Introduction

Jacqueline Coelln-Hough, R.Ph.
Janssen Research & Development, LLC
Canagliflozin
Drug Class and Indication

- **New Class**
 - Sodium glucose co-transporter 2 (SGLT2) inhibitor
 - Insulin independent mechanism

- **Proposed Indication**
 - an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus

- **Proposed dose and administration**
 - 100 or 300 mg tablet once daily
 - With specific recommendations for patients who should start with 100 mg
Canagliflozin
Clinical Development Program

- **Largest T2DM program submitted to Health Authorities to date**
 - 10,301 subjects enrolled in Phase 3

- **Long duration of treatment**
 - > 2800 subjects treated with canagliflozin ≥ 18 months
 (as of 01 July 2012)

- **Studies at each step of the treatment paradigm**

- **Significant experience in vulnerable populations (> 50 % Phase 3)**
 - Long standing diabetes: mean 10.6 years
 - Age
 - ≥ 65 years: >3000 subjects
 - ≥ 75 years: >500 subjects
 - Renal impairment: > 1000 subjects
 - CV disease: >4000 subjects
Canagliflozin

The totality of the data supports that canagliflozin:

• Provides substantial glucose control with the added benefits of weight loss and BP reduction

• Has a safety profile that is characterized across the full continuum of patients with T2DM

• Has adverse drug reactions that can be managed

• Both the 100 and 300 mg doses provide a valuable additional treatment option to address the unmet medical need
Sponsor Presentation Agenda

<table>
<thead>
<tr>
<th>Section</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Jacqueline Coelln-Hough, RPh</td>
</tr>
<tr>
<td></td>
<td>Janssen Research & Development, LLC</td>
</tr>
<tr>
<td></td>
<td>Senior Director, Global Regulatory Affairs</td>
</tr>
<tr>
<td>Medical Landscape & Unmet Need</td>
<td>Edward Horton, MD</td>
</tr>
<tr>
<td></td>
<td>Senior Investigator, Joslin Diabetes Center, Boston</td>
</tr>
<tr>
<td></td>
<td>Professor of Medicine, Harvard Medical School</td>
</tr>
<tr>
<td></td>
<td>Past-President ADA</td>
</tr>
<tr>
<td>Mechanism of Action, Phase 3 Program Overview & Efficacy</td>
<td>Gary Meininger, MD</td>
</tr>
<tr>
<td></td>
<td>Janssen Research & Development, LLC</td>
</tr>
<tr>
<td></td>
<td>Franchise Medical Leader</td>
</tr>
<tr>
<td>Safety & Tolerability</td>
<td>Peter Stein, MD</td>
</tr>
<tr>
<td></td>
<td>Janssen Research & Development, LLC</td>
</tr>
<tr>
<td></td>
<td>Head of Metabolism Development</td>
</tr>
<tr>
<td>Benefit-Risk Review</td>
<td>John Gerich, MD</td>
</tr>
<tr>
<td></td>
<td>Professor Emeritus, University of Rochester, New York</td>
</tr>
</tbody>
</table>
Consultants Available to the Committee

<table>
<thead>
<tr>
<th>Participant</th>
<th>Expertise and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Bakris, MD</td>
<td>Nephrology</td>
</tr>
<tr>
<td></td>
<td>Professor of Medicine, University of Chicago</td>
</tr>
<tr>
<td>John Bilezikian, MD</td>
<td>Metabolic Bone Disease</td>
</tr>
<tr>
<td></td>
<td>Professor of Medicine & Pharmacology</td>
</tr>
<tr>
<td></td>
<td>Columbia University College of Physicians and Surgeons</td>
</tr>
<tr>
<td>Samuel Cohen, MD, PhD</td>
<td>Oncology</td>
</tr>
<tr>
<td></td>
<td>Professor, Department of Pathology & Microbiology, University of Nebraska Medical Center</td>
</tr>
<tr>
<td>Greg Fulcher, MD</td>
<td>Chairman of the Endpoint Adjudication Committee</td>
</tr>
<tr>
<td></td>
<td>Clinical Professor of Medicine</td>
</tr>
<tr>
<td></td>
<td>University of Sydney</td>
</tr>
<tr>
<td>Peter Kowey, MD</td>
<td>Cardiovascular</td>
</tr>
<tr>
<td></td>
<td>Professor of Medicine & Clinical Pharmacology, Thomas Jefferson University</td>
</tr>
<tr>
<td>David Matthews, MD</td>
<td>Chairman of the CANVAS Steering Committee</td>
</tr>
<tr>
<td></td>
<td>Professor of Diabetes</td>
</tr>
<tr>
<td></td>
<td>Oxford Center for Diabetes, Endocrinology & Metabolism</td>
</tr>
<tr>
<td>Paul Watkins, MD</td>
<td>Hepatology</td>
</tr>
<tr>
<td></td>
<td>Professor of Medicine</td>
</tr>
<tr>
<td></td>
<td>University of North Carolina Health Care System</td>
</tr>
</tbody>
</table>
Medical Landscape

Edward Horton, MD
Joslin Diabetes Center, Harvard Medical School, Boston
Global Projections for the Diabetes Epidemic: 2011–2030

World
- 2011 = 366 M
- 2030 = 552 M
- ↑ >51%

Europe
- 2011 = 52.8 M
- 2030 = 64.2 M
- ↑ 22%

North America and Caribbean
- 2011 = 37.7 M
- 2030 = 51.2 M
- ↑ 36%

South and Central America
- 2011 = 14.7 M
- 2030 = 28.0 M
- ↑ 90%

Africa
- 2011 = 25.1 M
- 2030 = 39.9 M
- ↑ 59%

Middle East and North Africa
- 2011 = 32.6 M
- 2030 = 59.7 M
- ↑ 83%

South-East Asia
- 2011 = 71.4 M
- 2030 = 121 M
- ↑ 69%

Western Pacific
- 2011 = 112.8 M
- 2030 = 187.9 M
- ↑ 60%

M = million

Increased Obesity has Led to Increased Type 2 Diabetes

Obesity (BMI ≥30 kg/m²)

- **1994**
- **2000**
- **2009**

Diabetes

- **1994**
- **2000**
- **2009**

The Dual Epidemic: Obesity and Diabetes

- 65% of adult Americans are overweight (BMI >25) and 32% are obese (BMI >30)
- There are now an estimated 25.8 million people with DM in the USA (11.3% of adults) and 79 million with pre-diabetes (IFG/IGT)
- The lifetime risk of developing DM for people born in 2000 is 33% for men and 39% for women
Economic Costs of Diabetes

• Total direct and indirect costs of diabetes in the USA (2007): $174 billion*. Direct costs $116 billion, indirect costs $58 billion

• Diabetes is the leading cause of blindness in adults, the leading cause of kidney failure and of non-traumatic lower limb amputations.

• 60-70% of people with diabetes have mild to severe neuropathy

• The risk of heart disease and stroke is 2-4x greater in people with diabetes than without

*Diabetes Care March 2008 vol. 31 no. 3 596-615
Lowering HbA$_{1c}$ Reduces Complications in Type 1 and Type 2 Diabetes

<table>
<thead>
<tr>
<th></th>
<th>DCCT 9.1% → 7.3%</th>
<th>Kumamoto 9.4% → 7.1%</th>
<th>UKPDS 7.9% → 7.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinopathy</td>
<td>↓ 63%</td>
<td>↓ 69%</td>
<td>↓ 17%–21%</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>↓ 54%</td>
<td>↓ 70%</td>
<td>↓ 24%–33%</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>↓ 60%</td>
<td>Significantly improved</td>
<td>—</td>
</tr>
<tr>
<td>Macrovascular disease</td>
<td>↓ 41%*</td>
<td>—</td>
<td>↓ 16%*</td>
</tr>
</tbody>
</table>

Not statistically significant

Glycemia in Relation to Microvascular Disease and Myocardial Infarction

Glycemic Goals for Diabetes Management

<table>
<thead>
<tr>
<th>AMERICAN DIABETES ASSOCIATION</th>
<th>NORMAL</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA$_{1c}$ (%)</td>
<td>< 6</td>
<td>< 7*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS/AMERICAN COLLEGE OF ENDOCRINOLOGY (AACE/ACE)</th>
<th>NORMAL</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA$_{1c}$ (%)</td>
<td>< 6</td>
<td>≤ 6.5</td>
</tr>
</tbody>
</table>

*HbA$_{1c}$ goal for individual patient is as close to normal (<6%) as possible without significant hypoglycemia

The Need for Individualization of Treatment Approaches and Goals

• Intensive management – with tight glycemic control – can have dramatic and long-term benefits

• *However*, late introduction of tight control in older patients with CVD (as in ACCORD), may have risks

• The key is **individualization** of therapy – based upon age, life expectancy, presence of complications, co-morbidities (including CVD), other patient factors, risks/impact of hypoglycemia, all must be considered
Glycemic Control Has Improved – But Many Patients Still Not at Goal HbA$_{1c}$ <7%

N=1334
NHANES=National Health and Nutrition Examination Survey
UKPDS Head to Head Therapy Comparison: Progressive Deterioration with All Agents

Progressive HbA1c deterioration – due to progressive loss of insulin secretion

Overweight patient cohort
Body mass index 31.4 kg/m²

UKPDS 34. Lancet 1998; 352: 837-853
Natural History of Type 2 Diabetes

Glucose (mg/dL)

Fasting glucose

Postmeal glucose

Insulin resistance

β-cell function

Onset of Diabetes

Years

Prediabetes (IFG, IGT)
Clinical diagnosis
Metabolic syndrome

Kendall DM, Bergenstal RM ©2003 International Diabetes Center, Minneapolis, MN. All rights reserved.

