Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

October 26, 2006

Developed by the Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children
François-Xavier Bagnoud Center, UMDNJ
The Health Resources and Services Administration
The National Institutes of Health

Use of antiretrovirals in pediatric patients is evolving rapidly. These guidelines are updated regularly to provide current information. The most recent information is available at http://aidsinfo.nih.gov
October 26, 2006

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

These guidelines were developed by:
The Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children convened by the National Resource Center at the François-Xavier Bagnoud Center, UMDNJ, The Health Resources and Services Administration (HRSA), and The National Institutes of Health (NIH)

Co-Chairs of the Working Group:
James Oleske, M.D., M.P.H. University of Medicine and Dentistry of New Jersey (UMDNJ)—New Jersey Medical School, Newark, New Jersey
Gwendolyn B. Scott, M.D. University of Miami School of Medicine, Miami, Florida
Peter Havens, M.D. Children’s Hospital of Wisconsin, Milwaukee, WI

Members of the Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children who participated in the development of this document include the following individuals:

Elaine Abrams, M.D. Harlem Hospital Center, New York, NY
Michael Brady, M.D. Columbus Children’s Hospital, Columbus, OH
Carolyn Burr, R.N, Ed.D. François-Xavier Bagnoud Center, UMDNJ, Newark, NJ
Edmund Capparelli, M.D. University of California, San Diego, CA
Diana Clarke, Pharm.D. Boston Medical Center, Boston, MA
Ken Dominguez, M.D. Centers for Disease Control and Prevention, Atlanta, GA
Brian Feit Health Resources and Services Administration, Rockville, MD
Patricia Flynn, M.D. St. Jude’s Medical Center, Memphis, TN
Peter Havens, M.D. Children’s Hospital of Wisconsin, Milwaukee, WI
Nancy Hutton, M.D. Johns Hopkins School of Medicine, Baltimore, MD
George Johnson, M.D. Medical University of South Carolina, Charleston, SC
Linda Lewis, M.D. FDA, Rockville, MD
Kathleen McGann, M.D. Washington University School of Medicine, St. Louis, MO
Mark Mirochnick, M.D. Boston Medical Center, Boston, MA
Lynne M. Mofenson, M.D. NIH, Bethesda, MD (Executive Secretary)
James Oleske, M.D., M.P.H. UMDNJ-New Jersey Medical School, Newark, NJ
Mary Paul, M.D. Baylor College of Medicine, Houston, TX
Gwendolyn Scott, M.D. University of Miami School of Medicine, Miami, FL
Leslie Serchuck, M.D. NIH, Bethesda, MD
Deborah Storm, Ph.D. UMDNJ-New Jersey Medical School, Newark, NJ
Russell Van Dyke, M.D. Tulane University School of Medicine, New Orleans, LA
Geoffrey Weinberg, M.D. University of Rochester School of Medicine, Rochester, NY
Andrew Wiznia, M.D. Jacobi Medical Center, Bronx, NY
Table of Contents

Working Group Members... i

Introduction.. 1
Concepts Considered in the Formulation of Pediatric Treatment Guidelines.. 2
Identification of Perinatal HIV Exposure... 3
Repeat HIV Testing in the Third Trimester.. 3
Rapid HIV Testing During Labor in Women with Unknown HIV Status... 4
HIV Counseling and Testing During Postnatal Period.. 4

Diagnosis of HIV Infection in Infants.. 5
Choice of Diagnostic Test... 5
Issues Related to Diagnosis of Non-Subtype B HIV Infection.. 6
Timing of Diagnostic Testing in Infants with Known Perinatal HIV Exposure.. 6

Laboratory Monitoring of Pediatric HIV Infection... 8
Immunologic Monitoring in Children.. 8
HIV RNA Monitoring in Children.. 9

Treatment Recommendations... 11
General Considerations... 11
Goals of Antiretroviral Treatment... 12
When to Initiate Therapy In Antiretroviral-Naïve Children... 12
What Drugs to Start: Initial Combination Therapy
For Antiretroviral-Naïve Children (Tables 8 – 11)... 16
What Not to Use: Antiretroviral Drug Regimens
that Should Not be Offered at Any Time (Table 8).. 26

Monitoring of Children on Antiretroviral Therapy... 28

Specific Issues in Antiretroviral Therapy for HIV-Infected Adolescents... 29
Background.. 29
Dosing of Antiretroviral Therapy for HIV-Infected Adolescents.. 29
Adolescent Contraception, Pregnancy, and Antiretroviral Therapy... 30
Transition of Adolescents into Adult HIV Care Settings.. 30

Adherence to Antiretroviral Therapy in HIV-Infected Children and Adolescents... 32
Background.. 32
Specific Adherence Issues in Children.. 32
Specific Adherence Issues for Adolescents.. 33
Adherence Assessment and Monitoring.. 33
Strategies to Improve and Support Adherence... 34
Table 10. Advantages and Disadvantages of Different Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) for Use in Highly Active Antiretroviral Combination Regimens 64

Table 11. Advantages and Disadvantages of Different Protease Inhibitors (PIs) for Use in Highly Active Antiretroviral Combination Regimens ... 65

Table 12. Advantages and Disadvantages of Fusion Inhibitors for Use in Highly Active Antiretroviral Combination Regimens ... 67

Table 13. Example of Minimum Schedule for Monitoring of Children on Antiretroviral Therapy 67

Table 14. Considerations for Changing Antiretroviral Therapy for Human Immunodeficiency Virus-Infected Children... 68

Table 15. Treatment Options Following Failure of Initial Antiretroviral Regimen... 69

Table 16. Novel Strategies to Consider for Treatment-Experienced Children with Few Available Active Treatment Options .. 70

Table 17. Suggested Minimum Target Trough Concentrations for Persons with Wild-Type HIV-1 71

Figures:

Figure 1: Estimated Probability of AIDS Within 12 Months by Age and CD4 Percentage in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11] ... 72

Figure 2: Estimated Probability of Death Within 12 Months by Age and CD4 Percentage in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11] ... 72

Figure 3: Estimated Probability of AIDS Within 12 Months by Age and HIV RNA Copy Number in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11] ... 73

Figure 4: Estimated Probability of Death Within 12 Months by Age and HIV RNA Copy Number in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11] ... 73

Appendices:

Appendix A: Characteristics of Available Antiretroviral Drugs ... 1

Appendix B: Pediatric Antiretroviral Guidelines Working Group Conflict of Interest Disclosure – 2006 1

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection
Supplements:

Supplement I: Pediatric Antiretroviral Drug Information................................. 1
Supplement II: Managing Complications of HIV Infection................................... 1
Supplement III: Adverse Drug Effects... 1
These guidelines address issues specific to the use of antiretroviral therapy for HIV-infected infants, children, and pre-pubertal adolescents. The Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children, a working group of the Office of AIDS Research Advisory Council, reviews new data on an ongoing basis and provides regular updates to the guidelines, which are available at http://AIDSinfo.nih.gov. Also available at this Web site are updated guidelines for HIV-infected post-pubertal adolescents and adults [1]. As these guidelines were developed for the United States, they may not be applicable in other countries. The World Health Organization provides guidelines for resource-limited settings at http://www.who.int/hiv/pub/guidelines/art/en/index.html.

In 1993, the Working Group on Antiretroviral Therapy and Medical Management of HIV-Infected Children, composed of specialists caring for HIV-infected infants, children, and adolescents, was convened by the François-Xavier Bagnoud Center (FXBC), University of Medicine and Dentistry of New Jersey (http://www.fxbcenter.org). Since 1998, the Working Group has held monthly conference calls to review new data. Proposed changes to the pediatric treatment guidelines are reviewed by the Working Group and incorporated as appropriate. All revisions are summarized and highlighted on the AIDSinfo Web site and posted for a public comment period, generally for 2 weeks, after which comments are reviewed by the Working Group prior to finalization. Comments can be sent to aidsinfowebmaster@aidsinfo.nih.gov.

Since the Working Group developed the initial guidelines in 1993, dramatic advances in medical management have followed the results of clinical trials of antiretroviral combination therapies in children. HIV mortality in children has decreased 70% since the introduction of protease inhibitor-containing combinations, and RSSRUWXQLVWLFDQGRWKHUUHODWHGLQIHFWLRQVKDYHVLJQL¿FDQWO decreased in HIV-infected children in the era of highly active antiretroviral therapy (HAART) [2, 3]. Advances from clinical trials and in laboratory monitoring, including resistance testing and the ability to measure antiretroviral drug levels, have enabled clinicians to more carefully choose very effective initial regimens while preserving selected drugs and drug classes for second- or third-line regimens. Therapeutic strategies continue to focus on early initiation of antiretroviral regimens capable of maximally suppressing viral replication to prevent disease progression, preserve immunologic function, and reduce the development of resistance. At the same time, availability of new drugs and drug formulations has led to regimens that improve adherence with less frequency in dosing. Improved monitoring and dosing schedules have also led to a decrease in drug failure due to toxicity. The use of antiretroviral therapy during pregnancy in HIV-infected women has resulted in a dramatic decrease in the transmission rate to infants, which is currently less than 2% in the United States, and the number of infants with AIDS in the United States continues to decline [4]. Children living with HIV infection are, as a group, growing older, bringing new challenges of adherence, drug resistance, and management of multiple drugs.

Although the pathogenesis of HIV infection and the general virologic and immunologic principles underlying the use of antiretroviral therapy are similar for all HIV-infected people, there are unique considerations for HIV-infected infants, children, and adolescents, including:

- Acquisition of infection through perinatal exposure for many infected children;
- In utero, intrapartum, and/or postpartum neonatal exposure to zidovudine and other antiretroviral medications in most perinatally infected children;
- Requirement for use of HIV virologic tests to diagnose perinatal HIV infection in infants under age 18 months;
- Changes in pharmacokinetic parameters with age caused by the continuing development and maturation of organ systems involved in drug metabolism and clearance;
- Differences in the clinical and virologic manifestations of perinatal HIV infection secondary to the occurrence of primary infection in growing, immunologically immature persons; and
- Special considerations associated with adherence to antiretroviral treatment for infants, children, and adolescents.

