency, and accuracy as required.

For disconnecting potential transformers with integral fuse mountings and current-limiting fuses, provide indoor dry type two-winding construction with primary and secondary voltage ratings as required.

2.4 ENCLOSURES

2.4.1 Equipment Enclosures

Provide enclosures for equipment in accordance with NEMA 250.

[Contain equipment installed inside, clean, dry locations in a NEMA Type 1, general-purpose sheet-steel enclosure.

][Contain equipment installed in wet locations in a NEMA Type 4 watertight, corrosion-resistant sheet-steel enclosure. Construct enclosure to prevent entrance of water when tested in accordance with NEMA ICS 6 for Type 4 enclosures.

][Contain equipment installed in industrial locations in a NEMA Type 12 industrial use, sheet-steel enclosure. Construct enclosure to prevent the entrance of dust, lint, fibers, flyings, oil, and coolant seepage.

][Contain equipment installed in Class I, Division I, Group A, B, C, and D, hazardous locations, in NEMA Type 7 enclosures approved for the specific flammable gas or vapor that is possibly present under normal operating conditions.

][Contain equipment installed in Class II, Division I, Group E, F and G, hazardous locations, in NEMA Type 9 enclosures approved for use where combustible dust is possibly present under normal operating conditions.

][Fabricate sheet-steel enclosures from uncoated carbon-steel sheets of commercial quality, with box dimensions and thickness of sheet steel in accordance with UL 50.

][Fabricate steel enclosures from corrosion-resistant, chromium-nickel steel sheet conforming to ASTM A167 Type 300 series with ASM No. 4 general-purpose polished finish, with box dimensions and thickness of sheet steel in accordance with UL 50.

][Provide cast-iron enclosures from gray-iron castings conforming to ASTM A48/A48M with tensile-strength classification recognized as suitable for the application. Provide cast metal enclosures that are not less than 3 millimeter 1/8-inch thick at every point, of greater thickness at reinforcing ribs and door edges, and not less than 6 millimeter 1/4-inch thick at tapped holes for conduits.

2.4.2 Remote-Control Station Enclosures

Provide remote-control station enclosures for pushbuttons, selector switches, and indicating lights in accordance with the appropriate articles of NEMA ICS 6 and NEMA 250.

[Contain remote-control stations installed in indoor, clean, dry locations
in NEMA Type 1 general-purpose, sheet-steel enclosures. Contain recessed remote-control stations in standard wall outlet boxes with matching corrosion-resistant steel flush cover plate.

][Contain remote-control stations installed in wet locations in NEMA Type 4 watertight, corrosion-resistant sheet-steel enclosures. Construct enclosure to prevent entrance of water when tested in accordance with NEMA ICS 6 and NEMA 250 for Type 4 enclosures.

][Contain remote-control stations installed in wet locations in NEMA Type 4 watertight, cast-iron enclosures. Construct enclosure to prevent entrance of water when tested in accordance with NEMA ICS 6 and NEMA 250 for Type 4 enclosures.

][Contain remote-control stations installed in dry noncombustible dust-laden atmospheres in NEMA Type 12 dusttight, cast-iron enclosures with gaskets or their equivalent to prevent the entrance of dust.

][Contain remote-control stations installed in industrial locations in NEMA Type 12 industrial-use, sheet-steel enclosures. Construct enclosure to prevent the entrance of dust, lint, fibers, flyings, oil, and coolant seepage.

][Contain remote-control stations installed in industrial locations in NEMA Type 12 industrial-use, cast-iron enclosures. Construct enclosure to prevent the entrance of dust, lint, fibers, flyings, oil, and coolant seepage.

][Contain remote-control stations installed in Class I, Division I, Group A, B, C, and D, hazardous locations in NEMA Type 7 enclosures, approved for the specific flammable gas or vapor which is possibly present under normal operating conditions.

][Contain remote-control stations installed in Class II, Division I, Group E, F and G, hazardous locations in NEMA Type 9 enclosures, approved for use where combustible dust is possibly present under normal operating conditions.