126 mg/dl
7.0 mM
Pathophysiology and Pharmacotherapy of Hyperglycemia in Type 2 Diabetes

- **Pancreas β-cell**
 - Decreased Insulin Secretion
 - Sulfonylureas
 - Meglitinides
 - GLP-1/DPP4 inhibitors

- **Pancreas α-cell**
 - Increased Glucagon Secretion
 - GLP-1/DPP4 inhibitors

- **Liver**
 - Increased Glucose Production
 - Metformin
 - TZDs

- **Gut**
 - CHO digestion and absorption
 - a-glucosidase inhibitors
 - GLP-1 / DPP4 inhibitors

- **Adipose Tissue**
 - Decreased Glucose Uptake
 - Increased Lipolysis
 - TZDs

- **Kidney**
 - Increased Glucose Re-absorption
 - SGLT-2 inhibitors

- **Peripheral Tissue**
 - Decreased Glucose Uptake
 - TZDs
 - Metformin

- **Neurotransmitter Dysfunction**
 - Bromocriptine

Adapted from DeFronzo RA. *Diabetes*. 2009;58:773-795.
Limitations of Current Treatments for Patients with T2DM

- 5 classes of oral agents – 2 classes of SQ agents are recommended by ADA/EASD
- Limitations of currently available classes
 - Limited efficacy or durability: sulphonylurea (SU) agents, DPP-4 inhibitors
 - Hypoglycemia: SU agents, insulin
 - Weight gain: SU agents, PPARγ agents, insulin
 - GI side effects: metformin, GLP-1 agonists
 - Fluid retention: SU agents, PPARγ agents, insulin

Conclusion: there is a need for new agents / new options
Imperative for New AHAs

• Diabetes is a rapidly advancing epidemic
 – Failure to adequately control hyperglycemia can have devastating consequences on affected individuals and on society

• Currently available AHAs have limitations (wt gain, GI side effects, limited efficacy and/or long-term durability)
 – Many patients not achieving or maintaining HbA1c goal of < 7%
Mechanism of Action

Gary Meininger, MD
Franchise Medical Leader - Metabolism
Janssen Research and Development
Sodium-glucose Transporter-2 (SGLT2): Key Renal Transporter Reabsorbing Filtered Glucose Back into Systemic Circulation

SGLT2
- Primarily expressed in kidney
- Responsible for majority of renal glucose reabsorption

SGLT1
- Responsible for small portion of renal glucose reabsorption
- Prominent role in intestinal glucose absorption

Glucose is Filtered in the Glomerulus

Glucose Reabsorbed to Systemic Circulation

No Glucose in Urine
Canagliflozin: SGLT2 Inhibition Leads to Improved Glucose Control in T2DM

- CANA is potent, selective inhibitor of SGLT2
- UGE ~ 80-100 grams/day, thereby reducing plasma glucose
- Additional contributors to glucose control
 - Reduction in body weight due to 300-400 kcal/day loss to UGE
 - Improved beta-cell function
- Mechanism of action independent of insulin
There is a Threshold Relationship Between Plasma Glucose and UGE

Healthy Subjects
RT$_G^*$~180 mg/dL

*Renal threshold for glucose
Renal Glucose Reabsorption and RT_G are Elevated in T2DM

*Renal threshold for glucose
Canagliflozin Lowers RT_G

- T2DM+CANA $RT_G \sim 70-90 \text{ mg/dL}$
- T2DM mean $RT_G \sim 240 \text{ mg/dL}$

Renal threshold for glucose
Canagliflozin: Pharmacokinetics and Pharmacodynamics

Pharmacokinetics

• Half-life of 11-13 hrs supports once-daily dosing
• Balanced renal and biliary excretion
• Glucuronidation is major metabolic pathway
 – No active metabolites
• No clinically meaningful drug-drug interactions observed

Pharmacodynamics

24-Hour Profile for RT_G in Subjects With T2DM Treated with Canagliflozin

Profiles shown were obtained from PK/PD model developed using pooled Phase 1 dataset. (N=242)
Canagliflozin Treatment Lowers Plasma Glucose Concentrations Throughout the Entire Day

Example: CANA 100 mg treatment in subjects with T2DM

Canagliflozin lowers fasting, postprandial, and 24-h mean plasma glucose

Data shown are mean values from NAP1002
Canagliflozin Treatment Improves Indices of Beta-cell Function

Data from DIA3002 (Week 26)

HOMA2-%B (Fasting-based index)

- Similar results observed in all studies in subjects with T2DM where these indices have been assessed
- Effects believed to be secondary to improved glucose control rather than direct effects of SGLT inhibition

Data shown are mean ± s.e.
Summary of Pharmacodynamic Effects of CANA 100 mg and 300 mg

<table>
<thead>
<tr>
<th>Effect</th>
<th>CANA 100 mg</th>
<th>CANA 300 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased UGE</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Maximal RT_G lowering during daytime</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maximal RT_G lowering for full 24 h</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Reduced fasting and postprandial glucose</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Delayed intestinal glucose absorption (only after dosing with meal)</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Improved indices of beta-cell function</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>
Phase 3 Clinical Development Program: 9 Studies Conducted

Monotherapy
- **Monotherapy** (DIA3005)
 - 26 / 26 wks N=587

Dual Combination
- **Combo with MET** (DIA3006)
 - 26 / 26 wks N=1284

Triple Combination
- **Combo with MET/PIO** (DIA3012)
 - 26 / 26 wks N=344
- **Combo with INSULIN** (Substudy DIA3008)
 - 18 wks N=1718

Insulin +/- oral(s)
- **Combo with MET vs GLIM** (DIA3009)
 - 52 / 52 wks N=1452
- **Combo with MET/SU vs SITA** (DIA3015)
 - 52 wks N=756

Pbo-control
- **Combo with MET** (DIA3006)
 - 26 / 26 wks N=1284

Active-control
- **Combo with MET/PIO vs GLIM**
 - 52 / 52 wks N=1452
- **Combo with MET/SU vs SITA**
 - 52 wks N=756

Studies in Special T2DM Populations
- **Placebo-controlled studies / add-on to current diabetes treatment**

Older Subjects - Bone Safety and Body Comp (DIA3010)
- 26 / 78 wks N=716

Renal Impairment (DIA3004)
- 26 / 26 wks N=272

CV Safety Study (DIA3008: CANVAS)
- Event-driven N=4330
Distribution of Subjects Phase 3

North America
Canada, Mexico, USA
3743 (36%)

EU/EEA/EFTA
2681 (26%)

Central/South America
795 (8%)

Rest of the world
3082 (30%)
Baseline Characteristics – Worldwide and US
All Randomized Subjects from Phase 3 Studies

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Worldwide N=10301</th>
<th></th>
<th>US N=2634</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>59.5 (9.46)</td>
<td></td>
<td>58.8 (9.86)</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5965 (58)</td>
<td></td>
<td>1523 (58)</td>
</tr>
<tr>
<td>Female</td>
<td>4336 (42)</td>
<td></td>
<td>1111 (42)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>7411 (72)</td>
<td></td>
<td>2158 (82)</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>452 (4)</td>
<td></td>
<td>359 (14)</td>
</tr>
<tr>
<td>Asian</td>
<td>1643 (16)</td>
<td></td>
<td>50 (2)</td>
</tr>
<tr>
<td>Other a</td>
<td>795 (8)</td>
<td></td>
<td>67 (3)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>1699 (16)</td>
<td></td>
<td>444 (17)</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>8563 (83)</td>
<td></td>
<td>2177 (83)</td>
</tr>
<tr>
<td>Not provided</td>
<td>39 (<1)</td>
<td></td>
<td>13 (<1)</td>
</tr>
</tbody>
</table>

a Includes American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiple, and Other
Overview of Efficacy

• Results from Placebo-controlled Studies
• Results from Active-controlled Studies
• Results in Subjects with Renal Impairment (Stage 3 CKD)
• HbA$_{1c}$ Subgroup Analyses
Placebo-controlled Studies

- HbA$_{1c}$
- Body weight
- Systolic blood pressure
HbA$_{1c}$ Change from Baseline
Placebo-controlled Phase 3 Studies