These recommendations represent the current state of knowledge regarding the use of antiretroviral drugs in children, and are based on published and unpublished data regarding the treatment of HIV infection in infants, children, and adults and, when no definitive data were available, the clinical expertise of the Working Group.
members. The Working Group intends the guidelines to be flexible and not to replace the clinical judgment of experienced health care providers.

CONCEPTS CONSIDERED IN THE FORMULATION OF PEDIATRIC TREATMENT GUIDELINES

The following concepts were considered in the formulation of these guidelines:

- Prenatal HIV testing and counseling should be the standard of care for all pregnant women in the United States [5-7]. Identification of HIV-infected women before or during pregnancy is critical to providing optimal therapy for both infected women and their infants and for reduction of perinatal transmission. Access to prenatal care is essential for all pregnant women.

- Enrollment of pregnant HIV-infected women; their HIV-exposed newborns; and infected infants, children, and adolescents into clinical trials offers the best means of determining safe and effective therapies.*

- The pharmaceutical industry and the federal government should continue collaboration that assures that drug formulations suitable for administration to infants and children are available for all antiretroviral drugs produced.

- Although some information regarding the efficacy of antiretroviral drugs for children can be extrapolated from clinical trials involving adults, concurrent clinical trials for children are needed to determine the impact of the drug on specific manifestations of HIV infection in children, including growth, development, and neurologic disease. However, the absence of phase III efficacy trials addressing pediatric-specific manifestations of HIV infection does not preclude the use of any approved antiretroviral drug in children.

- Treatment of HIV infection in infants, children, and adolescents is rapidly evolving and becoming increasingly complex; therefore, wherever possible, their treatment should be managed by a specialist in pediatric and adolescent HIV infection. If this is not possible, such experts should be consulted.

- Effective management of the complex and diverse needs of HIV-infected infants, children, adolescents, and their families requires a multidisciplinary team approach that includes physicians, nurses, dentists, social workers, psychologists, nutritionists, outreach workers, and pharmacists.

- Health care providers considering antiretroviral treatment for infants, children, or adolescents should consider certain factors influencing adherence to therapy, including:
 - Availability and palatability of drug formulations;
 - Impact of the medication schedule on quality of life, including number of medications, frequency of administration, ability to co-administer with other prescribed medications, and need to take with or without food;
 - Ability of the child’s caregiver or the adolescent to administer complex drug regimens and availability of resources that might be effective in facilitating adherence; and
 - Potential for drug interactions.

- The choice of initial antiretroviral regimen should include consideration of factors that may limit future treatment options, such as the presence of or potential for the development of antiretroviral resistance. HIV resistance assays have proven useful in guiding initial therapy and in changing failing regimens, but expert clinical interpretation is required.

- Monitoring growth and development, short- and long-term drug toxicities, neurodevelopment, symptom management, and nutrition are all essential in the care of HIV-infected children, as they may significantly influence quality of life; these issues are addressed in Supplement II: Managing Complications of HIV Infection.

* In areas where enrollment in clinical trials is possible, enrolling the child in available trials should be discussed with the caregivers of the child. Information about clinical trials for HIV-infected adults and children can be obtained from the AIDSinfo Web site (http://aidsinfo.nih.gov/clinical_trials) or by telephone at 1-800-448-0440.
Identify of Perinatal HIV Exposure

Working Group Recommendations:

- Universal counseling and voluntary HIV testing early in pregnancy, including opt-out testing, is recommended as standard of care for all pregnant women in the United States.

- Repeat HIV testing is recommended in the third trimester for women at high risk of HIV infection who have negative HIV antibody tests earlier in pregnancy.

- Rapid HIV antibody testing is recommended to screen women who are seen at labor and have undocumented HIV status to allow intrapartum antiretroviral prophylaxis to be initiated prior to delivery in women identified as HIV-infected.

- Women who have not been tested for HIV prior to or during labor should be offered rapid testing during the immediate postpartum period or their newborns should undergo rapid HIV antibody testing, with counseling and consent of the mother unless state law allows testing without consent. This allows linkage to HIV-related medical care and services for both mother and child, including the initiation of antiretroviral prophylaxis after delivery to infants of HIV-infected women.

Appropriate treatment of HIV-infected infants requires HIV-exposed infants to be identified as soon as possible, which can be best accomplished through the identification of HIV-infected women before or during pregnancy. Universal HIV counseling and voluntary HIV testing, including consent using an opt-out approach, are recommended as the standard of care for all pregnant women in the United States by the Working Group, the U.S. Public Health Service (USPHS), the American Academy of Pediatrics, the American College of Obstetricians and Gynecologists, and the U.S. Preventive Services Task Force [5-10]. An opt-out approach notifies a pregnant woman that HIV testing will be performed as part of routine care unless she chooses not to be HIV-tested [11].

Early identification of HIV-infected women is crucial for their health and for the care of HIV-exposed and HIV-infected children. Knowledge of antenatal maternal HIV infection enables:

- HIV-infected women to receive appropriate antiretroviral therapy and prophylaxis against opportunistic infections for their own health;

- Provision of antiretroviral chemoprophylaxis during pregnancy, during labor, and to the newborn to reduce the risk of HIV transmission from mother to child [12];

- Counseling of HIV-infected women about the indications for and potential benefits of scheduled cesarean section delivery to reduce perinatal HIV transmission [12, 13];

- Counseling of HIV-infected women about the risks for HIV transmission through breast milk and advising against breast feeding in the United States and other countries where safe alternatives to breast milk are available [14];

- Initiation of prophylaxis against Pneumocystis pneumonia (PCP) in all HIV-exposed infants beginning at age 4 to 6 weeks in accordance with U.S. PHS guidelines [15]; and

- Early diagnostic evaluation of HIV-exposed infants to permit early initiation of antiretroviral therapy in infected infants [16].

Repeat HIV testing is recommended in the third trimester, preferably < 36 weeks gestation, for women with initially negative HIV antibody tests who are at high risk of HIV infection, and may be considered for all pregnant women. A second HIV test during the third trimester is recommended for women who meet one or more of the following criteria:
women who receive health care in jurisdictions with elevated incidence of HIV or AIDS among women age 15 – 45 years; women who receive health care in facilities in which prenatal screening identifies at least one HIV-infected pregnant woman per 1,000 women screened; women who are known to be at high risk for acquiring HIV (e.g., injection drug users and their partners, women who exchange sex for money or drugs, women who are sex partners of HIV-infected persons, and women who have had a new or more than one sex partner during this pregnancy); and women who have signs or symptoms of acute HIV infection [9, 17, 18]. Women who have declined testing earlier in pregnancy should have testing offered again during the third trimester. There is evidence that the risk of HIV acquisition may be significantly higher during pregnancy than in the postpartum period [19].

HIV COUNSELING AND TESTING DURING POSTNATAL PERIOD

Women who have not been tested for HIV prior to or during labor should be offered rapid testing during the immediate postpartum period, or their newborns should undergo rapid HIV antibody testing, with counseling and consent of the mother unless state law allows testing without consent [5, 9, 23, 24]. Because neonatal antiretroviral chemoprophylaxis should be initiated as soon as possible after birth to be effective in preventing mother-to-child transmission, use of rapid HIV antibody assays or expedited ELISA testing to allow prompt identification of HIV-exposed infants is critical. It is strongly recommended that infant antiretroviral prophylaxis be initiated while awaiting confirmatory testing results after an initial positive rapid test in the mother or the infant. Mechanisms should be developed to facilitate rapid HIV screening for infants who have been abandoned and are in the custody of the state.

RAPID HIV TESTING DURING LABOR IN WOMEN WITH UNKNOWN HIV STATUS

Use of rapid test kits or an expedited enzyme-linked immunosorbant assay (ELISA) to detect HIV antibody is recommended to screen women who are seen at labor and have undocumented HIV status in order to identify HIV exposure in their infants [9, 16, 18]. Any hospital offering intrapartum care should have rapid HIV testing available and should have in place policies and procedures to assure that staff are prepared to provide patient education about rapid HIV testing; that appropriate antiretroviral medications are available whenever needed; and that follow-up procedures for women found to be HIV-infected and their infants are in place. Rapid tests have been found to be feasible, accurate, timely, and useful in both providing prompt access to intrapartum and neonatal antiretroviral prophylaxis and in reducing perinatal HIV transmission [20]. Results of rapid tests can be obtained within minutes to a few hours and are more accurate than standard ELISA antibody testing [21, 22]. A positive rapid HIV test result must be confirmed by a supplemental test such as a Western blot (or immunofluorescent antibody [IFA]); a standard ELISA should not be used as a confirmatory test for a rapid HIV antibody test [22]. A negative single rapid test does not need confirmation. The immediate initiation of antiretroviral prophylaxis for prevention of mother-to-child HIV transmission is strongly recommended while awaiting confirmatory testing results after an initial positive rapid HIV test [5, 10, 12].
Diagnosis of HIV Infection in Infants

Working Group Recommendations:

- Infants under age 18 months require virologic assays that directly detect HIV to diagnose HIV infection, due to the persistence of maternal HIV antibody.
- Virologic diagnostic testing in infants with known perinatal HIV exposure is recommended at birth to 14 days; 1 – 2 months; and 3 – 6 months. Preferred virologic assays include HIV DNA PCR and HIV RNA assays.
- An antibody test to document seroreversion to HIV antibody negative status in uninfected infants is recommended at age 12 – 18 months.
- In children 18 months and older, HIV antibody assays can be used for diagnosis.

CHOICE OF DIAGNOSTIC TEST

HIV infection can be definitively diagnosed through the use of virologic assays in most HIV-infected infants by age 1 month and in virtually all infected infants by age 6 months. Tests for antibodies to HIV, including newer rapid tests, do not establish the presence of HIV infection in infants because of transplacental transfer of maternal antibodies; therefore a virologic test should be utilized [5].