][Fabricate sheet-steel enclosures from uncoated carbon-steel sheets of commercial quality, with box dimensions and thickness of sheet steel in accordance with UL 50.

][Fabricate steel enclosures from corrosion-resistant, chromium-nickel steel sheet, conforming to ASTM A167, Type 300 series with ASM No. 4 general-purpose polished finish, with box dimensions and thickness of sheet steel in accordance with UL 50.

][Provide cast-iron enclosures of gray-iron castings, conforming to ASTM A48/A48M, with tensile-strength classification recognized as suitable for this application. Provide cast metal enclosures that are not less than 3 millimeter 1/8-inch thick at every point, of greater thickness at reinforcing ribs and door edges not less than 6 millimeter 1/4 inch thick at tapped holes for conduit.

] Install remote-control stations with the centerline 1700 millimeter 66 inches above the finished floor.
2.5 CIRCUIT BREAKERS

Provide circuit breakers that conform to UL 489, and NEMA AB 3.

2.5.1 Molded-Case Circuit Breakers

Provide molded case, manually operated, trip-free, circuit breakers, with inverse-time thermal-overload protection and instantaneous magnetic short-circuit protection as required. Completely enclose circuit breakers in a molded case, with the calibrated sensing element factory-sealed to prevent tampering.

Locate thermal-magnetic tripping elements in each pole of the circuit breaker, and provide inverse-time-delay thermal overload protection and instantaneous magnetic short-circuit protection. Provide instantaneous magnetic tripping element, that is adjustable and accessible from the front of the breaker on frame sizes larger than 100 amperes.

Size breaker as required for the continuous current rating of the circuit. Provide breaker class as required.

Provide sufficient interrupting capacity of the panel and lighting branch circuit breakers, to successfully interrupt the maximum short-circuit current imposed on the circuit at the breaker terminals. Provide circuit breaker interrupting capacities with a minimum of 10,000 amperes and that conform to NEMA AB 3.

Provide the common-trip type multipole circuit breakers having a single operating handle and a two-position on/off indication. Provide circuit breakers with temperature compensation for operation in an ambient temperature of 40 degrees C 104 degrees F. Provide circuit breakers that have root mean square (rms) symmetrical interrupting ratings sufficient to protect the circuit being supplied. Interrupting ratings may have selective type tripping (time delay, magnetic, thermal, or ground fault).

Provide phenolic composition breaker body capable of having such accessories as handle-extension, handle-locking, and padlocking devices attached where required.

For circuit breakers used for meter circuit disconnects, meet the applicable requirements of NFPA 70 and are the motor-circuit protector type.

For circuit breakers used for service disconnection, provide an enclosed circuit-breaker type with external handle for manual operation. Provide sheet metal enclosures with a hinged cover suitable for surface mounting.

2.5.2 Enclosed Molded-Case Circuit Breakers

For enclosed circuit breakers, provide thermal-magnetic molded-case circuit breakers in surface-mounted, nonventilated enclosures conforming to the appropriate articles of NEMA 250 and UL 489.

Provide enclosed circuit breakers in non-hazardous locations as follows:

[a. Contain circuit breakers installed inside clean, dry locations in NEMA Type 1, general purpose sheet steel enclosures.

][b. Contain circuit breakers installed in unprotected outdoor locations, in NEMA Type 3R, weather-resistant sheet steel enclosures that are
splashproof, weatherproof, sleetproof, and moisture resistant.

][c. Contain circuit breakers installed in wet locations, in NEMA Type 4, watertight corrosion-resistant sheet steel enclosures constructed to prevent entrance of water.

][d. Contain circuit breakers installed in wet locations in NEMA Type 4, watertight cast-iron enclosures, constructed to prevent entrance of water when tested in accordance with NEMA ICS 1 for Type 4 enclosures.