Add-on Combinations with

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Monotherapy (DIA3005)</th>
<th>Metformin (DIA3006)</th>
<th>SU (DIA3008)</th>
<th>Met/SU (DIA3002)</th>
<th>Met/Pio (DIA3012)</th>
<th>Insulin (DIA3008)</th>
<th>Current Therapy in Older Subjects (DIA3010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>584</td>
<td>1284</td>
<td>127</td>
<td>469</td>
<td>342</td>
<td>1718</td>
<td>714</td>
</tr>
<tr>
<td>BL Mean HbA$_{1c}$ (%)</td>
<td>8.0</td>
<td>7.9</td>
<td>8.4</td>
<td>8.1</td>
<td>7.9</td>
<td>8.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Placebo-subtracted</td>
<td>-0.91*</td>
<td>-0.77*</td>
<td>-0.83*</td>
<td>-0.71*</td>
<td>-0.62*</td>
<td>-0.65*</td>
<td>-0.57*</td>
</tr>
<tr>
<td>LS Mean Change in HbA$_{1c}$ (%) (95% CI)</td>
<td>-1.16*</td>
<td>-0.74*</td>
<td>-0.83*</td>
<td>-0.92*</td>
<td>-0.76*</td>
<td>-0.73*</td>
<td>-0.70*</td>
</tr>
</tbody>
</table>

All at 26 weeks except 18 weeks DIA3008 Insulin, SU sub-studies

* p<0.001

Based on ANCOVA models, data prior to rescue (LOCF)
HbA$_{1c}$ Change from Baseline at Week 18
Placebo-controlled Add-on to Insulin Substudy (DIA3008 Insulin)

N=1718

Mean age (y): 62.8
Mean duration of T2DM (y): 16.6
BL insulin dose (IU/day): 83
BL Mean HbA$_{1c}$ (%): 8.3

Based on ANCOVA model, data prior to rescue (LOCF)

* p <0.001

Placebo-subtracted LS Mean % Change from Baseline (95% CI) HbA$_{1c}$

- CANA 100 mg: -0.65*
- CANA 300 mg: -0.73*

* p <0.001

CC-40
Subjects with HbA\textsubscript{1c} <7\% at Primary Endpoint
Placebo-controlled Phase 3 Studies

Add-on combinations with

<table>
<thead>
<tr>
<th>Monotherapy (DIA3005) N =584</th>
<th>Metformin (DIA3006) N = 1284</th>
<th>SU (DIA3008) N = 127</th>
<th>Met/SU (DIA3002) N = 469</th>
<th>Met/Pio (DIA3012) N = 342</th>
<th>Insulin (DIA3008) N = 1718</th>
<th>Current Therapy in Older Subjects (DIA3010) N = 714</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL Mean HbA\textsubscript{1c} (%)</td>
<td>8.0</td>
<td>7.9</td>
<td>8.4</td>
<td>8.1</td>
<td>7.9</td>
<td>8.3</td>
</tr>
<tr>
<td>% Subjects Achieving HbA\textsubscript{1c} <7%</td>
<td>44.5</td>
<td>45.5</td>
<td>57.8</td>
<td>56.6</td>
<td>64.3</td>
<td>47.7</td>
</tr>
</tbody>
</table>

Data prior to rescue (LOCF);
Body Weight Percent Change from Baseline
Placebo-controlled Phase 3 Studies

Based on ANCOVA models, data prior to rescue (LOCF)

Add-on combinations with

<table>
<thead>
<tr>
<th>Monotherapy (DIA3005) N = 584</th>
<th>Metformin (DIA3006) N = 1284</th>
<th>SU (DIA3008) N = 127</th>
<th>Met/SU (DIA3002) N = 469</th>
<th>Met/Pio (DIA3012) N = 342</th>
<th>Insulin (DIA3008) N = 1718</th>
<th>Current Therapy in Older Subjects (DIA3010) N = 714</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL Mean Weight (kg)</td>
<td>86.8</td>
<td>87.2</td>
<td>83.0</td>
<td>92.8</td>
<td>94.1</td>
<td>97.0</td>
</tr>
<tr>
<td>Placebo-subtracted LS Mean</td>
<td>% Change in Body Weight (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CANA 100 mg</td>
<td>-2.2*</td>
<td>-2.5*</td>
<td>-2.9*</td>
<td>-1.4*</td>
<td>-2.0*</td>
<td>-1.9*</td>
</tr>
<tr>
<td>CANA 300 mg</td>
<td>-3.3*</td>
<td>-3.0*</td>
<td>-2.9*</td>
<td>-1.8†</td>
<td>-2.7*</td>
<td>-2.4*</td>
</tr>
</tbody>
</table>

* p <0.001; † p <0.05

Based on ANCOVA models, data prior to rescue (LOCF)
Percent of Subjects with Weight Reduction ≥5%
Placebo-controlled Phase 3 Studies

Add-on combinations with

<table>
<thead>
<tr>
<th>Add-on combinations with</th>
<th>Monotherapy (DIA3005) N=584</th>
<th>Metformin (DIA3006) N=1284</th>
<th>SU (DIA3008) N=127</th>
<th>Met/SU (DIA3002) N=469</th>
<th>Met/Pio (DIA3012) N=342</th>
<th>Insulin (DIA3008) N=1718</th>
<th>Current Therapy in Older Subjects (DIA3010) N=714</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL Mean Weight (kg)</td>
<td>86.8</td>
<td>87.2</td>
<td>83.0</td>
<td>92.8</td>
<td>94.1</td>
<td>97.0</td>
<td>89.5</td>
</tr>
<tr>
<td>% Subjects with ≥5% Body Weight Reduction</td>
<td>22.1</td>
<td>32.5</td>
<td>29.6</td>
<td>11.9</td>
<td>15.9</td>
<td>15.5</td>
<td>24.1</td>
</tr>
</tbody>
</table>

Data prior to rescue (LOCF)
Systolic Blood Pressure Change from Baseline
Placebo-controlled Phase 3 Studies

Add-on combinations with

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy (DIA3005)</td>
<td>584</td>
</tr>
<tr>
<td>Metformin (DIA3006)</td>
<td>1284</td>
</tr>
<tr>
<td>SU (DIA3008)</td>
<td>127</td>
</tr>
<tr>
<td>Met/SU (DIA3002)</td>
<td>469</td>
</tr>
<tr>
<td>Met/Pio (DIA3012)</td>
<td>342</td>
</tr>
<tr>
<td>Insulin (DIA3008)</td>
<td>1718</td>
</tr>
<tr>
<td>Current Therapy in Older Subjects (DIA3010)</td>
<td>714</td>
</tr>
</tbody>
</table>

Placebo-subtracted LS Mean Change in Systolic BP (mmHg) (95% CI)

- **CANA 100 mg**
 - Monotherapy: -3.7*, -5.4*, -5.4*, -6.6*
 - Metformin: -0.1, -2.2, -1.6
 - SU: -1.8
 - Met/SU: -4.1†, -3.5†
 - Met/Pio: -2.6*, -4.4*
 - Insulin: -4.6*, -4.6*
 - Current Therapy in Older Subjects: -7.9*

- **CANA 300 mg**
 - Monotherapy: -4.03, -3.75
 - Metformin: -0.16, -0.53
 - SU: -0.16
 - Met/SU: -1.11, -0.22
 - Met/Pio: -1.18, 0.22

* p<0.001; † p<0.05

Based on ANCOVA models, data prior to rescue (LOCF)

No clinically meaningful changes in pulse rate

Pulse rate (bpm) LS mean change
-1.33 -0.70 -0.95 -0.24 -4.03 -3.75 -0.16 -0.53 1.02 -0.08 -1.11 -0.22 -1.18 0.22
Results from Active-controlled Studies

- HbA$_{1c}$
- Body weight
- Systolic blood pressure
HbA1c Change from Baseline Over Time
Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)

Baseline Mean HbA1c (%): 7.8
N = 1450

Glimepiride dose:
- Mean (median) of highest dose reached - 5.6 mg (6.0 mg)
- 82% of subjects on ≥4 mg/day

Based on ANCOVA model, data prior to rescue (LOCF)
Body Weight Percent Change from Baseline Over Time
Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)

-5.7%* (-4.7 kg)
-5.2%* (-4.4 kg)

* p < 0.001
Based on ANCOVA model, data prior to rescue (LOCF)
Changes in Body Composition and Weight

Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)

Weight Loss Over Time

BL Mean Body Weight (kg): 86.6
N = 1450

<table>
<thead>
<tr>
<th>Week</th>
<th>BL</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>18</th>
<th>26</th>
<th>36</th>
<th>44</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS Mean % Change from Baseline ± SE Body Weight</td>
<td>-5.7%* (-4.7 kg)</td>
<td>-5.2%* (-4.4 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change in Body Composition (DXA Analysis Subgroup)

N = 312

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Lean Mass (kg)</th>
<th>Fat Mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glimepiride</td>
<td>-5.2%* (-4.4 kg)</td>
<td>-5.7%* (-4.7 kg)</td>
</tr>
<tr>
<td>CANA 100 mg</td>
<td>-0.89</td>
<td>-1.06</td>
</tr>
<tr>
<td>CANA 300 mg</td>
<td>-2.89</td>
<td>-2.51</td>
</tr>
</tbody>
</table>

Weight changes relative to glimepiride in DXA analysis subgroup (-5.3 kg and -5.0 kg for CANA 100 mg and 300 mg, respectively) were similar to overall cohort.