A positive virologic test (i.e., detection of HIV by culture or DNA polymerase chain reaction [PCR] or RNA assays) indicates possible HIV infection and should be confirmed by a repeat virologic test on a second specimen as soon as possible after the first test result becomes available. The use of the currently approved HIV p24 antigen assay is not recommended for infant diagnosis in the United States because the sensitivity and specificity of the assay in the first months of life is less than that of other HIV virologic tests [24-26].

HIV DNA PCR

HIV DNA PCR is a sensitive technique used to detect specific HIV viral sequences in integrated proviral HIV DNA in a patient’s peripheral blood mononuclear cells (PBMCs). The sensitivity of a single HIV DNA PCR test performed at < 48 hours of age is less than 40%, but increases to over 90% by 2 – 4 weeks of age [27-29]. In a meta-analysis, 38% (90% confidence interval [CI] = 29% – 46%) of infected children had positive HIV DNA PCR tests by age 48 hours [30]. No substantial change in sensitivity during the first week of life was observed, but sensitivity increased rapidly during the second week, with 93% of infected children (90% CI = 76% – 97%) testing positive by HIV DNA PCR by age 14 days. By age 28 days, HIV DNA PCR had 96% sensitivity and 99% specificity to identify HIV proviral DNA in PBMCs.

HIV RNA Assays

HIV RNA assays detect extracellular viral RNA in the plasma and are as sensitive as HIV DNA PCR for early diagnosis of HIV infection in HIV-exposed infants. Several studies have demonstrated sensitivities of 25% – 40% during the first weeks of life, increasing to 90% – 100% by 2 – 3 months of age [31-37]. Similarly, specificity is comparable between the two tests, though the detection of low levels of HIV RNA (<10,000 copies/mL) may not be reproducible, and tests with low levels of HIV RNA should be repeated before they are interpreted as documenting the presence of HIV infection in an infant. Some clinicians choose to use an HIV RNA assay as the confirmatory test for infants who have an initial positive HIV DNA PCR test. In addition to providing virologic confirmation of infection status, the expense of repeat HIV DNA PCR testing is spared and an HIV RNA measurement is available to guide treatment decisions. HIV RNA assays may be more sensitive than HIV DNA PCR for detecting HIV non-subtype B (see HIV subtype section below). However, while HIV DNA PCR remains positive even in individuals receiving highly active antiretroviral therapy [38], it is unknown whether sensitivity of RNA assays might be affected by maternal antenatal treatment with combination antiretroviral drugs and/or infant antiretroviral prophylaxis.
HIV Viral Culture

HIV culture for the diagnosis of infection has a sensitivity that is similar to that of HIV DNA PCR [39]. However, HIV culture is more complex and expensive to perform than DNA PCR or RNA assays, and definitive results may not be available for 2–4 weeks.

ISSUES RELATED TO DIAGNOSIS OF NON-SUBTYPE B HIV INFECTION

Although HIV subtype B is the predominant viral subtype found in the United States, non-subtype B viruses predominate in some other parts of the world, such as subtype C in regions of Africa and India, and subtype E in much of Southeast Asia [40]. Currently available HIV DNA PCR tests are less sensitive in the detection of non-subtype B HIV, and false-negative HIV DNA PCR assays have been reported in infants infected with non-subtype B HIV [41-44]. In an evaluation of perinatally infected infants diagnosed in New York State in 2001 – 2002, 16.7% of infants were infected with a non-subtype B strain of HIV, compared to 4.4% of infants diagnosed between 1998 – 1999 [45]. Therefore, caution should be exercised in the interpretation of negative HIV DNA PCR test results in infants born to mothers who may have acquired infection with a non-subtype B virus.

Some of the currently available HIV RNA assays have improved sensitivity for detection of non-subtype B HIV infection [46-49], although even these assays may not detect some non-B subtypes, particularly the more uncommon group O HIV subtypes [49, 50]. In cases of infants in whom non-subtype B perinatal exposure may be suspected and HIV DNA PCR is negative, repeat testing using one of the newer RNA assays shown to be more sensitive in the detection of non-subtype B HIV is recommended (for example, the Amplicor HIV-1 Monitor 1.5 [Roche Molecular Systems, Pleasanton, CA], NucliSens HIV-1 QT [bioMerieux, Inc., Durham, NC], or Versant Quantiplex HIV RNA 3.0 (bDNA) [Bayer Corporation, Tarrytown, NY] assays). When evaluating infants born to parents one or both of whom come from areas endemic for non-subtype B HIV, such as Africa and Southeast Asia, clinicians should consider conducting initial testing using one of the assays more sensitive assays for non-subtype B virus (for example, one of the newer RNA assays mentioned above) [49, 51]. In children with negative HIV DNA PCR and RNA assays but in whom non-subtype B infection continues to be suspected, the clinician should consult with an expert in pediatric HIV infection and the child should undergo close clinical monitoring and definitive HIV serologic testing at age 18 months.

TIMING OF DIAGNOSTIC TESTING IN INFANTS WITH KNOWN PERINATAL HIV EXPOSURE

Virologic diagnostic testing of the HIV-exposed infant should be performed between birth and 14 days of age, at age 1 – 2 months, and at age 3 – 6 months. HIV infection is diagnosed by two positive HIV virologic tests performed on separate blood samples, regardless of age. A positive HIV antibody test with confirmatory Western blot (or IFA) at age ≥ 18 months confirms HIV infection [5]. HIV infection can be reasonably excluded in non-breast fed infants with two or more negative virologic tests performed at age ≥ 1 month, with one of those being performed at age ≥ 4 months [15]. Loss of HIV antibody in a child with previously negative virologic tests definitively confirms that the child is HIV-uninfected.

Virologic Testing at Birth – 14 Days

Initial testing is recommended between birth and 14 days of age. As many as 30% – 40% of HIV-infected infants can be identified by 48 hours of age [27, 30]. Because of concerns regarding potential contamination with maternal blood, blood samples from the umbilical cord should not be used for diagnostic evaluations. Working definitions have been proposed to differentiate between acquisition of HIV infection during the intrauterine and intrapartum periods. Infants who have a positive virologic test at or before age 48 hours are considered to have early (i.e., intrauterine) infection, whereas infants who have a negative virologic test during the first week of life and subsequent positive tests are considered to have late (i.e., intrapartum) infection [52]. Some researchers have proposed that infants with early infection may have more rapid disease progression than those with late infection and therefore should receive more aggressive therapy [52, 53]. However, data from prospective cohort studies have demonstrated that although early differences in HIV RNA levels were present between infants with a positive HIV culture within 48 hours of birth and those with a first positive culture after age 7 days, these differences were no longer statistically significant after age 2 months [54]. HIV RNA copy number after the first month of life was more predictive of rapid disease progression than the time at which HIV culture tests were positive [54].

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection
In infants with negative tests at birth, repeat diagnostic testing can also be considered at age 14 days, because the diagnostic sensitivity of virologic assays increases rapidly by age 2 weeks, and early identification of infection would permit discontinuation of neonatal zidovudine chemoprophylaxis and further evaluation of the need for more aggressive combination antiretroviral therapy (see When to Initiate Therapy in Antiretroviral-Naïve HIV-Infected Infants under Age 12 Months and Table 6).

Virologic Testing at Age 1 – 2 Months

Infants with initially negative virologic tests should be retested at age 1 – 2 months. Most HIV-exposed neonates will receive 6 weeks of antiretroviral prophylaxis to prevent mother-to-child transmission. Although prophylactic antiretroviral therapy theoretically could affect the predictive value of HIV virologic testing in neonates, zidovudine monotherapy did not delay the detection of HIV by culture in infants in PACTG protocol 076, and has not decreased the sensitivity and predictive values of many virologic assays [34-37, 55, 56]. Whether more intensive combination antiretroviral regimens used by HIV-infected pregnant women for treatment or prevention of transmission will affect virologic test sensitivity in their infants is being evaluated. The sensitivity of diagnostic testing will also need to be re-examined in HIV-exposed infants who receive more complex infant prophylaxis regimens for prevention of mother-to-child transmission.

Virologic Testing at Age 3 – 6 Months

HIV-exposed children who have had repeatedly negative virologic assays at birth and at age 1 – 2 months should be retested at age 3 – 6 months.

Antibody Testing at Age 6 Months or Older

2 or more negative HIV immunoglobulin G (IgG) antibody tests performed at age ≥ 6 months, with an interval of at least 1 month between the tests, can also be used to reasonably exclude HIV infection in HIV-exposed children with no clinical or virologic laboratory evidence of HIV infection.

Antibody Testing at Age 12 – 18 Months to Document Seroreversion

Serology after age 12 months is recommended to confirm that maternal HIV antibodies transferred to the infant utero have disappeared, if there has not been previous confirmation of two negative antibody tests. If the child is still antibody-positive at age 12 months, then testing should be repeated between age 15 – 18 months [57].

Antibody Testing Age 18 Months or Older

HIV can be diagnosed in children age 18 months or older with a positive HIV antibody test and a confirmatory Western blot (or IFA).
Laboratory Monitoring of Pediatric HIV Infection

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

Working Group Recommendations:

- In children under age 6 years, CD4 percentage is preferred for monitoring immune status because of age-related changes in absolute CD4 count in this age group.

- CD4 percentage or count should be measured at the time of diagnosis of HIV infection and at least every 3 – 4 months thereafter.

- Plasma HIV RNA should be measured to assess viral load at the time of diagnosis of HIV infection and at least every 3 – 4 months thereafter.

- More frequent CD4 cell and plasma HIV RNA monitoring may be considered in infants less than age 6 – 12 months; in children with suspected clinical, immunologic, or virologic deterioration; to confirm an abnormal value; or when initiating or changing therapy.

- The age of the child must be considered when interpreting the risk of disease progression based on CD4 percentage or count and plasma HIV RNA level.

- Optimally, the goal of antiretroviral therapy is to reduce plasma HIV RNA levels to below the limits of quantitation on ultrasensitive assays and to normalize immune status.