][e. Contain circuit breakers installed in dry, noncombustible dust-laden atmospheres in NEMA Type 5, dusttight corrosion-resistant sheet steel enclosures, with gaskets or their equivalent to prevent the entrance of dust.

][f. Contain circuit breakers installed in dry, noncombustible, dust-laden atmospheres in NEMA Type 5, dusttight cast-iron enclosures, with gaskets or their equivalent to prevent the entrance of dust.

][g. Contain circuit breakers installed in industrial locations in NEMA Type 12, industrial-use sheet steel enclosures, constructed to prevent the entrance of dust, lint, fibers and flyings, and oil and coolant seepage.

][h. Fabricate steel enclosures from corrosion-resistant steel sheet, conforming to ASTM A167, 300 series corrosion-resistant steel, with box dimensions and thickness of sheet steel in accordance with UL 50.

][i. Provide cast-iron enclosures of gray-iron castings conforming to ASTM A48/A48M with tensile strength classification suitable for this application. Provide cast metal enclosures that are not less than 3 millimeter 1/8-inch thick at every point, of greater thickness at reinforcing ribs and door edges, and not less than 6 millimeter 1/4-inch thick at tapped holes for conduits.

2.6 FUSES

Provide a complete set of fuses for all switches and switchgear. Rate fuses that have a voltage rating of not less than the circuit voltage.

Make no change in continuous-current rating, interrupting rating, and clearing or melting time of fuses unless written permission is first obtained by the Contracting Officer.

Provide nonrenewable cartridge type fuses for ratings 30 amperes, 125 volts or less. Provide renewable cartridge type fuses for ratings above 30 amperes 600 volts or less with time-delay dual elements, except where otherwise indicated. Conform to NEMA FU 1 for fuses.

Install special fuses such as extra-high interrupting-capacity fuses, fuses for welding machines, and capacitor fuses where required. Plug fuses are not permitted.

Label fuses showing UL class, interrupting rating, and time-delay characteristics, when applicable. Additionally, clearly list fuse information on equipment drawings.

Provide porcelain fuse holders when field-mounted in a cabinet or box. Do not use fuse holders made of such materials as ebony asbestos, Bakelite, or pressed fiber for field installation.
2.7 CONTROL DEVICES

2.7.1 Magnetic Contactors

Provide magnetic contactors in accordance with NEMA ICS 1 and NEMA ICS 2 as required for the control of low-voltage, 60-hertz, tungsten-lamp loads, fluorescent-lamp loads, resistance-heating loads, and the primary windings of low-voltage transformers.

Provide core-and-coil assembly that operates satisfactorily with coil voltage between 85 and 110 percent of its voltage rating.

Provide contactor that is designed with a normally open holding circuit auxiliary contact for control circuits, with a rating in accordance with NEMA ICS 1 and NEMA ICS 2.

Furnish solderless pressure wire terminal connectors, or make available for line-and-load connections to contactors in accordance with NEMA ICS 1 and NEMA ICS 2.

Provide magnetic contactors with a rating in accordance with NEMA ICS 1 and NEMA ICS 2.

2.7.2 Control-Circuit Transformers

Provide control-circuit transformers within the enclosure of magnetic contactors and motor controllers when the line voltage is in excess of 120 volts. Provide encapsulated dry type, single-phase, 60-hertz transformer, with a 120-volt (or 24-volt) isolated secondary winding.

Do not provide a transformer with a rated primary voltage less than the rated voltage of the controller, or a rated secondary current less than the continuous-duty current of the control circuit.

Provide voltage regulation of the transformer such that, with rated primary voltage and frequency, the secondary voltage is not less than 95 percent nor more than 105 percent of rated secondary voltage.

Provide source of supply for control-circuit transformers at the load side of the main disconnecting device. Protect secondary winding of the transformer and control-circuit wiring against overloads and short circuits, with fuses selected in accordance with NEMA ICS 6. Ground secondary winding of the control-circuit transformer in accordance with NEMA ICS 6.