* p < 0.001

Based on ANCOVA model, data prior to rescue (LOCF)
Systolic Blood Pressure Change From Baseline at Week 52
Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009)

N=1450

BL Mean Systolic BP (mmHg): 129.8

SBP endpoint was not included in the prespecified testing sequence, however CI excluded 0.
Based on ANCOVA model, data prior to rescue (LOCF)
HbA₁c Change from Baseline Over Time
Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)

- **LS Mean Change from Baseline ±SE**
- **HbA₁c (%)**
 - BL Mean HbA₁c (%): 8.1
 - N = 755

Weeks:
- BL
- 6
- 12
- 18
- 26
- 34
- 42
- 52

SITA 100 mg
CANA 300 mg

Based on ANCOVA model (LOCF)

(95% CI: -0.500; -0.250)
Body Weight Percent Change from Baseline Over Time
Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)

BL Body Weight (kg): 88.3
N = 755

-2.8%* (-2.4 kg)

* p < 0.001
Based on ANCOVA model (LOCF)
Systolic Blood Pressure Change From Baseline at Week 52
Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)

N=755

BL Mean Systolic BP (mmHg): 130.7

Difference from Sitagliptin

* p <0.001
Based on ANCOVA model (LOCF)
Results in Subjects with Renal Impairment

- HbA1c
- Body weight
- Systolic blood pressure
HbA$_{1c}$ Change from Baseline
Renal Impairment Study (DIA3004) and Pooled Population (DS2)

Study in T2DM Subjects with Renal Impairment
(eGFR 30 to <50) (DIA3004)
(N=269)

- BL Mean HbA$_{1c}$ (%) 8.0
- BL Mean eGFR (mL/min/1.73m2) 39.4

Pooled Renal Impairment Population §
(eGFR 30 to <60)
(N=1085)

- BL Mean HbA$_{1c}$ (%) 8.1
- BL Mean eGFR (mL/min/1.73m2) 48.2

<table>
<thead>
<tr>
<th>Drug</th>
<th>LS Mean Change from Baseline (± 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>-0.03</td>
</tr>
<tr>
<td>CANA 100 mg</td>
<td>-0.33*</td>
</tr>
<tr>
<td>CANA 300 mg</td>
<td>-0.44*</td>
</tr>
<tr>
<td>Pbo-subtracted differences</td>
<td></td>
</tr>
</tbody>
</table>

* $p <0.001$; † $p <0.05$

§Data from monotherapy study (DIA3005), renal impairment study (DIA3004), study in older subjects (DIA3010), and CV study (DIA3008)
Subjects Achieving HbA$_{1c}$ <7.0%
Renal Impairment Study (DIA3004) and Pooled Population (DS2)

DIA3004 (eGFR* 30 to <50)

BL Mean HbA$_{1c}$ 8.0%
N = 269

Proportion Achieving Goal (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Placebo</th>
<th>CANA 100 mg</th>
<th>CANA 300 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>17.2</td>
<td>27.3</td>
<td>32.6</td>
</tr>
</tbody>
</table>

Pooled Renal Impairment Population (eGFR* 30 to <60)

BL Mean HbA$_{1c}$ 8.1%
N = 1085

Proportion Achieving Goal (%)

<table>
<thead>
<tr>
<th>Group</th>
<th>Placebo</th>
<th>CANA 100 mg</th>
<th>CANA 300 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>17.4</td>
<td>24.5</td>
<td>31.9</td>
</tr>
</tbody>
</table>

*eL/min/1.73m2
Body Weight Percent Change from Baseline at Endpoint
Pooled Renal Impairment Population (eGFR 30 to <60)

N=1085
BL Body Weight (kg): 90.9

LS Mean % Change from Baseline (±95% CI)

- Placebo
- CANA 100 mg
- CANA 300 mg

-1.6%* (-1.4 kg)
-1.9%* (-1.8 kg)

Pbo-subtracted differences

* p <0.001
Based on ANCOVA model, data prior to rescue (LOCF)
Systolic BP Change from Baseline at Endpoint
Pooled Renal Impairment Population (eGFR 30 to <60)

N=1085
BL Mean Systolic BP (mmHg): 135.3

LS Mean Change from Baseline (95%CI)

Systolic Blood Pressure (mmHg)

- Placebo
- CANA 100 mg
- CANA 300 mg

-6.0
-4.4
-1.6

-2.77†
-4.38*

* p <0.001; † p <0.05
Based on ANCOVA model, data prior to rescue (LOCF)
HbA$_{1c}$ Subgroup Analyses
HbA\textsubscript{1c} Change from Baseline by Subgroup Factors
Pooled Placebo-controlled Studies for Efficacy

*includes: monotherapy, dual therapy, triple therapy, and insulin
Summary of Canagliflozin Efficacy Data

• HbA1c
 – Consistent improvement across Phase 3 studies, with more subjects achieving HbA1c goal
 – Sustained response over 52 weeks
 – Meaningful, albeit lesser, reductions in HbA1c in subjects with renal impairment

• Other efficacy parameters
 – Consistent reductions in body weight
 – Consistent reductions in systolic blood pressure

• Additional efficacy with 300 mg relative to 100 mg
Overview of Safety and Tolerability

Peter Stein, MD
Head of Development, Metabolism
Janssen Research and Development, LLC
Agenda

• Pooled datasets for safety: definition, characteristics, exposure
 – Placebo-controlled 26 week studies dataset
 – “Broad Dataset”

• Review of adverse drug reactions (ADRs)
 – Overview of identified ADRs
 – Review of specific ADRs: UTIs, related to reduced intravascular volume

• Additional safety assessments
 – LDL-C changes and CV meta-analysis (including events in 1st 30 days in CANVAS)
 – Renal safety and safety in stage 3 CKD subjects
 – Bone
Phase 3 Clinical Development Program: 9 Studies Conducted

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Dual Combination</th>
<th>Triple Combination</th>
<th>Insulin +/- oral(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy (DIA3005)</td>
<td>Combo with MET (DIA3006)</td>
<td>Combo with MET/PIO (DIA3012)</td>
<td>Combo with INSULIN (Substudy DIA3008)</td>
</tr>
<tr>
<td>26 / 26 wks N=587</td>
<td>26 / 26 wks N=1284</td>
<td>26 / 26 wks N=344</td>
<td>18 wks N=1784</td>
</tr>
<tr>
<td>Combo with SU (Substudy DIA3008)</td>
<td>Combo with MET/SU (DIA3002)</td>
<td>Combo with MET/SU vs SITA (DIA3015)</td>
<td></td>
</tr>
<tr>
<td>18 wks N=127</td>
<td>26 / 26 wks N=469</td>
<td>52 wks N=756</td>
<td></td>
</tr>
<tr>
<td>Combo with MET vs GLIM (DIA3009)</td>
<td>Combo with MET/SU vs SITA (DIA3015)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 / 52 wks N=1452</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studies in Special T2DM Populations
- Placebo-controlled studies / add-on to current diabetes treatment

- **Older Subjects - Bone Safety and Body Comp (DIA3010)**
 - 26 / 78 wks N=716

- **Renal Impairment (DIA3004)**
 - 26 / 26 wks N=272

- **CV Safety Study (DIA3008: CANVAS)**
 - Event-driven N=4330
Phase 3 Pooled Safety Populations: Placebo-controlled Studies Dataset (DS1)

<table>
<thead>
<tr>
<th>Monotherapy</th>
<th>Dual Combination</th>
<th>Triple Combination</th>
<th>Insulin +/- oral(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monotherapy (DIA3005)</td>
<td>Combo with MET (DIA3006)</td>
<td>Combo with MET/PIO (DIA3012)</td>
<td></td>
</tr>
<tr>
<td>26 / 26 wks N=587</td>
<td>26 / 26 wks N=1284</td>
<td>26 / 26 wks N=344</td>
<td></td>
</tr>
<tr>
<td>Combo with MET/PIO (DIA3012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 / 26 wks N=469</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Phase 3 studies / 2313 subjects
26 week double-blind duration
Phase 3 Pooled Safety Populations: Broad Dataset (DS3)

Monotherapy
- **Monotherapy (DIA3005)**
 - 26 / 26 wks N=587

Dual Combination
- **Combo with MET (DIA3006)**
 - 26 / 26 wks N=1284
- **Combo with SU (Substudy DIA3008)**
 - 18 wks N=127

Triple Combination
- **Combo with MET/PIO (DIA3012)**
 - 26 / 26 wks N=344
- **Combo with MET/SU (DIA3002)**
 - 26 / 26 wks N=469

Insulin +/- oral(s)
- **Combo with INSULIN (Substudy DIA3008)**
 - 18 wks N=1784

Studies in Special T2DM Populations
- **Older Subjects - Bone Safety and Body Comp (DIA3010)**
 - 26 / 78 wks N=716
- **Renal Impairment (DIA3004)**
 - 26 / 26 wks N=272
- **CV Safety Study (DIA3008: CANVAS)**
 - Event-driven N=4330

Total: 8 Phase 3 Studies
9439 subjects
- PBO/comparators pooled (=“Non-CANA” group)
Baseline Characteristics