IMMUNOLOGIC MONITORING IN CHILDREN

Clinicians interpreting CD4 count for children must consider age as a variable. CD4 count and percentage values in healthy infants who are not infected with HIV are considerably higher than those observed in uninfected adults, and slowly decline to adult values by age 4 – 6 years [58, 59]. A pediatric clinical and immunologic staging system for HIV infection has been developed that includes age-related definitions of immune suppression (Table 1 and Table 2) [60]. In children under age 4 – 6 years, the absolute CD4 count tends to vary more with age within an individual child than does CD4 percentage. Therefore, in HIV-infected children under age 4 – 6 years, CD4 percentage is preferred for monitoring immune status, whereas absolute CD4 count can be used in older children [61].

In HIV-infected children, as in infected adults, the CD4 count and percentage declines as HIV infection progresses, and patients with lower CD4 values have a poorer prognosis than patients with higher values (Table 3). CD4 values should be obtained as soon as possible after a child has a positive test for HIV and every 3 – 4 months thereafter. Increased frequency of evaluations may be needed for children with suspected clinical, immunologic, or virologic deterioration; to confirm an abnormal value; or when initiating or changing therapy. Because young infants with HIV infection may have rapid disease progression, some experts monitor CD4 percentage more frequently (e.g., every 1 – 2 months) in untreated infants less than age 6 – 12 months to identify those with rapid disease progression, who may need more prompt institution of antiretroviral therapy.

The prognostic value of CD4 percentage and HIV RNA copy number was assessed in a large individual patient meta-analysis (the HIV Pediatric Prognostic Markers Collaborative Study), which incorporated clinical and laboratory data from 17 pediatric studies and included 3,941 HIV-infected children receiving either no therapy or only zidovudine monotherapy [62]. The analysis looked at the short-term (12-month) risk of developing AIDS or death based on the child’s age and selected values of CD4 percentage and HIV RNA copy number at baseline. Figures 1 and 2 and Table 3 depict age-associated 1-year risk of developing AIDS or death as a function of CD4 percentage.
The risk of disease progression associated with a specific CD4 percentage or count varies with the age of the child. Infants in the first year of life experience proportionately higher risks than older children for any given CD4 stratum. For example, comparing a 1-year-old child with CD4 percentage of 25% to a 5-year-old child with the same CD4 percentage, there is an approximate 4-fold increase in the risk of AIDS and 6-fold increase in the risk of death in the 1-year-old child (Figures 1 and 2). However, all age groups demonstrate rapid increases in risk as CD4 percentage decreases below 15% – 20%.

These risk profiles form the rationale for recommendations on when to initiate therapy in a treatment-naive HIV-infected child (see When to Initiate Therapy). A Web site using the meta-analysis from the HIV Pediatric Prognostic Markers Collaborative Study is available to estimate the short-term risk of progression to AIDS or death in the absence of effective antiretroviral therapy according to age and the most recent CD4 percentage or HIV-1 RNA viral load measurement (http://www.pentatrials.org/hppmcs) [62].

Measurement of CD4 values can be associated with considerable intrapatient variation. Even mild intercurrent illness or the receipt of vaccinations can produce a transient decrease in CD4 count and percentage; thus, CD4 values are best measured when patients are clinically stable. No modification in therapy should be made in response to a change in CD4 values until the change has been substantiated by at least a second determination, with a minimum of 1 week between measurements.

HIV RNA Monitoring in Children

Viral burden in peripheral blood can be determined by using quantitative HIV RNA assays. During the period of primary infection in adults, HIV RNA copy number initially rises to high peak levels and then declines by as much as 2 – 3 log10 copies to reach a stable lower level (the virologic set point) approximately 6 – 12 months following acute infection [63, 64]. In infected adults, the viral set point correlates with the subsequent risk of disease progression or death [65, 66]. On the basis of data from studies in infected adults, recommendations for the use of HIV RNA copy number in deciding to initiate and change antiretroviral therapy have been developed for adults [1]. These recommendations also are applicable to infected adolescents.

The HIV RNA pattern in perinatally infected infants differs from that in infected adults. High HIV RNA copy numbers persist in infected children for prolonged periods [67, 68]. In one prospective study, HIV RNA levels generally were low at birth (i.e., < 10,000 copies/mL), increased to high values by age 2 months (most infants had values > 100,000 copies/mL, ranging from undetectable to nearly 10 million copies/mL), and then decreased slowly; the mean HIV RNA level during the first year of life was 185,000 copies/mL [54]. Additionally, in contrast to the adult pattern, after the first year of life, HIV RNA copy number slowly declines over the next few years [54, 69-71]. This pattern probably reflects the lower efficiency of an immature, but developing, immune system in containing viral replication and possibly a greater number of HIV-susceptible cells.

High HIV RNA levels (i.e., > 299,000 copies/mL) in infants age < 12 months have been correlated with disease progression and death, but RNA levels overlap considerably in young infants who have rapid disease progression and those who do not [54, 68]. High RNA levels (i.e., levels of > 100,000 copies/mL) in older children have also been associated with high risk of disease progression and mortality, particularly if CD4 percentage is < 15% (Table 4) [70, 71]. The most robust data set available to elucidate the predictive value of plasma RNA for disease progression in children was assembled in the HIV Pediatric Prognostic Markers Collaborative Study discussed earlier (see Immunologic Monitoring in Children) [62]. As for CD4 percentage, analyses were performed for age-associated risk in the context of plasma RNA levels in a cohort of children receiving either no therapy or only zidovudine monotherapy. Similar to data from previous studies [70, 71], the risk of clinical progression to AIDS or death dramatically increases when HIV RNA exceeds 100,000 copies (5.0 log10 copies)/mL; at lower values, only older children show much variation in risk (Figures 3 and 4 and Table 3). At any given level of HIV RNA, infants under age 1 year were at higher risk of progression than older children, although these differences were less striking than observed for the CD4 percentage data.

Despite data indicating that high plasma HIV RNA concentrations are associated with disease progression, the predictive value of specific HIV RNA concentrations for disease progression and death for an individual child is moderate [70]. HIV RNA concentration may be difficult to interpret during the first year of life because values are high and are less predictive of disease progression risk than in older children [67]. In both HIV-infected children and adults, CD4 percentage or count and HIV RNA copy number are independent predictors of disease progression and mortality risk, and use of the two markers together more accurately defines prognosis [70-74].
HIV RNA copy number should be assessed as soon as possible after a child has a positive virologic test for HIV and every 3 – 4 months thereafter; increased frequency of evaluations may be needed for children experiencing virologic, immunologic, or clinical deterioration; to confirm an abnormal value; or when initiating or changing antiretroviral therapy (see Considerations Related to Changing Antiretroviral Therapy). Because young infants with HIV infection may have rapid disease progression, some experts monitor HIV RNA concentration more frequently (e.g., every 1 – 2 months) in untreated infants under age 6 – 12 months to identify those with rapid disease progression, who may need more prompt institution of antiretroviral therapy.

Methodological Considerations in Interpretation and Comparability of HIV RNA Assays

The use of HIV RNA assays for clinical purposes requires specific considerations [73], which are discussed more completely elsewhere [1]. Several different methods can be used for quantitating HIV RNA, each with different levels of sensitivity. Although the results of the assays are correlated, the absolute HIV RNA copy number obtained from a single specimen tested by two different assays can differ by two-fold (0.3 log₁₀) or more [76-79].

There are currently three FDA-approved viral load assays:

- HIV-1 reverse transcriptase quantitative PCR assay (Amplicor HIV-1 Monitor Test, version 1.5, Roche Diagnostics); lower limit of detection differs between the “ultrasensitive” assay (< 50 copies/mL) and “regular sensitivity” assay (< 400 copies/mL);
- HIV-1 nucleic acid sequence-based amplification test (NucliSens HIV-1 QT, bioMerieux); and
- HIV-1 in vitro signal amplification, branched chain nucleic acid probe assay (bDNA) (VERSANT HIV-1 RNA 3.0 Assay, Bayer).

The lower limit of detection for the assays differ (< 50 copies/mL for the Amplicor assay, < 80 copies/mL for the NucliSens assay, and < 75 copies/mL for the VERSANT assay). Because of the variability of assay techniques and quantitative HIV RNA measurements between the three assays, a single HIV RNA assay method should be used consistently for monitoring an individual patient. A key goal of therapy is to lower the viral load below the limit of detection of the chosen assay.

The predominant virus subtype in the United States is B, which is the subtype for which all initial assays were targeted. Current kit configurations for all companies have been designed to detect and quantitate essentially all viral subtypes, with the exception of the uncommon O subtypes [47, 48]. This is important for many regions of the world where non-B subtypes are predominant, as well as for the United States, where a small subset of individuals are infected with viral subtypes prevalent in other parts of the world [41 – 43]. Choice of HIV RNA assay, particularly for young children, may be influenced by the amount of blood required for the assay. The NucliSens assay requires the least amount of blood (100 μL of plasma), followed by the Amplicor HIV-1 Monitor (200 μL of plasma) and the VERSANT assays (1 mL of plasma).

Biologic variation in HIV RNA levels within one person is well documented. In adults, repeated measurement of HIV RNA levels using the same assay can vary by as much as 3-fold (0.5 log₁₀) in either direction over the course of a day or on different days [1, 74, 79]. This biologic variation may be greater in infected infants and young children. In children with perinatally acquired HIV infection, RNA copy number slowly declines even without therapy during the first several years after birth, although it persists at higher levels than those observed in most infected adults [54, 69, 70]. This decline is most rapid during the first 12 – 24 months after birth, with an average decline of approximately 0.6 log₁₀ per year; a slower decline continues until approximately age 4 – 5 years (average decline of 0.3 log₁₀ per year).

This inherent biologic variability must be considered when interpreting changes in RNA copy number in children. Thus, only changes after repeated testing greater than 5-fold (0.7 log₁₀) in infants age < 2 years and greater than 3-fold (0.5 log₁₀) in children age ≥ 2 years should be considered reflective of a biologically and clinically substantial change. To reduce the impact of assay variability in the clinical management of patients, 2 samples can be obtained at baseline and the average of the 2 values used for comparison with future tests.