2.7.3 Magnetic Control Relays

Provide magnetic control relays for energizing and de-energizing the coils of magnetic contactors or other magnetically operated devices, in response to variations in the conditions of electric control devices in accordance with NEMA ICS 1, and NEMA ICS 2.

Ensure the core-and-coil assembly operates satisfactorily with coil voltages between 85 and 110 percent of their voltage rating.

Provide relays that are designed to accommodate normally open and normally closed contacts.
Provide [120] [_____] -volt, 60-hertz, Class [AIB] [_____] magnetic control relays with a continuous contact rating of 10 amperes, and with current-making and -breaking ability in accordance with NEMA ICS 1 and NEMA ICS 2, two normally open and two normally closed.

2.7.4 Pushbuttons and Switches

**
** NOTE: Specify electrically held, magnetic latch, plug-in, or hermetically sealed. **
**

2.7.4.1 Pushbuttons

For low-voltage ac full-voltage magnetic pushbutton controllers, provide heavy-duty oil-tight NEMA 250, Type [12] [____], momentary-contact devices rated 600 volts, with pilot light, and with the number of buttons and the marking of identification plates as shown. Furnish pushbutton color code in accordance with NEMA ICS 6.

Provide pushbuttons that are designed with normally open, circuit-closing contacts; normally closed circuit-opening contacts; and two-circuit normally open and normally closed circuit-closing and -opening contacts. Provide pushbutton-contact ratings in accordance with NEMA ICS 1 and NEMA ICS 2 with contact designation A600.

Identify pushbuttons in remote control stations with identification plates affixed to front cover in a prominent location. Identify the system being controlled on the identification plate.

2.7.4.2 Selector Switches

Provide heavy-duty oil-tight maintained-contact selector switches for low-voltage control circuits, with the number of positions and the marking of identification plates in accordance with NEMA ICS 1 and NEMA ICS 2.

Identify selector switches in remote control stations with engraved identification plates affixed to front cover in a prominent location. Identify the system being controlled on the identification plate.

2.7.4.3 Ammeter Selector Switches

Provide rotary multistage snap-action type ammeter selector switches for switchgear in accordance with UL 20. Use silver-plated contacts rated for 600 volts ac or dc. Provide a manually operated, four-position selector switch rated for 600 volts, 20 amperes, minimum. Ensure switch is designed to permit current readings on each bus of the main bus from a single indicating instrument. Mount ammeter switch on the hinged front panel of the switchgear compartment, with engraved escutcheon plate. Completely isolate switch from high-voltage circuits.

Provide a [pistol-grip] [oval] type selector switch handle.

2.7.4.4 Voltmeter Selector Switches

Provide rotary snap-action type voltmeter selector switches for switchgear in accordance with UL 20. Use silver-plated contacts rated for 600 volts ac or dc. Provide manually operated, four-position switch designed to permit voltage readings on each phase of the main bus from a single
indicating instrument. Mount voltmeter switch on the hinged front panel of the switchgear compartment, with engraved escutcheon plate. Completely isolate switch from high-voltage circuits.

Provide a [pistol-grip] [oval] type selector switch handle.

2.7.4.5 Miscellaneous Switches

Provide float, limit, door, pressure, proximity, and other types of switches in accordance with IPC D330 and of the types and classes indicated.

2.8 TIME SWITCHES

Provide time switches for the control of tungsten-lamp loads, fluorescent-lamp loads, resistive-heating loads, motors, and magnetically operated devices, consisting of a motor-driven time dial and switch assembly in a NEMA 250, Type 1 general-purpose enclosure.

Provide motor drives consisting of 120-volt, single-phase, 60-hertz, heavy-duty, self-starting synchronous motors, directly connected to the time dial through a geartrain operating mechanism. Provide a spring-wound stored-energy source of reserve power that automatically operates the mechanism for a period of not less than 12 hours in case of electric power failure. Ensure spring automatically rewinds electrically in not more than 3 hours of time after electric power is restored.

