Effectiveness of a hospital-wide programme to improve compliance with hand hygiene

Didier Pittet, Stéphane Hugonnet, Stephan Harbarth, Philippe Mourouga, Valérie Sauvan, Sylvie Touveneau, Thomas V Perneger, and members of the Infection Control Programme

Summary

Background Hand hygiene prevents cross infection in hospitals, but compliance with recommended instructions is commonly poor. We attempted to promote hand hygiene by implementing a hospital-wide programme, with special emphasis on bedside, alcohol-based hand disinfection. We measured nosocomial infections in parallel.

Methods We monitored the overall compliance with hand hygiene during routine patient care in a teaching hospital in Geneva, Switzerland, before and during implementation of a hand-hygiene campaign. Seven hospital-wide observational surveys were done twice yearly from December, 1994, to December, 1997. Secondary outcome measures were nosocomial infection rates, attack rates of meticillin-resistant Staphylococcus aureus (MRSA), and consumption of handrub disinfectant.

Findings We observed more than 20 000 opportunities for hand hygiene. Compliance improved progressively from 48% in 1994, to 66% in 1997 (p<0.001). Although recourse to handwashing with soap and water remained stable, frequency of hand disinfection substantially increased during the study period (p<0.001). This result was unchanged after adjustment for known risk factors of poor adherence. Hand hygiene improved significantly among nurses and nursing assistants, but remained poor among doctors. During the same period, overall nosocomial infection decreased (prevalence of 16% to 9% in 1998; p=0.04), MRSA transmission rates decreased (2.16 to 0.93 episodes per 10 000 patient-days; p=0.001), and the consumption of alcohol-based handrub solution increased from 3.5 to 15.4 L per 1000 patient-days between 1993 and 1998 (p<0.001).

Interpretation The campaign produced a sustained improvement in compliance with hand hygiene, coinciding with a reduction of nosocomial infections and MRSA transmission. The promotion of bedside, antiseptic handrubs largely contributed to the increase in compliance.

Lancet 2000; 356: 1307–12
See Commentary page 1290

Effectiveness of a hospital-wide programme to improve compliance with hand hygiene

Introduction

Hand hygiene, either by handwashing or hand disinfection, remains the single most important measure to prevent nosocomial infections.1 The importance of this simple procedure is not sufficiently recognised by health-care workers (HCWs);2 and poor compliance has been documented repeatedly.3–5 Although some previous interventions to improve compliance have been successful, none has achieved lasting improvement.6,7 This situation led to the creation of a Handwashing Liaison Group8 in the UK in 1997, whose mission is “to modify the behaviour of HCWs to produce sustained improvement in compliance with agreed handwashing standards and so improve the quality of patient care.”9

In our hospital, we documented disappointing levels of hand hygiene compliance and identified several risk factors for non-compliance.5 The observed relation between increased workload and reduced compliance suggested that promotion of bedside hand disinfection, less time-consuming than handwashing, may improve compliance.5,9 Hence, we implemented a hospital-wide campaign to promote hand hygiene and, in particular, the use of alcohol-based handrubs.1 We hypothesised that our programme would not only increase compliance with hand hygiene, but also diminish meticillin-resistant Staphylococcus aureus (MRSA) transmission and nosocomial infection rates. We describe the programme and its effectiveness.

Methods

Procedure

The University of Geneva Hospitals (UGH) is a large acute-care teaching hospital serving residents of Geneva, Switzerland, and the surrounding area. Handwashing facilities are available everywhere with one to three sinks in every patient’s room together with unmedicated soap and paper towels.5

The hand-hygiene promotion programme started in January 1995 after a baseline survey.7 The most prominent component was a visual display with A3-size colour posters that emphasised the importance of hand-cleansing, particularly hand disinfection, and performance feedback. The posters were displayed in 250 strategic areas within the institution, previously identified by visiting the wards and common areas with senior nurses. Location criteria were maximal visibility during daily work and during transit within the hospital.