No alteration in therapy should be made as a result of a change in HIV copy number unless the change is confirmed by a second measurement. Because of the complexities of HIV RNA testing and the age-related changes in HIV RNA in children, interpretation of HIV RNA levels for clinical decision making should be done by or in consultation with an expert in pediatric HIV infection.
GENERAL CONSIDERATIONS

Treatment of pediatric HIV infection in the United States has evolved over the last 20 years. Prior to the availability of antiretroviral drugs for children, care focused on prevention and management of HIV-related complications and provision of palliative care. Initial studies of monotherapy in children in the early 1990s demonstrated significant clinical and immunologic benefit with treatment [80-85]; further research demonstrated that combination therapy (initially dual NRTI treatment) led to better clinical, immunologic, and virologic outcomes than monotherapy [86-88]. Currently, highly active combination regimens including at least 3 drugs is recommended; such regimens have been associated with enhanced survival, reduction in opportunistic infections and other complications of HIV infection, improved growth and neurocognitive function, and improved quality of life in children [2, 89-98]. The increased survival of HIV-infected children is associated with challenges in selecting successive new antiretroviral drug regimens. Additionally, therapy is associated with short- and long-term toxicities, some of which are only now beginning to be recognized in children [100, 101].

Antiretroviral drug-resistant virus can develop in both multi-drug experienced children and children who received initial regimens containing 1 or 2 drugs that incompletely suppressed viral replication. Additionally, drug resistance may be seen in antiretroviral-naïve children who have become infected with HIV despite maternal/infant antiretroviral prophylaxis [102-105]. Thus, decisions about when to start therapy and what drugs to choose in antiretroviral-naïve children and on how to best treat antiretroviral-experienced children remain complex, and whenever possible, decisions regarding the management of pediatric HIV infection should be directed by or in consultation with a specialist in pediatric and adolescent HIV infection. Separate sections will discuss treatment of antiretroviral-naïve children (when and what to start), when to change therapy, and treatment of antiretroviral-experienced children.

A number of factors need to be considered in making decisions about initiating and changing antiretroviral therapy in children, including:

- Severity of HIV disease and risk of disease progression, as determined by age, presence or history of HIV-related or AIDS-defining illnesses, level of CD4 cell immunosuppression, and magnitude of HIV plasma viremia;
- Availability of appropriate (and palatable) drug formulations and pharmacokinetic information on appropriate dosing in the child’s age group;
- Potency, complexity (e.g., dosing frequency, food and fluid requirements), and potential short- and long-term adverse effects of the antiretroviral regimen;
- Effect of initial regimen choice on later therapeutic options;
- Presence of comorbidity that could affect drug choice, such as tuberculosis, hepatitis B or C virus infection, or chronic renal or liver disease;
- Potential antiretroviral drug interactions with other prescribed, over-the-counter, or alternative medications taken by the child; and
- The ability of the caregiver and child to adhere to the regimen.

The following recommendations provide general guidance for decisions related to treatment of HIV-infected children, and flexibility should be exercised according to a child’s individual circumstances. Guidelines for treatment of HIV-infected children are evolving as new data from clinical trials become available. Although prospective, randomized, controlled clinical trials offer the best evidence for formulation of guidelines, most antiretroviral drugs are approved for use in pediatric patients based on efficacy data from clinical trials in adults, with supporting pharmacokinetic and safety data from phase I/II trials in children. Additionally, efficacy has been defined in most adult trials based on surrogate marker data, as opposed to clinical endpoints. For the development of these guidelines, the Working Group reviewed relevant clinical trials published in peer-reviewed journals or in abstract form, with attention to data from pediatric populations when available.
GOALS OF ANTIRETROVIRAL TREATMENT

Current antiretroviral therapies do not eradicate HIV infection due to the long half-life of latently infected CD4 cells [38, 106, 107]; some data suggest that the half-life of intracellular HIV proviral DNA is even longer in infected children than in adults (median 14 versus 5 – 10 months, respectively) [38]. Thus, based on currently available data, HIV causes a chronic infection likely requiring treatment for life once a child starts therapy. The goals of antiretroviral therapy for HIV-infected children include:

- Reducing HIV-related mortality and morbidity;
- Restoring and preserving immune function;
- Maximally and durably suppressing viral replication;
- Minimizing drug-related toxicity;
- Maintaining normal physical growth and neurocognitive development; and
- Improving quality of life.

Strategies to achieve these goals require complex balancing of sometimes competing considerations.

Use and selection of combination antiretroviral therapy: At present, the treatment of choice for HIV-infected children is at least 3 drugs, which include at least 2 classes of antiretroviral drugs. The Working Group has recommended several preferred and alternative regimens (see Recommendations on Antiretroviral Regimens for Initial Therapy [Table 7]). The most appropriate regimen for an individual child depends on multiple factors, including age of the child and availability of appropriate drug formulations; the potency, complexity, and toxicity of the regimen; the child and caregiver’s ability to adhere to the regimen; the child’s home situation; and the child’s antiretroviral treatment history.

Drug sequencing and preservation of future treatment options: The choice of antiretroviral treatment regimens should include consideration of future treatment options, such as the presence of or potential for drug resistance. Multiple changes in antiretroviral drug regimens can rapidly exhaust treatment options, and should be avoided unless required (e.g., severe toxicity or intolerance or significant clinical, immunologic, or virologic progression). Appropriate sequencing of drugs for use in initial and second-line therapy can preserve future treatment options and is another strategy to maximize long-term benefit from therapy. Currently, recommendations for initial therapy are to use 2 classes of drugs—2 NRTIs combined with either an NNRTI or PI—thereby sparing 2 classes of drugs for later use.

Maximizing adherence: As discussed in Adherence Assessment and Monitoring, lack of adherence to prescribed regimens can lead to subtherapeutic levels of antiretroviral medications, which enhances the risk of the development of drug resistance and likelihood of virologic failure. Participation by the caregivers and child in the decision-making process is crucial. Issues related to adherence to therapy should be fully assessed, discussed, and addressed with the child’s caregiver and the child (when age-appropriate) before the decision to initiate therapy is made. Potential problems should be identified and resolved prior to starting therapy, even if this delays initiation of therapy. Additionally, frequent follow-up is important to provide assessment of virologic response to therapy, drug intolerance, viral resistance, and adherence.

WHEN TO INITIATE THERAPY IN ANTIRETROVIRAL-NAÏVE CHILDREN (TABLE 6)

The choice of whether to start therapy early, while an individual is still asymptomatic, versus delaying therapy until clinical or immunologic symptoms appear continues to generate considerable controversy among HIV experts. Some experts favor starting aggressive therapy in the early stages of HIV infection in the hope that early antiretroviral intervention will control viral replication prior to the onset of rapid genetic mutation and evolution into multiple quasispecies. This could result in a lower viral set point, fewer mutant viral strains, and potentially less drug resistance. Early therapy would slow immune system destruction and preserve immune function, preventing clinical disease progression. On the other hand, delaying therapy until later in the course of HIV infection, when clinical or immunologic symptoms appear, may result in reduced evolution of drug-resistant virus due to a lack of drug selection pressure, greater adherence to the therapeutic regimen when the patient is symptomatic rather than asymptomatic, and reduced or delayed adverse effects of antiretroviral therapy.

Recommendations for when to initiate therapy have been more aggressive in children than adults because HIV infection is primarily transmitted from mother to child,
thereby allowing identification of the timing of infection in children; HIV disease progression in children is more rapid than in adults; and laboratory parameters are less predictive of risk of disease progression in children, particularly for young infants. As discussed in Laboratory Monitoring of Pediatric HIV Infection, CD4 count and HIV RNA values vary considerably by age in children, and both markers are poorly predictive of disease progression and mortality in children younger than 12 months. Hence, recommendations for when to start therapy differ by age of the child. As discussed earlier, in the HIV Paediatric Prognostic Markers Collaborative Study (HPPMCS) meta-analysis, CD4 percentage and HIV RNA levels were both independently predictive of the risk of clinical progression or death, although CD4 percentage was a stronger predictor of risk than HIV RNA levels (HPPMCS). Because the surrogate marker-based risk of progression varied considerably by age, the Working Group has moved to recommendations for 4 age bands: infants under age 12 months, children age 1 – 3 years, children age > 4 – 12 years, and adolescents age ≥ 13 years.

Antiretroviral-Naïve HIV-Infected Infants under Age 12 Months:

Working Group Recommendations (Table 5):

- Initiation of antiretroviral therapy is recommended for infants < 12 months with HIV-related symptoms (clinical categories A, B, or C), regardless of CD4 percentage or viral load.

- Initiation of antiretroviral therapy is also recommended for asymptomatic infants < 12 months (clinical category N) with CD4 < 25%.

- Initiation of antiretroviral therapy should be considered for asymptomatic infants < 12 months with CD4 ≥ 25%.

While there is agreement among pediatric HIV experts that infected infants with clinical symptoms of HIV disease or with evidence of immune compromise should be treated, there remains controversy regarding treatment of asymptomatic infants with normal immunologic status. The Working Group recommends initiation of therapy for infants < age 12 months who have HIV-related clinical symptoms (clinical category A, B, or C) or immunologic suppression (CD4 < 25%) due to HIV disease, regardless of HIV RNA level, and consideration of therapy for HIV-infected infants < age 12 months who are asymptomatic and have normal immune parameters (Table 6). Because of the high risk of rapid progression of HIV disease, many experts would treat all HIV-infected infants < age 12 months, regardless of clinical, immunologic, or virologic parameters. Other experts would treat all infected infants < age 6 months, and use clinical and immunologic parameters and assessment of adherence issues for decisions regarding initiation of therapy in infants age 6 – 12 months. Issues associated with adherence must be fully assessed and discussed with the HIV-infected infant’s caregivers before the decision to initiate therapy is made.