Pooled Datasets

<table>
<thead>
<tr>
<th></th>
<th>Placebo-controlled Studies Dataset N=2313</th>
<th>Broad Dataset N=9439</th>
<th>CANVAS N=4,327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>49.5</td>
<td>58.2</td>
<td>66.1</td>
</tr>
<tr>
<td>Female</td>
<td>50.5</td>
<td>41.8</td>
<td>33.9</td>
</tr>
<tr>
<td>Age (y), Mean (SD)</td>
<td>56.0 (9.81)</td>
<td>59.9 (9.35)</td>
<td>62.4 (8.02)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>72.2</td>
<td>72.6</td>
<td>73.4</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>5.1</td>
<td>3.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Asian</td>
<td>12.3</td>
<td>15.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Other</td>
<td>10.4</td>
<td>7.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Body mass index, kg/m², Mean (SD)</td>
<td>32.1 (6.42)</td>
<td>31.9 (6.06)</td>
<td>32.1 (6.24)</td>
</tr>
<tr>
<td>HbA₁c (%), Mean (SD)</td>
<td>8.0 (0.93)</td>
<td>8.0 (0.90)</td>
<td>8.2 (0.92)</td>
</tr>
<tr>
<td>Duration of diabetes (y), Mean (SD)</td>
<td>7.3 (6.04)</td>
<td>10.6 (7.53)</td>
<td>13.4 (7.52)</td>
</tr>
<tr>
<td>eGFR, Mean</td>
<td>88</td>
<td>81</td>
<td>77</td>
</tr>
<tr>
<td>≥ 1 Microvascular Complications (%)</td>
<td>18.9</td>
<td>33.1</td>
<td>44.2</td>
</tr>
</tbody>
</table>
Exposure

Placebo-controlled Studies Dataset and Broad Dataset through 01 Jul 2012

<table>
<thead>
<tr>
<th>Category, %</th>
<th>Placebo N=646</th>
<th>CANA 100 mg N=833</th>
<th>CANA 300 mg N=834</th>
<th>Broad Dataset through 01 Jul 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>77.7</td>
</tr>
<tr>
<td>≥ 76 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40.6</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td>64.4 (30.2)</td>
</tr>
<tr>
<td>Median</td>
<td>26.0</td>
<td>26.1</td>
<td>26.1</td>
<td>65.9</td>
</tr>
<tr>
<td>Total Exposure (subject-years)</td>
<td>294</td>
<td>387</td>
<td>388</td>
<td>4024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category, %</th>
<th>Placebo N=646</th>
<th>CANA 100 mg N=833</th>
<th>CANA 300 mg N=834</th>
<th>Broad Dataset through 01 Jul 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83.5</td>
</tr>
<tr>
<td>≥ 76 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>46.4</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td>68.8 (29.0)</td>
</tr>
<tr>
<td>Median</td>
<td>26.0</td>
<td>26.1</td>
<td>26.1</td>
<td>72.9</td>
</tr>
<tr>
<td>Total Exposure (subject-years)</td>
<td>294</td>
<td>387</td>
<td>388</td>
<td>4075</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category, %</th>
<th>Placebo N=646</th>
<th>CANA 100 mg N=833</th>
<th>CANA 300 mg N=834</th>
<th>Broad Dataset through 01 Jul 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 50 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>81.9</td>
</tr>
<tr>
<td>≥ 76 weeks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45.2</td>
</tr>
<tr>
<td>Mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td>67.4 (30.2)</td>
</tr>
<tr>
<td>Median</td>
<td>26.0</td>
<td>26.1</td>
<td>26.1</td>
<td>72.4</td>
</tr>
<tr>
<td>Total Exposure (subject-years)</td>
<td>294</td>
<td>387</td>
<td>388</td>
<td>3987</td>
</tr>
</tbody>
</table>

Note: Total duration = Treatment duration = last dose date - first dose date + 1 (in days).

Broad dataset does not include DIA3015
Summary of Adverse Events

Broad Dataset through 01 Jul 2012

<table>
<thead>
<tr>
<th></th>
<th>Non-CANA N=3262 %</th>
<th>CANA 100 mg N=3092 %</th>
<th>CANA 300 mg N=3085 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse events</td>
<td>75.8</td>
<td>76.6</td>
<td>77.0</td>
</tr>
<tr>
<td>AEs leading to discontinuation</td>
<td>5.0</td>
<td>5.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>13.6</td>
<td>13.5</td>
<td>13.2</td>
</tr>
<tr>
<td>Serious AEs leading to discontinuation</td>
<td>2.2</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Deaths</td>
<td>1.1</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Genital mycotic infections: male and female
- Osmotic diuresis-related (pollakiuria, thirst)
- Other: UTI, renal-related
Adverse Drug Reactions

• Overview of ADRs
• Discussion of specific ADRs:
 • Urinary tract infections
 • Reduced intravascular volume-related AEs
Summary of Adverse Drug Reactions

≥ 2% and > Placebo in the Placebo-controlled Studies Dataset

<table>
<thead>
<tr>
<th></th>
<th>Placebo N=646 n (%)</th>
<th>CANA 100 mg N=833 n (%)</th>
<th>CANA 300 mg N=834 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>6 (0.9)</td>
<td>15 (1.8)</td>
<td>19 (2.3)</td>
</tr>
<tr>
<td>Thirst</td>
<td>1 (0.2)</td>
<td>23 (2.8)</td>
<td>19 (2.3)</td>
</tr>
<tr>
<td>Renal and Urinary Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyuria or pollakiuria</td>
<td>5 (0.8)</td>
<td>44 (5.3)</td>
<td>38 (4.6)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>26 (4.0)</td>
<td>49 (5.9)</td>
<td>36 (4.3)</td>
</tr>
<tr>
<td>Reproductive System and Breast Disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanitis or balanoposthitis</td>
<td>2 (0.6)</td>
<td>17 (4.2)</td>
<td>15 (3.7)</td>
</tr>
<tr>
<td>Vulvovaginal candidiasis</td>
<td>10 (3.2)</td>
<td>44 (10.4)</td>
<td>49 (11.4)</td>
</tr>
</tbody>
</table>
Additional ADRs Identified

In *Broad Dataset*

- Reduced intravascular volume-related AEs (eg, postural dizziness)
- Less common (< 2%): rash/urticaria

In *individual* Phase 3 studies

- Hypoglycemia in patients on insulin or sulphonylurea agent
 - Low rate of hypoglycemia in studies of subjects not on agents associated with hypoglycemia
Adverse Drug Reactions

Urinary tract infections

Adverse events related to reduced intravascular volume
Incidence of Urinary Tract Infection Adverse Events

Broad Dataset through 01 Jul 2012

<table>
<thead>
<tr>
<th></th>
<th>Non-CANA N=3262</th>
<th>CANA 100 mg N=3092</th>
<th>CANA 300 mg N=3085</th>
<th>All CANA N=6177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse events</td>
<td>218 (6.7)</td>
<td>254 (8.2)</td>
<td>250 (8.1)</td>
<td>504 (8.2)</td>
</tr>
<tr>
<td>Upper UTI AE</td>
<td>11 (0.3)</td>
<td>20 (0.6)</td>
<td>10 (0.3)</td>
<td>30 (0.5)</td>
</tr>
<tr>
<td>AEs leading to discontinuation</td>
<td>4 (0.1)</td>
<td>11 (0.4)</td>
<td>6 (0.2)</td>
<td>17 (0.3)</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>12 (0.4)</td>
<td>16 (0.5)</td>
<td>8 (0.3)</td>
<td>24 (0.4)</td>
</tr>
</tbody>
</table>
Reduced Intravascular Volume-Related AEs
Broad Dataset through 01 Jul 2012

<table>
<thead>
<tr>
<th></th>
<th>Non-CANA N=3262 n (%)</th>
<th>CANA 100 mg N=3092 n (%)</th>
<th>CANA 300 mg N=3085 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse events</td>
<td>78 (2.4)</td>
<td>99 (3.2)</td>
<td>141 (4.6)</td>
</tr>
<tr>
<td>AEs leading to discontinuation</td>
<td>4 (0.1)</td>
<td>2 (0.1)</td>
<td>3 (0.1)</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>11 (0.3)</td>
<td>12 (0.4)</td>
<td>8 (0.3)</td>
</tr>
</tbody>
</table>

Specific AE Terms

- **Blood pressure decreased**: 1 (<0.1), 2 (0.1), 2 (0.1)
- **Dehydration**: 13 (0.4), 6 (0.2), 13 (0.4)
- **Dizziness postural**: 24 (0.7), 26 (0.8), 33 (1.1)
- **Hypotension**: 20 (0.6), 47 (1.5), 60 (1.9)
- **Orthostatic hypotension**: 6 (0.2), 8 (0.3), 27 (0.9)
- **Orthostatic intolerance**: 1 (<0.1), 1 (<0.1), 1 (<0.1)
- **Presyncope**: 9 (0.3), 4 (0.1), 3 (0.1)
- **Syncope**: 13 (0.4), 12 (0.4), 20 (0.6)
- **Urine output decreased**: 1 (<0.1), 0, 0
Time to Event: Reduced Intravascular Volume AE
Broad Dataset through 01 Jul 2012