Include a heavy-duty general-purpose precision snap-action switch in accordance with UL 20 for switch mechanism, with provision for a manual "OFF" and "ON" operation of the switch.

Provide time switches for the control of 120/240-volt, 2- and 3-wire, single-phase, 60-hertz circuits and 120/208-volt, three-phase, 4-wire, 60-hertz circuits, with a continuous-current tungsten-lamp load rating of 35 amperes.

Provide 24-hour time dials with adjustable on and off trippers for repetitive switching operations at the same time each day. Calibrate dial in 15-minute intervals over a 24-hour period around its circumference. Provide dial that makes one revolution in the 24-hour period of time. Make provision to defeat the switching operation over weekends or up to 6 preselected calendar days each week. Provide time dials that have a minimum "ON" time setting of not more than 20 minutes, and are fully adjustable upward in 15-minute intervals of time throughout each day.

Provide 7-day type time dials with adjustable on and off trippers for programmed switching operations for each day in the week. Provide dial that makes one revolution not more than 2 1/2 hours, and is fully adjustable upward in 2-hour intervals of time throughout each day. Calibrate dial in 2-hour intervals for each day and for each day in the week around its circumference.

Provide astronomic type time dials which automatically change settings each day, in accordance with the seasonal time changes in sunrise and sunset. Provide astronomic type dials that have adjustable on and off trippers, for repetitive switching operations at solar time each day and each day in the year and that make one revolution in a 24-hour period of time. Provide time dials that are designed to operate in the "ON" position at sunset and be fully adjustable upward in 15-minute intervals of time throughout each day, and that indicate the day and month of the year. Calibrate dial in
15-minute intervals over a 24-hour period of time around its circumference. Make provision to defeat the switching operation over weekends or up to 6 preselected calendar days each week.

2.9 PROTECTIVE RELAYS

2.9.1 Overcurrent Relays

Provide a trip unit that employs a combination of discreet components and integrated circuits to ensure the time-current protection functions as required in a modern selectively coordinated distribution system.

Conform to IEEE C37.90 for overcurrent relays.

For protection against phase and ground faults, provide single-phase non-directional removable induction type overcurrent relays with built-in testing facilities designed for operation on the dc or ac control circuit indicated.

Provide ground-fault overcurrent relays with short-time inverse time characteristics with adjustable current tap range as required.

Provide phase-fault overcurrent relays with varied inverse-time characteristics with adjustable current tap range as required. Provide attachments that indicate instantaneous-trip with adjustable current range as required.

Provide solid-state static-type trips for low-voltage power circuit breakers in accordance with EIA 443 and IEEE C37.17.

Provide complete system selective coordination by utilizing a combination of the following time-current curve-shaping adjustments: ampere setting; long-time delay; short-time pickup; short-time delay; instantaneous pickup; and ground fault.

Provide switchable or easily defeatable instantaneous and ground fault trips.

Make all adjustments using non-removable, discrete step, highly reliable switching plugs for precise settings. Provide a sealable, transparent cover over the adjustments to prevent tampering.

Furnish trip devices with three visual indicators to denote the automatic tripping mode of the breaker including: overload; short circuit; and ground fault.

Wire trip unit to appropriate terminals whereby an optional remote automatic trip accessory can be utilized to provide the same indication.

Make available for use a series of optional automatic trip relays for use with the trip unit to provide remote alarm and lockout circuits.

Provide all trip units with test jacks for in-service functional testing of the long-time instantaneous and ground fault circuits using a small hand-held test kit.

2.9.2 Directional Overcurrent Relays

Provide directional overcurrent relays in accordance with IEEE C37.90.
For protection against reverse-power faults, provide single-phase induction relays with adjustable time-delay and instantaneous trip attachments. Provide removable type relays with inverse-time directional and overcurrent units with built-in testing facilities.

2.9.3 Reclosing Relays

For reclosing relays, conform to IEEE C37.90.