The content of the promotional material (available at http://www.hopisaffe.ch, accessed Oct 3, 2000) was prepared in association with collaborative groups of HCWs across all wards and translated by an artist into a cartoon-like message. Subjects included: nosocomial infection, cross transmission, hand carriage, hand hygiene, hand disinfection, and hand protection with creams. Posters were selected for use during regular meetings (six to eight times per year) with a multidisciplinary group of HCWs. This group, the project team, included representatives (senior nurses and doctors) from each medical department, senior administrative managers, and representatives from other hospital service departments. Each poster featured the name of the ward that proposed the message so that...
authorship could be recognised hospital-wide and hospital staff would have a sense of ownership of the campaign. 70 different posters were produced in multiple copies with three to five posters displayed simultaneously throughout the hospital at any given time. Housekeeping staff replaced the posters once to twice daily during 1995, and weekly thereafter, according to a predetermined order of appearance.

Individual bottles of handrub solution (alcohol-based preparation with 0·5% chlorhexidine gluconate and skin emollients) were distributed in large amounts to all wards, and custom-made holders were mounted on all beds to facilitate access to hand disinfection. HCWs were also encouraged to carry a bottle in their pocket and, in 1996, a newly-designed flat (instead of round) bottle was made available to further facilitate pocket carriage.

Recognising that a strong institutional commitment was indispensable to implement behavioural changes among HCWs, the infection-control programme, with the support of the medical and nursing directors, secured the approval of senior hospital management to have the programme designated as a hospital-wide priority. The human resources for the intervention were essentially those of the infection-control programme. Senior management provided funding to implement the programme and for an additional nurse for 4 months to start the programme; they also authorised the permanent use of hospital walls for poster display, encouraged the involvement of senior staff from various departments to participate in the programme development, participated themselves in regular meetings of the project team, and voiced publicly their support for the programme. There was no external source of funding during the study period.

Compliance with hand-hygiene procedures

We did seven surveys as previously described1 twice yearly, in June and December, from 1994 to 1997. Infection-control nurses monitored hand-hygiene practice of HCWs in a structured protocol during 2–3 weeks. They recorded opportunities for hand hygiene according to the level of contamination risk. The observers was excellent; sensitivity to detect predetermined opportunities for hand hygiene per hour of care.5

Observations were done at prespecified time periods throughout the day and night during 20 min periods, distributed equally during the survey duration. HCWs did not know the schedule of observation periods. The observers were as unobtrusive as possible, but were not hidden. Interobserver variability was recorded during at least 10% of monitoring sessions in which two to three observers worked simultaneously.7 Concordance among observers was excellent; sensitivity to detect predetermined opportunities for hand hygiene averaged 98% (SD 1) and intrarater reliability was high for all variables (kappa values=0·92; range 0·79–1·0).

Performance feedback was reported in March and September of each year through the hospital newsletter distributed together with salary slips. In addition, grand rounds were given (by DP) in all medical departments at the time of the initial performance feedback. Demonstration of correct hand-hygiene technique is an integral part of regular educational sessions for new employees at the hospital and was not further reinforced during the study period. In accordance with the institutional review board’s requirements, we did not identify staff members observed during the surveys by unique identifier.9

Secondary outcome measures

Nosocomial infections were identified by trained infection-control nurses as described elsewhere11 and classified according to standard definitions of the Centers for Disease Control and Prevention.12 Annual prevalence surveys for nosocomial infections have been carried out in our hospital since 1994 with standardised methods.13 MRSA surveillance and control consisted of prospective follow-up of all colonised or infected patients, weekly screening of patients, weekly visits of the infection-control nurses, surveillance cultures from room-mates, and contact isolation for the duration of hospital stay and on readmission.13 Selected patients were treated with nasal mupirocin ointment for 5 days, and daily chlorhexidine body cleansing for 10 days.14 A computerised MRSA alert system allowed early isolation of newly identified patients and recognised known carriers during readmission. The attack rate of MRSA transmission was expressed as the number of new hospital-acquired MRSA cases per 100 hospital admissions.12,13

As additional process indicator, we examined the amount of alcohol-based handrub solution distributed in the hospital, as monitored by the Pharmacy Department. Information on hospital-wide antimicrobial use was summarised in daily defined doses, one daily defined dose being the standard adult daily dose of an antibiotic agent for one day’s treatment.