KM estimate

Estimated % of Subjects with an Event vs Time (Weeks)

Subjects at Risk
- Non CANA: 3262, 3097, 2861, 2679, 2580, 2506, 1639, 1303, 995, 344
- CANA 100 mg: 3092, 2954, 2791, 2666, 2582, 2532, 1750, 1395, 1060, 369
- CANA 300 mg: 3085, 2866, 2692, 2564, 2491, 2442, 1671, 1345, 1014, 370

Time (Weeks): 0, 12, 24, 36, 44, 52, 64, 76, 84, 104

Non-CANA

CANA 100 mg

CANA 300 mg
Risk Factors: Reduced Intravascular Volume AEs

Broad Dataset Core Period

<table>
<thead>
<tr>
<th></th>
<th>Non-CANA % (n/N)</th>
<th>CANA 100 mg % (n/N)</th>
<th>CANA 300 mg % (n/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR (mL/min/1.73m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>2.8 (12/436)</td>
<td>5.0 (19/382)</td>
<td>8.1 (33/405)</td>
</tr>
<tr>
<td>60 to <90</td>
<td>1.5 (26/1788)</td>
<td>2.4 (40/1686)</td>
<td>2.9 (48/1680)</td>
</tr>
<tr>
<td>≥90</td>
<td>1.2 (12/1035)</td>
<td>1.3 (13/1021)</td>
<td>2.4 (24/999)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><75</td>
<td>1.5 (46/3107)</td>
<td>2.2 (64/2929)</td>
<td>3.1 (90/2913)</td>
</tr>
<tr>
<td>≥75</td>
<td>2.6 (4/155)</td>
<td>4.9 (8/163)</td>
<td>8.7 (15/172)</td>
</tr>
<tr>
<td>Use of loop diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.2 (37/3006)</td>
<td>2.3 (65/2876)</td>
<td>2.9 (83/2835)</td>
</tr>
<tr>
<td>Yes</td>
<td>5.1 (13/256)</td>
<td>3.2 (7/216)</td>
<td>8.8 (22/250)</td>
</tr>
<tr>
<td>Age <75, not on loop diuretics and with eGFR ≥60 mL/min/1.73m²</td>
<td>1.1 (29/2604)</td>
<td>1.8 (45/2491)</td>
<td>2.2 (54/2434)</td>
</tr>
</tbody>
</table>
Summary: Reduced Intravascular Volume Related Adverse Events

• Dose-related increase in events
 – No increase in AEs leading to discontinuation or SAEs
 – Generally mild-moderate in intensity, short duration
 – Manageable, often with adjustment in concomitant BP-lowering regimen

• Risk factors for dose-related increase identified
 – eGFR < 60 mL/min/1.73 m², age ≥ 75 yrs, on loop diuretics
 – Supports dosing recommendations to initiate therapy at 100 mg in patients with any 1 of 3 risk factors
Additional Key Safety Assessments

- CV Meta-analysis Results
- Renal Safety Evaluations
- Bone Safety
Additional Key Safety Assessments

CV Safety
- Changes in LDL-C
- CV Meta-analysis results
Fasting Lipids: Absolute Change
Placebo-controlled Studies Dataset

LS Mean placebo-subtracted absolute change from baseline at Week 26

- **LDL-C**: 4.4 mg/dL (95% CI), -2.1 mg/dL
- **Non-HDL-C**: 8.2 mg/dL (95% CI), 2.8 mg/dL
- **HDL-C**: 5.1 mg/dL (95% CI), 2.3 mg/dL
- **LDL-C/HDL-C**: 0.0, 0.1
- **Triglycerides**: -9.2 mg/dL, -19.1 mg/dL

Increases in Apo B and NMR measured LDL particle number approximately half as large as increases in LDL-C.
CV Risk Factor Changes with Canagliflozin

• Changes in fasting lipids
 – Increases in LDL-C
 • Smaller increases in non-HDL-C, Apo B, LDL particle number
 – Increases in HDL-C
 – No change in LDL-C/HDL-C ratio
 – Decreases in TG

• Decreases in systolic and diastolic blood pressure
• Improved glycemic control
• Decrease in body weight
Pre-specified Cardiovascular Meta-analyses Procedures

- Predefined composite endpoint of “MACE-plus”: CV death, nonfatal MI, nonfatal stroke, hospitalized unstable angina
- Stepwise CV meta-analyses (based upon FDA DM CV guidance, 2008)
 - Current step 1 to meet upper bound < 1.8 planned when 200 events
 - Step 2 to meet upper bound < 1.3 planned when 500 events
- Step 1 meta-analysis included 201 events from all Phase 2 and 3 studies completed prior to 02 FEB 2012
 - Events from CANVAS (161) and non-CANVAS studies (40)
- Blinded, independent adjudication committee operating under committee charter
Time to Event Analysis for MACE-plus
All Phase 2/3 Studies

Probability of a MACE-plus Event

HR=0.91 (95% CI: 0.68, 1.22)
HR=1.00 (0.72, 1.39) CANVAS
HR=0.65 (0.35, 1.21) non-CANVAS

Number of Subjects at Risk
Non-CANA 3327 3282 3161 2991 2848 2650 1985 931 508 213 42
All CANA 6305 6224 6000 5715 5539 5227 4065 1935 1039 462 91

Note: includes all studies with data base lock prior to 31-Jan-12; mITT analysis set; events within 30 days of last dose
Incidence and HR for Adjudicated CV Events
All Phase 2/3 Studies

<table>
<thead>
<tr>
<th></th>
<th>Non-CANA</th>
<th>All CANA</th>
<th>Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events/PYs (per 100 patient-yrs)</td>
<td>Events/PYs (per 100 patient-yrs)</td>
<td>Favors CANA</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>71/3467 (2.05)</td>
<td>130/6821 (1.91)</td>
<td>0.91 (0.68, 1.22)</td>
</tr>
<tr>
<td>CV Death</td>
<td>16/3496 (0.46)</td>
<td>21/6888 (0.30)</td>
<td>0.65 (0.34, 1.24)</td>
</tr>
<tr>
<td>FNF MI</td>
<td>27/3484 (0.78)</td>
<td>45/6864 (0.66)</td>
<td>0.83 (0.52, 1.34)</td>
</tr>
<tr>
<td>FNF Stroke</td>
<td>16/3489 (0.46)</td>
<td>47/6859 (0.69)</td>
<td>1.47 (0.83, 2.59)</td>
</tr>
<tr>
<td>Unstable angina</td>
<td>18/3484 (0.52)</td>
<td>26/6874 (0.38)</td>
<td>0.71 (0.39, 1.30)</td>
</tr>
</tbody>
</table>
CV Meta-analysis – Further Assessments

Early Imbalance in CANVAS
HR Differences by Event Type
Issue: imbalance in 1st 30 days in CANVAS: 13 events in All CANA groups vs 1 event in PBO (2:1 rand)

Assessment

- Imbalance not seen in overall CV meta-analysis (pre-specified): 15 vs 5 in All CANA vs PBO (~2:1 rand)
- Considerable month-to-month variability in frequency of events
- Low rate in PBO group in 1st 30 days not typical in T2DM outcome studies
- Lack of association with volume depletion-related adverse events – time course or dose-relationship
- Subjects with “early” MACE+ events not more susceptible subset
Estimated Hazard Function
MACE-Plus CANVAS Study, mITT Analysis Set

Hazard Rate vs. Months on Treatment

- Placebo
- All CANA

CC-87
Initial Imbalance in Events in CANVAS Assessment

Plausibility of association of MACE-plus and volume depletion:

• Volume-related AEs increased over 1st ~ 90-120 days
 – vs MACE-plus events - higher rate in CANA group in 1st 30 days
 – then lower rate in next 60 days

• Volume-related AEs notably dose-related (300 mg > 100 mg)
 – vs MACE-plus events: 7 in 100 mg group / 6 in 300 mg group

• No reports of reduced intravascular volume-related AEs in subjects
 with MACE-plus events – or suggestive descriptions in narratives

Conclusions

• No evident relationship of MACE-plus to reduced intravascular-
 related AEs

• Early imbalance reflects the marked month-to-month variability
Incidence and HR for Adjudicated CV Events
All Phase 2/3 Studies

<table>
<thead>
<tr>
<th></th>
<th>Non-CANA</th>
<th>All CANA</th>
<th>Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events/PYs (per 100 patient-yrs)</td>
<td>Events/PYs (per 100 patient-yrs)</td>
<td>Favors CANA</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>71/3467 (2.05)</td>
<td>130/6821 (1.91)</td>
<td></td>
</tr>
<tr>
<td>CV Endpoint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV Death</td>
<td>16/3496 (0.46)</td>
<td>21/6888 (0.30)</td>
<td></td>
</tr>
<tr>
<td>FNF MI</td>
<td>27/3484 (0.78)</td>
<td>45/6864 (0.66)</td>
<td></td>
</tr>
<tr>
<td>FNF Stroke</td>
<td>16/3489 (0.46)</td>
<td>47/6859 (0.69)</td>
<td></td>
</tr>
<tr>
<td>Unstable angina</td>
<td>18/3484 (0.52)</td>
<td>26/6874 (0.38)</td>
<td></td>
</tr>
</tbody>
</table>
Assessment of Observed HR for Stroke