Design reclosing relays to reclose circuit breakers that have tripped from overcurrent. Provide device that automatically re-closes the breaker at adjustable time intervals between reclosures and then locks out the breaker in the open position if the fault persists. If the fault disappears after any reclosure, the circuit breaker remains closed and the reclosing relay resets automatically and is ready to start a new sequence of operation.

Provide removable reclosing relays with built-in testing facilities and consisting of a timing unit rated at 120/240 volts, single-phase, ac and solenoid and contactor units with dc rating as indicated. Arrange contacts for one instantaneous reclosure and two subsequent reclosures at 15 and 45 seconds, respectively. Set time dial for 60-second drum speed.

2.9.4 Undervoltage Relays

Ensure undervoltage relays conform to IEEE C37.90.

Provide three-phase induction type undervoltage relays, including inverse timing with adjustable high- and low-voltage contacts and calibrated scale for protection against loss of voltage, undervoltage, and overvoltage. Equip relays with indicating contactor and voltage switches to provide electrically separate contact circuits. Provide relays that are removable with built-in testing facilities and that are suitable for operation on 120-volt ac circuits, with contacts that are suitable for operation on dc or ac control circuits.

2.10 INDICATING INSTRUMENTS

2.10.1 Ammeters

For ammeters, conform to ANSI C39.1.

[Provide switchboard indicating ammeters of approximately 115 millimeter 4-1/2 inches square with 250-degree scale and recessed cases suitable for flush mounting. Furnish white dials with black figures and black pointers. Mount instruments on the hinged front panel of the switchgear compartment completely isolated from high-voltage circuits. Provide standard 5-ampere type meter for a zero to full-scale normal movement, 60 hertz.

2.10.2 Voltmeters

For voltmeters, conform to ANSI C39.1.

[Provide a switchboard indicating voltmeters that is approximately 115 millimeter 4-1/2-inches square with 250-degree scale and recessed cases suitable for flush mounting. Furnish white dials with black figures and black pointers. Mount instruments on the hinged front panel of the switchgear compartment completely isolated from high-voltage circuits.
Provide standard 120-volt type voltmeter for a zero to full-scale normal movement, 60 hertz.

2.10.3 Watt-Hour Meters/Wattmeters

For watt-hour meters, wattmeters, and pulse initiation meters, conform to ANSI C12.1.

Provide three-phase induction type switchboard wattmeters for use with instrument transformers with two stators, each equipped with a current and potential coil. Provide a meter rated for 5 amperes at 120 volts and is suitable for connection to three-phase, 3- and 4-wire circuits. Provide instrument complete with potential indicating lamps, light-load and full-load adjustments, phase balance, power-factor adjustments, four-dial clock register, ratchets to prevent reverse rotation, and built-in testing facilities.

Provide pulse initiating meters for use with demand meters or pulse recorders, that are suitable for use with mechanical or electrical pulse initiators. Ensure the mechanical load imposed on the meter by the pulse initiator is within the limits of the pulse meter. Provide a load as constant as practical throughout the entire cycle of operation to ensure accurate meter readings. Provide a pulse initiating meter that is capable of measuring the maximum number of pulses at which the pulse device is nominally rated. Consider pulse initiating meter to be operating properly when a kilowatt-hour check indicates that the demand meter kilowatt-hours are within limits of the watthour meter kilowatt-hours.

Locate pulse initiating meters such that components sensitive to moisture and temperature conditions are minimized. Take precautions to protect sensitive electronic metering circuitry from electromagnetic and electrostatic induction.

Furnish removable meters with draw out test plug and furnish contact devices to operate remote impulse-totalizing graphic demand meters.

2.10.4 Graphic Demand Meters

For impulse-totalizing graphic demand meters, conform to ANSI C12.1.