Statistical analysis

Differences in proportions were compared by χ² tests and by means of odds ratios and corresponding 95% CIs. Modification of compliance over time was first estimated in an univariate analysis with the first survey as the reference point. We used logistic regression, with compliance versus non-compliance as the outcome variable, to control for factors that are already associated with compliance.7 Linear trend tests were used to assess general trends in compliance and nosocomial infection rates during the study period. Changes in the incidence of MRSA infections and bacteraemia over time were analysed by Poisson regression with the generalised linear models procedure (STATA, version 6.0). Trends in compliance over time were analysed separately by type of ward, care, and HCW, and by activity index, and first-order interactions were tested. To account for interdependence of observations, we used robust estimates of variance by including each observation period as a cluster (generalised estimating equation15).

Two-tailed p values of less than 0·05 were considered to indicate statistical significance.

Results

Between 1994 and 1997, data were collected from 2629 scheduled observation periods, of which 120 (4·6%) produced no data, mostly during the night when no hand-hygiene opportunities occurred. The remaining 2509 periods totalled 833 h and 52 min of observation and lasted between 5 and 45 min, most being of 20 min duration (2384 [93%] of observations). We obtained data on 20082 opportunities for hand hygiene in total.
parameters previously identified as influencing compliance was homogenous throughout the study period (table 1). Among major staff categories, nurses contributed an average of 68·8% (SD 3·3) of all opportunities; nursing assistants 18·0 (2·4); doctors 8·3 (1·7); and other HCWs of all professional categories apart from nurses, nursing assistants, and doctors. "Refers to the number of opportunities for hand hygiene per h of care. | Level of risk of contamination is ranked according to the scale proposed by Fulkerson."

Table 1: Observed opportunities for hand hygiene in consecutive observational studies, University of Geneva Hospitals, Switzerland, 1994–97

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical ward</td>
<td>1118 (39)</td>
<td>1441 (44)</td>
<td>1163 (39)</td>
<td>1164 (45)</td>
<td>1135 (45)</td>
<td>982 (38)</td>
<td>1091 (42)</td>
</tr>
<tr>
<td>Surgical ward</td>
<td>980 (35)</td>
<td>1251 (38)</td>
<td>1175 (39)</td>
<td>908 (35)</td>
<td>1080 (35)</td>
<td>1177 (41)</td>
<td>970 (38)</td>
</tr>
<tr>
<td>Gynaecology/obstetrics</td>
<td>151 (5.3)</td>
<td>119 (3.6)</td>
<td>69 (2.3)</td>
<td>76 (2.9)</td>
<td>47 (1.5)</td>
<td>46 (1.7)</td>
<td>81 (3.2)</td>
</tr>
<tr>
<td>Paediatrics</td>
<td>133 (4.7)</td>
<td>85 (2.6)</td>
<td>83 (2.7)</td>
<td>115 (4.4)</td>
<td>118 (3.9)</td>
<td>118 (5.1)</td>
<td>130 (5.1)</td>
</tr>
<tr>
<td>Intensive care</td>
<td>458 (16)</td>
<td>375 (11)</td>
<td>529 (18)</td>
<td>344 (13)</td>
<td>424 (14)</td>
<td>452 (17)</td>
<td>297 (12)</td>
</tr>
<tr>
<td>Level of risk of contamination</td>
<td><20</td>
<td>21–40</td>
<td>41–60</td>
<td>>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk procedure</td>
<td>944 (36)</td>
<td>1307 (40)</td>
<td>1181 (39)</td>
<td>1046 (40)</td>
<td>1202 (39)</td>
<td>1052 (38)</td>
<td>909 (35)</td>
</tr>
<tr>
<td>Medium risk</td>
<td>1251 (48)</td>
<td>1468 (45)</td>
<td>1340 (44)</td>
<td>1156 (44)</td>
<td>1358 (45)</td>
<td>1170 (43)</td>
<td>1203 (47)</td>
</tr>
<tr>
<td>High risk</td>
<td>413 (16)</td>
<td>498 (15)</td>
<td>498 (16)</td>
<td>405 (16)</td>
<td>484 (16)</td>
<td>514 (19)</td>
<td>467 (18)</td>
</tr>
</tbody>
</table>

All data are number (%) of opportunities for hand hygiene. | Other includes: midwifes, respiratory and mobilisation therapists, radiology technicians, nutrition therapists, as well as HCWs of all professional categories apart from nurses, nursing assistants, and doctors. | "Refers to the number of opportunities for hand hygiene per h of care. | Level of risk of contamination is ranked according to the scale proposed by Fulkerson."