- Pre-specified composite provides most robust assessment
 - Variability expected in individual event types with smaller event number

- Assessment of plausibility of association with CANA due to dehydration with hypercoagulability
 - Minimal overlap with volume-related AEs, and decreases in SBP/increases in hemoglobin not notably different in subjects with stroke
 - Different time-course, lack of dose-relationship (vs volume-related AEs)
 - No difference in other events in stroke continuum: TIA HR 0.99
 - No evidence of hypercoagulability
 - No reported increase in strokes with diuretics

- Assessment: reflects a chance difference, with further assessment of stroke HR over time appropriate
Additional Key Safety Assessments

Renal Safety Evaluations

• eGFR change from baseline
• Albumin / Creatinine Ratio (ACR)
Mean Change in eGFR from Baseline Over Time
Placebo-controlled Studies Dataset

Mean Change +/- SE

<table>
<thead>
<tr>
<th>Group</th>
<th>BL</th>
<th>Wk 6</th>
<th>Wk 12</th>
<th>Wk 18</th>
<th>Wk 26</th>
<th>Wk 26 LOCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>87.0</td>
<td>620</td>
<td>590</td>
<td>560</td>
<td>526</td>
<td>624</td>
</tr>
<tr>
<td>CANA 100 mg</td>
<td>88.3</td>
<td>796</td>
<td>765</td>
<td>748</td>
<td>715</td>
<td>809</td>
</tr>
<tr>
<td>CANA 300 mg</td>
<td>88.8</td>
<td>795</td>
<td>758</td>
<td>744</td>
<td>720</td>
<td>805</td>
</tr>
</tbody>
</table>

eGFR (mL/min/1.73m²)
eGFR Mean Change from Baseline Over Time
Active (Glimepiride)-controlled Add-on to Metformin Study (DIA3009) and
Active (Sitagliptin)-controlled Add-on to Metformin + SU Study (DIA3015)

DIA3009
- **Glimepiride** (BL: 89.5)
- **CANA 100 mg** (BL: 89.7)
- **CANA 300 mg** (BL: 91.4)

DIA3015
- **SITA 100 mg** (BL: 87.76)
- **CANA 300 mg** (BL: 87.17)
Mean Change in eGFR from Baseline Over Time
Study in Subjects with T2DM and Renal Impairment (DIA3004)

Placebo
BL: 40.1 mL/min/1.73m²

CANA 100 mg
BL: 39.7 mL/min/1.73m²

CANA 300 mg
BL: 38.5 mL/min/1.73m²

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Wk 3</th>
<th>Wk 6</th>
<th>Wk 12</th>
<th>Wk 18</th>
<th>Wk 26</th>
<th>Wk 26 LOCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>90</td>
<td>86</td>
<td>83</td>
<td>82</td>
<td>80</td>
<td>75</td>
<td>87</td>
</tr>
<tr>
<td>CANA 100 mg</td>
<td>90</td>
<td>86</td>
<td>84</td>
<td>79</td>
<td>77</td>
<td>72</td>
<td>89</td>
</tr>
<tr>
<td>CANA 300 mg</td>
<td>89</td>
<td>84</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>80</td>
<td>89</td>
</tr>
</tbody>
</table>
Mean Percent Change in eGFR After Drug Discontinuation
CV Safety Study (DIA3008 July 2012 Dataset)

Baseline eGFR (mL/min/1.73m²): 77

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>CANA 100 mg</th>
<th>CANA 300 mg</th>
<th>All CANA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median days on drug</td>
<td>130</td>
<td>184</td>
<td>128</td>
<td>134</td>
</tr>
<tr>
<td>Median days since last dose</td>
<td>68.0</td>
<td>66.0</td>
<td>60.5</td>
<td>64.0</td>
</tr>
</tbody>
</table>

Mean Percent Change +/- SE
Change from Baseline in Albumin/Creatinine Ratio
CV Safety Study (DIA3008) through 01 Jul 2012

Within 2 Days After Last Study Medication
Safety in Subjects with Stage 3 CKD (eGFR 30 to <60 mL/min/1.73 m²)
Baseline Characteristics
Renal Impairment Dataset (eGFR 30 to <60)

<table>
<thead>
<tr>
<th></th>
<th>Placebo-controlled Study N = 2313</th>
<th>Renal Impairment Dataset N = 1085</th>
<th>Broad Dataset N = 9439</th>
<th>CANVAS N = 4327</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
<td>Male 49.5</td>
<td>58.4</td>
<td>58.2</td>
<td>66.1</td>
</tr>
<tr>
<td></td>
<td>Female 50.5</td>
<td>41.6</td>
<td>41.8</td>
<td>33.9</td>
</tr>
<tr>
<td>Age (y), Mean (SD)</td>
<td>56.0 (9.81)</td>
<td>67.1 (7.67)</td>
<td>59.9 (9.35)</td>
<td>62.4 (8.02)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>White 72.2</td>
<td>78.2</td>
<td>72.6</td>
<td>73.4</td>
</tr>
<tr>
<td></td>
<td>Black or African-American 5.1</td>
<td>2.9</td>
<td>3.8</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>Asian 12.3</td>
<td>13.0</td>
<td>15.8</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>Other 10.4</td>
<td>5.9</td>
<td>7.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Body mass index, kg/m², Mean (SD)</td>
<td>32.1 (6.42)</td>
<td>32.5 (6.12)</td>
<td>31.9 (6.06)</td>
<td>32.1 (6.24)</td>
</tr>
<tr>
<td>HbA1c (%), Mean (SD)</td>
<td>8.0 (0.93)</td>
<td>8.1 (0.93)</td>
<td>8.0 (0.90)</td>
<td>8.2 (0.92)</td>
</tr>
<tr>
<td>Duration of diabetes (y), Mean (SD)</td>
<td>7.3 (6.04)</td>
<td>15.1 (8.40)</td>
<td>10.6 (7.53)</td>
<td>13.4 (7.52)</td>
</tr>
<tr>
<td>eGFR, Mean</td>
<td>88</td>
<td>48</td>
<td>81</td>
<td>77</td>
</tr>
<tr>
<td>≥ 1 Microvascular Complication, %</td>
<td>18.9</td>
<td>59.1</td>
<td>33.1</td>
<td>44.2</td>
</tr>
</tbody>
</table>

Renal impairment dataset: subjects from DIA3004, DIA3005, DIA3008, and DIA3010 with baseline eGFR 30 to < 60 mL/min/1.73 m²
Summary of Adverse Events
Renal Impairment Dataset (eGFR 30 to <60)

<table>
<thead>
<tr>
<th></th>
<th>Placebo 382 N</th>
<th>CANA 100 mg 338 N</th>
<th>CANA 300 mg 365 N</th>
<th>All CANA 703 N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Adverse Events</td>
<td>269 (70.4%)</td>
<td>250 (74.0%)</td>
<td>275 (75.3%)</td>
<td>525 (74.7%)</td>
</tr>
<tr>
<td>AEs leading to</td>
<td>22 (5.8%)</td>
<td>19 (5.6%)</td>
<td>28 (7.7%)</td>
<td>47 (6.7%)</td>
</tr>
<tr>
<td>discontinuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious AEs</td>
<td>75 (19.6%)</td>
<td>45 (13.3%)</td>
<td>54 (14.8%)</td>
<td>99 (14.1%)</td>
</tr>
<tr>
<td>Serious AEs leading to</td>
<td>14 (3.7%)</td>
<td>9 (2.7%)</td>
<td>12 (3.3%)</td>
<td>21 (3.0%)</td>
</tr>
<tr>
<td>discontinuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>6 (1.6%)</td>
<td>3 (0.9%)</td>
<td>5 (1.4%)</td>
<td>8 (1.1%)</td>
</tr>
</tbody>
</table>
Incidence of Adverse Drug Reactions
Renal Impairment Dataset (eGFR 30 to <60)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Placebo N=382 n (%)</th>
<th>CANA 100 mg N=338 n (%)</th>
<th>CANA 300 mg N=365 n (%)</th>
<th>All CANA N=703 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osmotic diuresis-related AEs</td>
<td>14 (3.7)</td>
<td>14 (4.1)</td>
<td>14 (3.8)</td>
<td>28 (4.0)</td>
</tr>
<tr>
<td>Reduced intravascular volume-related AEs</td>
<td>10 (2.6)</td>
<td>17 (5.0)</td>
<td>31 (8.5)</td>
<td>48 (6.8)</td>
</tr>
<tr>
<td>Urinary tract infection AEs</td>
<td>23 (6.0)</td>
<td>21 (6.2)</td>
<td>27 (7.4)</td>
<td>48 (6.8)</td>
</tr>
</tbody>
</table>