The risk of disease progression is inversely correlated with the age of the child, with the youngest children at greatest risk of rapid disease progression. In early reports, approximately 20% – 25% of HIV-infected children progressed to AIDS or death within the first year of life. In more recent reports, with follow-up through 1999, high rates of symptomatic disease progression continued to be observed in young infants, with development of AIDS or death in 15% of HIV-infected children by age 12 months, although children born in the most recent cohort (1995 – 1999), where early treatment was recommended, were less likely to progress (5% developed AIDS or death by age 12 months) [108]. Progression to moderate or severe immune suppression is also frequent in infected infants; by 12 months of age, approximately 50% of children develop moderate immune suppression and 20% severe immune suppression [108]. In the HIV Pediatric Prognostic Markers Collaborative Study meta-analysis, the 1-year risk of AIDS or death was substantially higher in younger than older children at any given level of CD4 percentage, particularly for infants < age 12 months [62]. Unfortunately, although the risk of progression is greatest in the first year of life, the ability to differentiate children at risk of rapid versus slower disease progression by clinical and laboratory parameters is also most limited in young infants. No specific “at-risk” viral or immunologic threshold can be easily identified, and progression of HIV disease and opportunistic infections can occur in young infants with normal CD4 counts [62].

Identification of HIV infection during the first few months of life permits clinicians to initiate antiretroviral therapy during the initial phases of primary infection. However, there are only limited data to address the efficacy of aggressive therapy for asymptomatic HIV-infected infants. Analyses from a prospective study of 360 HIV-infected children in the United States (Perinatal AIDS Collaborative...
Transmission Study [PACTS]) showed that infants who received early treatment with HAART (prior to age 2 years, with nearly half starting in the first year of life) were significantly less likely to progress to AIDS or death compared with those who received no therapy, adjusting for year of birth and maternal disease factors [109]. The French Perinatal Cohort reported a 70% reduction in the incidence of AIDS-associated events before age 24 months among infants born since 1996, and earlier initiation of HAART (before versus after age 6 months) appeared to be associated with a superior clinical outcome: there were no opportunistic infections or development of encephalopathy during the first 2 years of life among 40 infants who started HAART before age 6 months, whereas 6 of 43 infants who started HAART after age 6 months had 7 AIDS-defining events, 3 of which were encephalopathy [110]. The California Pediatric HIV Study Group and the Italian Register for Children both reported reduced disease progression to AIDS and improved survival with early initiation of HAART [111-113]. While very early initiation (before age 2 months) of mono/dual therapy resulted in decreased progression to AIDS compared to early initiation (age 3 – 4 months) of such therapy, the Italian Register did not find a difference in progression between children with very early versus early initiation of HAART; however, similar to the French Cohort, initiation of therapy at under age 6 months was superior to starting at > 6 months [110, 113]. In an analysis from the European Collaborative Study cohort, children who initiated potent therapy before age 5 months were more likely to achieve CD4 recovery (defined as 20% increase in CD4 z-score) than children initiating therapy at older ages [114].

Several small studies have demonstrated that despite the very high levels of viral replication in perinatally-infected infants, early initiation of HAART can result in durable viral suppression and normalization of immunologic responses to non-HIV antigens in some infants. In infants with sustained control of plasma viremia, there has also been lack of detection of extra-chromosomal replication intermediates, suggesting near-complete control of viral replication. Some of these infants have become HIV seronegative and have lost HIV-specific immune responses. However, therapy is not curative: proviral HIV-1 DNA continues to be detectable in peripheral blood lymphocytes and viral replication resumes if therapy is discontinued [38, 106].

There are, however, potential problems with treatment of asymptomatic infants, and definitive clinical trial data documenting therapeutic benefit from this approach are not currently available. The rates of virologic failure with therapy started early in life may be higher than when started later. In studies of early therapy, the proportion of infants with viral levels remaining below quantification after 12 – 24 months of therapy is lower than reported in older children and adults, ranging from 18% – 62% [115-121]. Incomplete viral suppression can lead to the development of drug resistance and compromise future treatment options [120].

Possible reasons for the poor response in infants include very high viral loads in young infants, inadequate antiretroviral drug levels, and poor adherence due to the difficulties in administering complex regimens to infants. Information on appropriate drug dosing in infants under age 3 – 6 months is limited. Hepatic and renal functions are immature in the newborn, undergoing rapid maturational changes during the first few months of life, which can result in substantial differences in antiretroviral dose requirements between young infants and older children. When drug concentrations are sub-therapeutic, either because of inadequate dosing, poor absorption, or incomplete adherence, antiretroviral drug resistance can develop rapidly, particularly in the setting of high levels of viral replication in young infants. Finally, the possibility of toxicities—such as lipodystrophy, dyslipidemia, glucose intolerance, osteopenia, and mitochondrial dysfunction—with prolonged therapy is a concern [100, 101]. These concerns are particularly relevant because life-long administration of therapy may be necessary.

Surrogate markers such as CD4 count and HIV RNA levels are poor markers of disease progression in infants [61]. There are limited data on clinical indicators that may suggest an increased likelihood of rapid progression among asymptomatic infants that would allow an identification of a “high risk” group for whom early treatment is indicated. Some intriguing data suggest that the risk of disease progression during the first 2 years of life may be related to maternal clinical, immunologic, and virologic HIV disease status during pregnancy, with more rapid progression in infants born to women with more advanced HIV disease [109].
Antiretroviral-Naïve HIV-Infected Children Age 1 Year or Older:

Working Group Recommendations (Table 6):

- Initiation of antiretroviral therapy is **recommended** for children age ≥ 1 year with AIDS or significant symptoms (clinical category C or most clinical category B conditions), regardless of CD4 percentage/count or plasma HIV RNA level.

- Initiation of antiretroviral therapy is also **recommended** for children age ≥ 1 year who are asymptomatic or have mild symptoms (clinical category N or A or clinical category B due to single episode of serious bacterial infection or lymphoid interstitial pneumonitis) and have met the age-related CD4 threshold indicated in Table 6.

- Initiation of antiretroviral therapy should be **considered** for children age ≥ 1 year who are asymptomatic or have mild symptoms and have met the age-related CD4 threshold indicated in Table 6 or have plasma HIV RNA > 100,000 copies/mL.

- Initiation of antiretroviral therapy can be **deferred** for children age ≥ 1 year who are asymptomatic or have mild symptoms and do not have immune suppression as defined in Table 6 and have plasma HIV RNA < 100,000 copies/mL.

Because the risk of disease progression slows in children age ≥ 1 year, the option of deferring treatment can be considered for older children. It is clear that children with clinical AIDS or significant symptoms (clinical category C or B) are at high risk of disease progression and death; treatment is recommended by the Working Group for all such children, regardless of immunologic or virologic status. However, children age ≥ 1 year with mild clinical symptoms (clinical category A) or who are asymptomatic (clinical category N) are at lower risk of disease progression than those with more severe clinical symptoms [122]. It should also be noted that some clinical category B conditions—a single episode of serious bacterial infection or lymphoid interstitial pneumonitis—are less prognostic of the risk of disease progression, and consideration of CD4 count and viral load may be useful in determining the need for therapy in such children.

In adults, considerations related to initiation of antiretroviral therapy are based primarily on risk of disease progression as determined by baseline CD4 count (i.e., recommended if CD4 < 200 cells/mm³ and considered if CD4 count 200 – 350 cells/mm³) [1]. In children, the prognostic significance of a specific CD4 percentage or count varies with age [61, 62]. In considering CD4 thresholds for initiation of therapy in children derived from the HIV Pediatric Prognostic Markers Collaborative Study meta-analysis, a CD4 level associated with a risk of progression to AIDS of > 10% or death > 5% in the next 12 months was considered as a threshold for starting therapy (see Table 3 and Figures 1 – 4). For children age 1 – 3 years, the CD4 threshold corresponding with this risk is approximately 20%; for older children, this corresponds to a CD4 percentage of approximately 15%. There are few data on CD4-associated risk of progression in adolescents age 13 years or older; in this group, it is reasonable to use current adult guidelines for starting therapy. Additionally, data from the HIV Pediatric Prognostic Markers Collaborative Study suggest that absolute CD4 cell count may be a useful prognostic marker for disease progression in children as young as age 4 or 5 years, in whom the estimated risk of disease progression increased sharply when the count fell below 200 – 300 cells/mm³, similar to data in adults [61].

The level of plasma HIV RNA may provide useful information in terms of risk of progression, although its prognostic significance is weaker than CD4 count [62]. Several studies have shown that older children with HIV RNA levels of ≥ 100,000 copies/mL are at high risk of mortality [70, 71]. Similarly, in the HIV Pediatric Prognostic Markers Collaborative Study meta-analysis, the 1-year risk of progression to AIDS or death rose sharply for children older than age 1 year when HIV RNA levels were ≥ 100,000 copies/mL [62]. For example, the estimated 1-year risk of death was 2 – 3 times higher in children with plasma HIV RNA of 100,000 copies/mL compared to 10,000 copies/mL, and 8 – 10 times higher if plasma RNA was > 1,000,000 copies/mL.

Based on these data, the Working Group recommends antiretroviral therapy for all children with AIDS or significant HIV-related symptoms (clinical category...
C or most clinical category B conditions) or who are asymptomatic or have mild symptoms (clinical category N and A or clinical category B disease due to a single episode of serious bacterial infection or lymphoid interstitial pneumonitis) and have met the age-related CD4 threshold of < 20% if age 1 – 3 years, < 15% if age 4 – 12 years (or for children in the upper end of this age category, absolute CD4 count < 200 – 300/ mm³), or < 200 cells/mm³ if age 13 years or older. Antiretroviral therapy should be considered for children who are asymptomatic or have mild symptoms (clinical category N and A or clinical category B disease due to a single episode of serious bacterial infection or lymphoid interstitial pneumonitis) and have plasma HIV RNA > 100,000 copies/mL or who have CD4 percentage of 20% – 25% if age 1 – 3 years, 15% – 25% if age 4 – 12 years (or for children in the upper end of this age category, absolute CD4 count 200 – 350 cells/ mm³), or 200 – 350 cells/mm³ if age 13 years or older. Antiretroviral therapy can be deferred for asymptomatic children who have CD4 > 25% (or > 350 cells/mm³ for adolescents age 13 years or older) and plasma HIV RNA levels < 100,000 copies/mL.