Provide impulse-totalizing graphic demand meters that are suitable for use with switchboard watt-hour meters and include: a two-circuit totalizing relay, cyclometer for cumulative record of impulses, four-dial totalizing kilowatt-hour register, synchronous motor for timing mechanism, torque motor, and chart drive. Provide a positive chart-drive mechanism consisting of chart spindles and drive sprockets that maintains the correct chart speed for roll strip charts. Provide an instrument that records as well as indicates on clearly legible graph paper, the 15-minute integrated kilowatt demand of the totalized system.

Furnish the motive power for advancing the register and pen-movement mechanism with a torque motor. Provide a capillary pen containing a 1-month ink supply. Provide roll charts with a 31-day continuous record of operation capacity.

2.10.5 Specialty-Type Meters

For specialty meters, conform to ANSI C39.1. Specialty-type meters are panel meters applicable to specific situations, such as pyrometers and dc
parameter meters that conform to the panel layout specified. Provide meter scales that are not less than 180 degrees. Do not use edgewise meters for circuit current and voltage measurements.

2.11 FACTORY TESTING

Perform factory tests on control and low voltage protective devices in accordance with the manufacturer's recommendations.

Conduct short-circuit tests in accordance with Section 2 of NEMA ICS 1.

2.12 INDICATING LIGHTS

2.12.1 General-Purpose Type

For indicating lights, provide oiltight instrument devices with threaded base and collar for flush-mounting, translucent convex lens, candelabra screw-base lampholder, and 120-volt, 6-watt, Type S-6 incandescent lamp in accordance with ANSI C78.23. Provide indicating lights color coded in accordance with NEMA ICS 6.

Provide indicating lights in remote-control stations when pushbuttons and selector switches are out of sight of the controller.

2.12.2 Switchboard Indicating Lights

For switchboard indicating lights, provide the manufacturer's standard transformer type units [120-volt input] [_____] utilizing low-voltage lamps and convex lenses of the colors indicated. Provide indicating lights that are capable of being relamped from the switchboard front. Indicating lights utilizing resistors in series with the lamps are not permitted except in direct-current control circuits. Provide lights that have a press-to-test feature.

2.13 FINISH

**
NOTE: For all outdoor applications and all indoor applications in a harsh environment refer to Section 09 96 00 HIGH-PERFORMANCE COATINGS. High performance coatings are specified for all outdoor applications because ultraviolet radiation breaks down most standard coatings, causing a phenomena known as chalking, which is the first stage of the corrosion process. For additional information contact The Coatings Industry Alliance, specific suppliers such as Keeler and Long and PPG, and NACE International (NACE).
**

Protect metallic materials against corrosion. Provide equipment with the standard finish by the manufacturer when used for most indoor installations. For harsh indoor environments (any area subjected to chemical and/or abrasive action), and all outdoor installations, refer to Section 09 96 00 HIGH-PERFORMANCE COATINGS.
PART 3 EXECUTION

3.1 INSTALLATION

Install Control devices and protective devices that are not factory installed in equipment, in accordance with the manufacturer's recommendations. Field adjust and operations test the control and protective devices. Conform to NFPA 70, NEMA ICS 1 and NEMA ICS 2 requirements for installation of control and protective devices.

3.2 FIELD TESTING

Demonstrate the operation and controls of protective devices of non-factory installed equipment.

Verify tap settings of instrumentation, potential, and current transformers.

Perform dielectric tests on insulating oil in oil circuit breakers before the breakers are energized. Test oil in accordance with ASTM D877, and provide breakdown voltage that is not less than 25,000 volts. Provide manufacturer certification that the oil contains no PCB's, and affix a label to that effect on each breaker tank and on each oil drum containing the insulating oil.

Field adjust reduced-voltage starting devices to obtain optimum operating conditions. Provide test meters and instrument transformers that conform to ANSI C12.1 and IEEE C57.13.

Do not energize control and protective devices until recorded test data has been approved by the Contracting Officer. Provide final test reports with a cover letter/sheet clearly marked with the System name, Date, and the words Final Test Reports to the Contracting Officer for approval.

-- End of Section --