Female Subjects

<table>
<thead>
<tr>
<th>Condition</th>
<th>Placebo N=156 n (%)</th>
<th>CANA 100 mg N=140 n (%)</th>
<th>CANA 300 mg N=155 n (%)</th>
<th>All CANA N=295 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genital mycotic infection AEs</td>
<td>3 (1.9)</td>
<td>15 (10.7)</td>
<td>15 (9.7)</td>
<td>30 (10.2)</td>
</tr>
</tbody>
</table>

Male Subjects

<table>
<thead>
<tr>
<th>Condition</th>
<th>Placebo N=226 n (%)</th>
<th>CANA 100 mg N=198 n (%)</th>
<th>CANA 300 mg N=210 n (%)</th>
<th>All CANA N=408 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genital mycotic infection AEs</td>
<td>3 (1.3)</td>
<td>5 (2.5)</td>
<td>15 (7.1)</td>
<td>20 (4.9)</td>
</tr>
</tbody>
</table>
Renal Function and Electrolyte Changes in Subjects with Stage 3 CKD

• Renal function
 – Larger initial percentage decrease in eGFR, then rise in eGFR towards baseline
 • Reversibility after discontinuation (DIA3008)
 – Outlier analyses shows similar pattern as seen in Broad Dataset
 – No increase in renal-related SAEs or AEs leading to D/C
 – Decrease in the urinary albumin creatinine ratio (DIA3004)

• Electrolytes
 – Modest mean increases in serum phosphate and magnesium
 • Low incidence of values meeting outlier criteria (> 25% above ULN), and no AEs reported
 – No relevant mean changes in serum potassium
 • Infrequent hyperkalemia – generally related to multiple factors including CKD + ACE inhibitors/ARBs + other agents (eg, aliskerin)
Additional Key Safety Assessments

Bone Safety

• Calcium, phosphate, 1-25 dihydroxy-vitamin D, and PTH
• Bone density assessment (DXA)
• Incidence of fractures
Changes in Calcium Axis

- No meaningful mean changes in serum calcium or urine calcium excretion
- Small mean increases in serum phosphate and magnesium (5-10%) – stable over time
- Transient increase in PTH at Week 3 with no substantive changes at Week 12 (Phase 2), or at Weeks 26 or 52 (Phase 3)
 - No increase in PTH in Stage 3 CKD subjects (DIA3004) – small decrease relative to placebo over 26 weeks
- Variable, but overall not meaningful changes in 1,25-dihydroxyvitamin D levels
Percent Change in BMD Results at Week 52 by DXA Study in Older Subjects with T2DM (DIA3010)

<table>
<thead>
<tr>
<th>Site</th>
<th>CANA 100 mg Pbo-subtracted Mean (95% CI) N=241</th>
<th>CANA 300 mg Pbo-subtracted Mean (95% CI) N=236</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumbar spine</td>
<td>-0.4 (-1.0, 0.3)</td>
<td>-0.7 (-1.4, -0.1)</td>
</tr>
<tr>
<td>Total hip</td>
<td>-0.4 (-1.0, 0.1)</td>
<td>-0.7 (-1.3, -0.2)</td>
</tr>
<tr>
<td>Femoral neck</td>
<td>0.1 (-0.6, 0.8)</td>
<td>0.6 (-0.1, 1.4)</td>
</tr>
<tr>
<td>Distal forearm</td>
<td>0.5 (-0.1, 1.2)</td>
<td>0.1 (-0.6, 0.7)</td>
</tr>
</tbody>
</table>
Adjudicated Fractures
Broad Dataset through 01 Jul 2012

<table>
<thead>
<tr>
<th>Subjects with adjudicated fracture event n (%)</th>
<th>Non-CANA N=3262</th>
<th>CANA 100 mg N=3092</th>
<th>CANA 300 mg N=3085</th>
<th>All CANA N=6177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence rate/1000 person years exposure (SE)</td>
<td>13.17 (1.83)</td>
<td>16.69 (2.04)</td>
<td>15.30 (1.98)</td>
<td>16.00 (1.41)</td>
</tr>
<tr>
<td>Between group (vs Non-CANA) difference in incidence rate (95% CI)</td>
<td>-</td>
<td>3.5 (-1.85; 8.88)</td>
<td>2.1 (-3.14; 7.4)</td>
<td>2.8 (-1.7; 7.36)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subjects with adjudicated low trauma fracture n (%)</th>
<th>Non-CANA N=3262</th>
<th>CANA 100 mg N=3092</th>
<th>CANA 300 mg N=3085</th>
<th>All CANA N=6177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence rate/1000 person years exposure</td>
<td>9.44 (1.55)</td>
<td>12.51 (1.77)</td>
<td>12.04 (1.76)</td>
<td>12.28 (1.24)</td>
</tr>
<tr>
<td>Between group (vs Non-CANA) difference in incidence rate (95% CI)</td>
<td>-</td>
<td>3.1 (-1.54; 7.68)</td>
<td>2.6 (-2.00; 7.19)</td>
<td>2.8 (-1.06; 6.73)</td>
</tr>
</tbody>
</table>
Summary of Safety and Tolerability

- Large Phase 3 program with >10,000 subjects randomized
 - Substantial proportion of vulnerable individuals studied
- Overall well tolerated at both doses of canagliflozin
 - Low rate of discontinuations due to adverse events
 - Incidence of SAEs and deaths comparable to control
 - Safety and tolerability profile similar across range of eGFR
 (> 30 mL/min/1.73 m²)
Summary of Safety and Tolerability (cont.)

- Specific adverse drug reactions characterized
 - Genital mycotic infections and UTIs
 - Osmotic diuresis-related (thirst, polyuria, frequency)
 - Reduced intravascular volume AEs higher at 300 mg than at 100 mg, with risk factors identified
 - Hypoglycemia with insulin or sulphonylurea agents
 - Other including constipation and uncommon events of urticaria/rash

- Specific safety assessments performed showed
 - Increase in LDL-C; CV HR 0.91 with upper bound of 1.22 (<1.8)
 - Small, transient, and reversible decreases in eGFR consistent with the hemodynamic effect of canagliflozin
 - Small decrease in BMD (likely related to weight loss), small numerical imbalance in fractures
Summary of Efficacy

• Consistent and sustained dose-related improvements in glucose control with a low incidence of hypoglycemia
 – Reductions in HbA$_1^c$, demonstrated non-inferior to glimepiride and sitagliptin and superior at 300 mg to both agents
 – Greater proportion to HbA$_1^c$ goals
 – Fasting and post-meal glucose

• Improvements in beta-cell function (fasting and post-meal)

• Reductions in systolic blood pressure and in body weight
Canagliflozin: Dosing Recommendations

In patients with T2DM (with an eGFR of $>30 \text{ mL/min/1.73m}^2$) who need improved glycemic control

- Canagliflozin 100 mg or 300 mg
 - Starting dose of 100 mg in patients with eGFR $<60 \text{ mL/min/1.73m}^2$, loop diuretics, or age ≥ 75 years
 - If inadequate response in patients started on 100 mg, increase to 300 mg dose
Canagliflozin
Benefit/Risk Assessment

John Gerich, MD
Professor Emeritus
University of Rochester Medical Center
Reduction in HbA$_{1c}$ Reduces Risk of Microvascular Disease

37% decrease per 1% reduction in HbA$_{1c}$
Glycemic Control Has Improved – But Many Patients Still Not at Goal HbA$_{1c}$ $<$7%

N=1334
NHANES=National Health and Nutrition Examination Survey
Limitations of Current Treatments for Patients with T2DM

- 5 classes of oral agents – 2 classes of SQ agents are recommended by ADA/EASD
- Limitations of currently available classes
 - Limited efficacy or durability: sulphonylurea (SU) agents, DPP-4 inhibitors
 - Hypoglycemia: SU agents, insulin
 - Weight gain: SU agents, PPARγ agents, insulin
 - GI side effects: metformin, GLP-1 agonists
 - Fluid retention: SU agents, PPARγ agents, insulin

Conclusion: there is a need for new agents / new options
Benefit/Risk Profile of Canagliflozin

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robust, consistent, and sustained HbA1c-lowering, with low incidence of hypoglycemia</td>
<td>Increase in genital mycotic infections</td>
</tr>
<tr>
<td>Unique MOA – combinable/complementary with other AHAs</td>
<td>Small increase in UTIs without increase in upper UTIs or SAEs</td>
</tr>
<tr>
<td>Improves beta-cell function</td>
<td>Dose-related higher incidence of reduced volume-related events</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Dose-related increase in LDL-C</td>
</tr>
<tr>
<td>Reduction in blood pressure</td>
<td>Small reduction in BMD</td>
</tr>
<tr>
<td>Simple to administer, with once-daily oral dosing</td>
<td></td>
</tr>
<tr>
<td>Flexible dosing (100 mg and 300 mg)</td>
<td></td>
</tr>
</tbody>
</table>
Canagliflozin Summary

- Flexible dosing (100 and 300 mg) to meet the needs of different patients
- Favorable Benefit/Risk profile
- Valuable addition to address the unmet medical need of patients with type 2 diabetes