When therapy is deferred, the health care provider should closely monitor virologic, immunologic, and clinical status (see Laboratory Monitoring of Pediatric HIV Infection). Factors to be considered in deciding when to initiate therapy in such children include:

- Increasing HIV RNA levels (e.g., HIV RNA levels approaching 100,000 copies/mL);
- Rapidly declining CD4 count or percentage to values approaching the age-related threshold for consideration of therapy;
- Development of clinical symptoms; and
- The ability of caregiver and child to adhere to the prescribed regimen.

WHAT DRUGS TO START:

INITIAL COMBINATION THERAPY FOR ANTIRETROVIRAL-NAÏVE CHILDREN (TABLES 8 – 11)

Working Group Recommendations:

- Combination therapy with at least 3 drugs, including either a protease inhibitor or non-nucleoside reverse transcriptase inhibitor plus a dual nucleoside analogue reverse transcriptase inhibitor backbone, is recommended for initial treatment of HIV-infected children.

- The goal of therapy in treatment-naïve children is to reduce HIV RNA levels to below the level of detection (if possible, as determined using ultrasensitive assays) and to preserve immune function for as long as possible.

- Infants who are identified as HIV-infected during the first 6 weeks of life while receiving zidovudine chemoprophylaxis should have zidovudine discontinued and should be assessed to determine the need for initiation of standard combination treatment.

- Antiretroviral drug resistance testing is recommended prior to initiation of therapy in all treatment-naïve children.

General Considerations

As of September 2006, there were 22 antiretroviral drugs approved for use in HIV-infected adults and adolescents; 13 of these have an approved pediatric treatment indication. These drugs fall into several major classes: nucleoside analogue or nucleotide analogue reverse transcriptase inhibitors (NRTIs, NtRTIs), non-
nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and fusion inhibitors. Brief information on drug formulation, pediatric dosing, and toxicity for the individual drugs can be found in Appendix A, Characteristics of Available Antiretroviral Drugs and the accompanying Drug Interaction Matrices 1 – 4 for detailed information on drug interactions. For more detailed discussion of major classes of antiretroviral drugs and individual drugs for treatment of pediatric HIV infection, see Supplement I: Pediatric Antiretroviral Drug Information. It is likely that new drugs and drug combinations that demonstrate sustainable viral load suppression and acceptable toxicity and dosing profiles will become available over time, which will increase treatment options for children.

Aggressive combination antiretroviral therapy with at least 3 drugs from at least 2 classes of drugs is recommended for initial treatment of infected infants, children, and adolescents because it provides the best opportunity to preserve immune function and delay disease progression. The goal of antiretroviral therapy is to maximally suppress viral replication, preferably to undetectable levels, for as long as possible, while preserving and/or restoring immune function and minimizing drug toxicity. Combination therapy slows disease progression and improves survival, results in a greater and more sustained virologic and immunologic response, and delays development of virus mutations that confer resistance to the drugs being used. Since antiretroviral therapy will need to be administered for many years, considerations related to the choice of initial antiretroviral regimen should include an understanding of barriers to adherence, including the complexity of schedules and food requirements for different regimens, palatability problems, and potential limitations in subsequent treatment options should resistance develop.

Monotherapy with the currently available antiretroviral drugs is not recommended to treat HIV infection. Use of zidovudine as a single agent is appropriate only when used in infants of indeterminate HIV status during the first 6 weeks of life to prevent perinatal HIV transmission. Infants who are confirmed as being HIV-infected while receiving zidovudine chemoprophylaxis should have zidovudine discontinued, and should be evaluated to determine if standard combination antiretroviral therapy should be initiated.

Antiretroviral drug resistance testing is recommended prior to the initiation of therapy in all treatment-naïve children. Treatment-naïve children with perinatal HIV infection can acquire drug-resistant virus from their mothers (either because she was initially infected with drug-resistant virus or acquired drug resistance during treatment) or can develop resistance during the period of infant antiretroviral prophylaxis prior to diagnosis of HIV infection. Drug-resistant virus has been identified in 6% – 16% of antiretroviral-naïve adults and 18% of horizontally infected adolescents with recent infection in United States and Europe [123-127]. Data are limited in children. In a study in New York State, genotypic drug resistance was identified in 12% of 91 HIV-infected infants born 1998 – 1999 and 19% of 42 infants born 2000 – 2001 [45, 128]; history of maternal and infant antiretroviral prophylaxis was not significantly associated with the detection of resistance in the infant. Thus, the prevalence of infants infected with antiretroviral drug-resistant virus may be increasing and may not be predicted by the drug prophylaxis regimen received by the mother. Although definitive data are not yet available to demonstrate that resistance testing of antiretroviral-naïve children prior to initiation of therapy correlates with greater success of initial antiretroviral therapy, the prevalence of resistance in HIV-infected children is sufficiently high that based on expert opinion, the Working Group recommends resistance testing prior to initiation of therapy in all treatment-naïve children, similar to recommendations for HIV-infected adults [129].

Recommended Regimens for Initial Therapy of Antiretroviral-Naïve Children (Tables 7 and 8)

Criteria Used for Recommendations

There are few randomized, phase III clinical trials of HAART among pediatric patients that provide direct comparison of different treatment regimens; most pediatric drug data come from phase I/II safety and pharmacokinetic trials and non-randomized, open-label studies. The Working Group reviews both child and adult clinical trial data published in peer-reviewed journals, data prepared by manufacturers for FDA review, and data presented in abstract format at major scientific meetings. Recommendations on the optimal initial therapy for children are continually being modified as new data become available, new therapies or drug formulations are developed, and late toxicities become recognized.

Criteria used by the Working Group for recommending specific drugs or regimens include:

- Data demonstrating durable viral suppression, immunologic improvement, and clinical improvement (when such data are available) with the regimen, preferably in children as well as adults;
• The extent of pediatric experience with the particular drug or regimen;
• Incidence and types of short- and long-term drug toxicity with the regimen, with special attention to toxicity reported in children;
• Availability and palatability of formulations appropriate for pediatric use, including taste, ease of preparation (e.g., powders), volume of syrups, and pill size and number;
• Dosing frequency and food and fluid requirements; and
• Potential for drug interactions.

The most extensive clinical trial data on initial therapy regimens in adults and children are available for 3 types of regimens based on drug class: NNRTI-based (2 NRTIs plus an NNRTI); PI-based (2 NRTIs plus a PI); and NRTI-based (3 NRTI drugs). NNRTI- or PI-based regimens are preferred for initial therapy; decisions about which type of regimen to choose should be individualized based on patient requirements. Each class-based regimen has advantages and disadvantages, which are delineated in more detail in the sections that follow and in Tables 9 – 12.

Drugs or drug combinations are classified in one of several categories as follows:

• **Preferred**: Drugs or drug combinations are designated as preferred for use in treatment-naïve children when clinical trial data in children or, more often, in adults have demonstrated optimal efficacy and durability with acceptable toxicity and ease of use, and studies have been performed to demonstrate safety and surrogate marker efficacy in children; additional considerations are listed above.

• **Alternative**: Drugs or drug combinations are designated as alternatives for initial therapy when clinical trial data in children or adults show efficacy but there are disadvantages compared to preferred regimens in terms of more limited experience in children; the extent of antiviral efficacy or durability is less well defined in children or less than a preferred regimen in adults; there are specific toxicity concerns; or there are dosing, formulation, administration, or interaction issues for that drug or regimen.

• **Use in Special Circumstances**: Some drugs or drug combinations are recommended only for use in special circumstances, when preferred or alternative drugs cannot be used.

• **Not Recommended**: A list of drugs and drug combinations that are not recommended for initial therapy in children is shown in Table 8. These drugs and drug combinations are not recommended either because of inferior virologic response, potential serious safety concerns (including potentially overlapping toxicities), or pharmacologic antagonism.

• **Insufficient Data to Recommend**: There are a number of drugs and drug combinations that are approved for use in adults that do not have pharmacokinetic or safety data available in children, or for which such data are too limited to make a recommendation for use for initial therapy in children. Some of these drugs and drug combinations may be appropriate for consideration in the management of the treatment-experienced child (see Management of the Treatment-Experienced Child).

Preferred Regimens for Initial Therapy of Children (Table 7)

NNRTI-Based Regimens (1 NNRTI + 2 NRTI backbone):

Working Group Recommendations:

- **Preferred NNRTI:**
 - Efavirenz in combination with 2 NRTIs for children age ≥ 3 years
 - Nevirapine in combination with 2 NRTIs for children age < 3 years or who require a liquid formulation

- **Alternative NNRTI:**
 - Nevirapine in combination with 2 NRTIs (for children age ≥ 3 years)

The Working Group does not recommend the following NNRTIs as initial therapy in children:

- Delavirdine, due to lack of pediatric formulation or pediatric pharmacokinetic data, inferior virologic potency in adults, and requirement for three times daily dosing
Summary: NNRTI-based regimens

Of the 3 NNRTIs currently available, only 2 (nevirapine and efavirenz) have an approved pediatric indication. Nevirapine is available in a liquid formulation, while efavirenz and delavirdine are not, although a liquid formulation of efavirenz is under study. Advantages and disadvantages of different NNRTI drugs are delineated in Table 10. Use of NNRTIs as initial therapy preserves the PI class for future use, and less dyslipidemia and fat maldistribution have been reported with the NNRTI class than with the PI class. Additionally, there is a lower pill burden with these agents when compared to PI-based regimens for children taking solid formulations. The major disadvantage of the current NNRTI drugs is that a single viral mutation can confer drug resistance, and cross-resistance often develops across the entire class. Rare but serious and potentially life-threatening skin and hepatic toxicity can occur with all drugs in this class, but is most frequent with nevirapine, at least in HIV-infected adults.