Importantly, although doctors’ overall compliance with hand cleansing did not improve, they switched from handwashing to hand disinfection during the study period. On average, from one survey to the next, the odds ratio for hand disinfection (as opposed to handwashing) was 1.12 (95% CI 1.02–1.24; p=0.023).

Based on annual hospital-wide surveys at our hospital, the prevalence of nosocomial infections decreased from 16·9% in 1994 to 9·9% in 1998 (p=0.04; figure 3). Furthermore, on-site surveillance showed that the attack rate of newly detected MRSA patients decreased from 1994 onwards (p=0.021). Between 1994 and 1998, the overall incidence of MRSA infections decreased from 2·16 to 0·93 episodes per 10 000 patient-days (p<0.001). In particular, the annual incidence of hospital-acquired MRSA
bacteraemia decreased from 0.74 to 0.24 episodes per 10000 patient-days (p<0.001).

No antimicrobial restriction or improvement programme was initiated during the study period. Between 1994 and 1997, we observed a decrease in the use of aminoglycosides and intravenous amoxicillin/clavulanate (16.97 to 12.57, and 44.92 to 19.43 daily defined doses per 1000 patient-days, respectively), whereas the use of imipenem and extended-spectrum β-lactam antibiotics increased from 13.85 to 20.07, and 21.42 to 27.18 daily defined doses per 1000 patient-days. The use of other agents did not change substantially.

Discussion
Compliance with hand-hygiene recommendations improved significantly following a hospital-wide education programme, coinciding with a reduction of nosocomial infections and MRSA transmission. The programme was mainly based on a poster campaign together with a generalised promotion of alcoholic handrubs as an alternative to soap-and-water handwashing. Improved adherence was sustained and observed across most hospital locations, in all types of patient-care activities, and among most HCWs present on the ward, with the notable exception of doctors.

Prior attempts to improve compliance with hand-cleansing practice have been associated with, at best, transient improvement. The most effective measure has been routine observation and feedback, but no intervention has reported a long-term effect. We observed a sustained improvement that accompanied an equally sustained intervention. Whether improved hand-hygiene practice will outlast the intervention remains uncertain; we decided to refrain from testing this issue by maintaining a permanent component of the intervention.

Table 2: Compliance with hand hygiene in successive observational surveys, and odds ratios for compliance, unadjusted and adjusted for known risk factors, University of Geneva Hospitals, Switzerland, 1994–97

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine</td>
<td>47.6</td>
<td>54.2</td>
<td>53.4</td>
<td>62.2</td>
<td>61.8</td>
<td>65.1</td>
<td>66.2</td>
</tr>
<tr>
<td>Paediatrics</td>
<td>46.8</td>
<td>53.4</td>
<td>52.4</td>
<td>61.2</td>
<td>61.8</td>
<td>64.1</td>
<td>65.6</td>
</tr>
<tr>
<td>Surgery</td>
<td>48.5</td>
<td>55.1</td>
<td>54.4</td>
<td>63.3</td>
<td>62.8</td>
<td>66.0</td>
<td>67.2</td>
</tr>
<tr>
<td>Gynaecology</td>
<td>1-00</td>
<td>1-30</td>
<td>1-26</td>
<td>1-81</td>
<td>1-78</td>
<td>1-20</td>
<td>1-25</td>
</tr>
<tr>
<td>Intensive care</td>
<td>1-00</td>
<td>1-31</td>
<td>1-26</td>
<td>1-65</td>
<td>1-70</td>
<td>1-97</td>
<td>1-92</td>
</tr>
</tbody>
</table>

*Adjusted for hospital ward, type of HCW, level of risk of transmission, and activity index categorised as shown in table 1.

Figure 2: Hand-hygiene compliance trends in seven consecutive hospital-wide surveys
A, according to ward location; B, level of risk for contamination; C, level of activity at time of observation; D, type of HCW. Level of activity at time of observation refers to the number of opportunities for hand hygiene per h of care (activity index).

For personal use only. Not to be reproduced without permission of The Lancet.
For personal use only. Not to be reproduced without permission of The Lancet.
field observations were as unobtrusive as possible, observation bias and the Hawthorne effect must be considered. However, a systematic bias is unlikely to have induced temporal trends. Furthermore, no such bias could have affected the secondary outcome variables. Since this study was not a controlled trial, unmeasured confounders perhaps accounted for some of the improvement in hand-hygiene compliance. However, this factor seems unlikely, given the stability of our institution and its surrounding community. Fourth, because flat bottles of handrub solution were introduced in 1996 amid a pattern of continued improvement in hand-hygiene compliance, we were not able to ascertain whether bottle design had an important role in the subsequent improvement in compliance. Fifth, even though the sample size was large overall, the study may have lacked power to detect significant changes in subgroups. Finally, whether the results and impact of our intervention can be generalised to other health-care institutions needs to be tested.

We did not collect prospective costing information for our intervention. Certainly, the major expense was personnel time. In addition, increased use of handrub solution from 1995 to 1997 represented extra costs of SFr 110 833, an average of SFr 350 per 1000 patient-days. Adding up crude direct costs (SFr 129 733 for artist works, poster, wall displays, and handrubs) and indirect costs (SFr 240 140 for salaries and fringe benefits of participating nurses, support staff, housekeeping personnel, project-team members, and expenses for office supplies) associated with our intervention, we estimate that the entire programme cost less than SFr 380 000. Given a conservative estimate of SFr 3500 saved per nosocomial infection averted, \[11,12\] prevention of 108 infections during the 1995–97 study period would have offset programme costs. Assuming that only 25% of the observed reduction in the infection rate has been associated with improved hand-hygiene practice, our intervention might have prevented more than 900 infections. These figures indicate that the programme was cost-effective from a societal perspective. However, a refined analysis is necessary to validate these crude estimates.

Contributors
Didier Pittet initiated the project, designed the study, did the field observations and the validation of the observers, did part of the data analysis, and wrote the paper. Stéphane Hugonnet, Philippe Mourouga, and Thomas Perneger did the data analysis and wrote the paper. Stéphane Hugonnet and Philippe Mourouga also participated in field observations. Stephan Harbarth analysed MRSA surveillance data, generated information on antibiotic prescribing practice, monitored surveillance of nosocomial infections, and helped with the revision of the paper. Valérie Sauvan and Sylvie Touveneau were involved in the study design and promotion campaign, the field observations, and on-site surveillance of nosocomial infections.

Acknowledgments
We thank HCWs and members of the Infection Control Programme, in particular N Colaizzi, A Alexiou, M N Constantin, N Henry, and P Herrault for doing the field observations; A Jacquemont, A Junod, G Gobel, N Fichter, Y Martin, Pécub, and the following members of the multidisciplinary team: R Auckenthaler, I Bartolomei, P Baud, J Bonnet, B Chapuis, L Cingria, P Cornuau, P Dayer, B Durrer, O Huber, B Laeng, I Lang, Ch Le Roy, V Boscat, C Brasey, B Chapuis, L Cingria, P Cornuau, P Dayer, D Davila, C Fargnoli, G Gaggin, A Gervaux, W Griffiths, A Grivel, C Guillard, U Hegg, O Huber, B Laeng, I Lang, C Le Roy, M Louis-Simonet, V Maesti, S Mercill, J E Nussbaum, U Paccard, I Pammer, D Perrenoud, M Perruchoud, P-A Pessina, R Peter, P-A Pilione, I Poslay, B Ricou, F Sarrey, J C Schira, J Simon, C Tranchant-Pousin, J-B Tschanz, P Vasquez, B Veuremm, G Zufferey, and R Sudran for editorial assistance.

References