Efavirenz, in combination with 2 NRTIs, is the preferred NNRTI for initial therapy of children age ≥ 3 years based on clinical trial experience in children and because higher rates of toxicity have been observed in clinical trials in adults. Results of studies comparing nevirapine- versus efavirenz-based regimens in adults are conflicting, and no comparative studies have been done in children. Because nevirapine therapy is associated with the rare occurrence of significant hypersensitivity reactions, including Stevens-Johnson syndrome, and rare but potentially life-threatening hepatitis [1, 130], nevirapine is recommended as an alternative NNRTI for initial treatment of antiretroviral-naive children age ≥ 3 years. Nevirapine is the preferred NNRTI for initial therapy of children age < 3 years or for children who require a liquid formulation. Delavirdine has the least potent antiviral activity in adults and has not been studied in children, and is not recommended as part of an initial regimen.

Efavirenz as preferred NNRTI: In clinical trials in HIV-infected adults, a PI-sparing regimen of efavirenz in combination with zidovudine and lamivudine was associated with an excellent virologic response, with 70% of treated individuals having plasma HIV RNA < 400 copies/mL at 48 weeks [131]. In randomized controlled trials in treatment-naive adults, superior or similar virologic activity has been demonstrated in efavirenz-treated patients compared to individuals receiving PI- or triple NRTI-based regimens [132-135]. Clinical trials in adults are conflicting in terms of comparative efficacy of efavirenz and nevirapine (see discussion below) [136-140]. No comparative trials have been conducted in children.

Efavirenz has been studied in HIV-infected children in combination with 2 NRTIs or with an NRTI and a PI [141-147]. Results are comparable to those seen in adults. Although a pediatric formulation of efavirenz is under evaluation in the United States, at this time the drug is only available as a capsule or tablet. The appropriate dose of efavirenz for children age < 3 years has not been determined, and it is therefore not recommended for this age group. Some clinicians would recommend opening the capsules and adding the contents to food or liquid for children age ≥ 3 years who cannot swallow pills; however, there are no pharmacokinetic data on use in this fashion.

The major limitations of efavirenz are central nervous system side effects in both children and adults; reported side effects include fatigue, poor sleeping patterns, vivid dreams, poor concentration, agitation, depression, and suicidal ideation. While in most patients this toxicity is transient, in some patients the symptoms may persist or occur months after first initiating efavirenz. In several studies, the incidence of such side effects was correlated with efavirenz plasma concentrations and occurred more frequently in patients with higher levels of drug [148-151]. In patients with pre-existing psychiatric conditions, efavirenz should be used cautiously for initial therapy. Rash may also occur with efavirenz treatment; it is generally mild and transient, but appears to be more common in children than adults [141, 142]. Additionally, efavirenz is potentially teratogenic to the fetus if taken by a pregnant woman during the first trimester of pregnancy (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information). Unless adequate contraception can be assured, it is not recommended for initial therapy in adolescent females who are sexually active and may become pregnant.

Nevirapine as alternative NNRTI: Nevirapine has extensive clinical and safety experience in HIV-infected children, and has shown antiretroviral efficacy in a number of different combination regimens (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information) [152]. Nevirapine has been studied in HIV-infected children in combination with 2 NRTIs or with an NRTI and a PI [115, 117, 153].

In a large adult trial (2NN trial), while virologic efficacy was comparable between nevirapine and efavirenz (plasma HIV RNA < 50 copies/mL at 48 weeks in 56% of those receiving nevirapine versus 62% of those receiving efavirenz), serious hepatic toxicity was more frequent in the nevirapine arm than the efavirenz arm (hepatic laboratory toxicity in 8%–14% of those on nevirapine, compared to 5% on efavirenz) [139]. Other studies in adults have indicated potentially increased risk of hepatic...
Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

October 26, 2006

Toxicity with nevirapine-based compared to efavirenz-based regimens [154]. Additionally, data in adults indicate that symptomatic hepatic toxicity is more frequent in individuals with higher CD4 count and in women, particularly women with CD4 > 250 cells/mm³ and men with CD4 > 400 cells/mm³. This may be less of an issue for pre-pubertal children. In the published literature, hepatic toxicity appears to be less frequent in children receiving chronic nevirapine therapy than in adults [117, 153, 155]. In an FDA review of 783 HIV-infected pediatric patients receiving nevirapine, there was only 1 case of hepatitis, which was reported in a 17-year-old; there was no evidence of a serious hepatic event associated with nevirapine use in any child prior to adolescence [155]. In contrast, skin and hypersensitivity reactions have been reported in children [156].

Because of the higher potential for toxicity, nevirapine-based regimens are considered as alternative rather than preferred in children age ≥ 3 years. Since appropriate dosing information for nevirapine in young children is available and there is a liquid formulation, nevirapine is the preferred NNRTI for children who are age < 3 years or those who require a liquid formulation. Similar to recommendations in adults, nevirapine should not be used in post-pubertal adolescent girls with CD4 count > 250 cells/mm³ due to the increased risk of symptomatic hepatic toxicity, unless the benefit clearly outweighs the risk [1].

PI-Based Regimens (1 or 2 PIs + 2 NRTI backbone):

- **Preferred PI:**
 - Amprenavir (children age > 4 years), or indinavir, or full-dose ritonavir in combination with 2 NRTIs

- **Alternative PI:**
 - Nelfinavir in combination with 2 NRTIs (for children age > 2 years)

- **Use in special circumstances:**
 - Amprenavir (children age > 4 years), or indinavir, or full-dose ritonavir in combination with 2 NRTIs
 - Nelfinavir + efavirenz in combination with 2 NRTIs (for children age ≥ 3 years)
 - For adolescents who can receive adult doses: indinavir, or fosamprenavir, or saquinavir, each given with low-dose ritonavir boosting, in combination with 2 NRTIs

The Working Group does not recommend the following PIs as initial therapy in children either because of insufficient data or data related to toxicity or potency:

- Dual PIs (except for lopinavir/ritonavir) due to lack of information on appropriate dosing in children

- Atazanavir-, tipranavir-, and darunavir-containing regimens due to lack of pediatric data on appropriate dosage

- For adolescents who can receive adult doses, the following dual PI combinations should not be given: fosamprenavir + amprenavir (amprenavir is active drug for both and additive toxicity is possible) and atazanavir + indinavir (potential for additive hyperbilirubinemia)

- Amprenavir oral solution in children age < 4 years or in combination with ritonavir oral solution due to potential toxicity from high amounts of propylene glycol and vitamin E content in the oral solutions, as well as metabolic pathway competition with ethanol excipient in the ritonavir oral solution

- Saquinavir as sole PI due to poor oral bioavailability, 3 times daily dosing, and high pill burden
Summary: PI-based regimens

Ten PIs are currently approved for treatment of HIV infection, 4 of which are approved for use in children and have pediatric drug formulations. Advantages and disadvantages of different PIs are delineated in Table I. Advantages of PI-based regimens include excellent virologic potency, high barrier for development of drug resistance (requires multiple mutations), and sparing of the NNRTI drug class. However, the drugs have potential for multiple drug interactions due to metabolism via hepatic enzymes, and may be associated with metabolic complications such as dyslipidemia, fat maldistribution, and insulin resistance. Factors to be considered in selecting a PI-based regimen for treatment-naïve children include virologic potency, dosing frequency, pill burden, food or fluid requirements, availability of palatable pediatric formulations, drug interaction profile, toxicity profile (particularly related to metabolic complications), and availability of data in children (see Table I for advantages and disadvantages and Supplement I: Pediatric Antiretroviral Drug Information for detailed pediatric information on each drug).

Ritonavir acts as a potent inhibitor of the cytochrome P450 3A4 (CYP3A4) isoenzyme, thereby inhibiting the metabolism of other PIs, and has been used in low doses combined with another PI as a “pharmacokinetic booster,” increasing drug exposure by prolonging the second drug’s half-life. Dual “boosted” PI-based regimens are commonly used in treatment of adults, but adequate pediatric data are only available for co-formulated lopinavir/ritonavir. The appropriate dosing of ritonavir-boosted dual PI regimens for other combinations is not known in children, and additional pharmacokinetic studies are necessary before more definitive dosing recommendations can be made and before such regimens can be recommended for initial therapy of treatment-naïve children. Additionally, the use of low-dose ritonavir increases the potential for hyperlipidemia and drug-drug interactions. Low-dose ritonavir-boosted dual PI regimens may be considered in special circumstances in adolescents who can receive standard adult doses of the drugs.

The Working Group recommends co-formulated lopinavir/ritonavir as the preferred PI for the treatment-naïve child based on virologic potency in adult and pediatric studies, high barrier to development of drug resistance, excellent toxicity profile in adults and children, and availability of appropriate dosing information for children. However, data comparing the efficacy of lopinavir/ritonavir to other PIs are limited in adults and not available in children. Because of the limited availability of pediatric dosing information and formulations of other PIs in children, nelfinavir is considered the alternative PI choice. However, the potency of nelfinavir in adults is less than lopinavir/ritonavir, the genetic barrier to resistance is lower, and appropriate dosing information for young children, particularly those age < 2 years, is limited. Although nelfinavir has been studied in combination with efavirenz, such a regimen includes three drug classes for initial therapy and can compromise future therapy choices, and should only be used in special circumstances. Other PIs that can be considered in special circumstances when preferred and alternative drugs are not available include amprenavir, indinavir, and ritonavir.

Lopinavir/ritonavir as preferred PI: In clinical trials in adults, regimens containing lopinavir/ritonavir plus 2 NRTIs have been found to have very potent virologic activity in treatment-naïve patients. In a comparative trial of lopinavir/ritonavir versus nelfinavir (both combined with stavudine/lamivudine), lopinavir/ritonavir had superior virologic efficacy to nelfinavir (plasma HIV RNA < 400 copies/mL in 84% versus 66% of patients, respectively), and drug-resistant virus in patients with detectable plasma viral load at 48 weeks was detected in none of 51 lopinavir/ritonavir-treated patients, compared to 45% of 43 nelfinavir-treated patients [157, 158]. The rate of toxicity was similar between the groups. Lopinavir/ritonavir has been studied in both antiretroviral-naïve and -experienced children, and has demonstrated durable virologic activity and low toxicity [159-162]. In a study of 44 treatment-naïve children, 84% had plasma HIV RNA < 400 copies/mL and 71% < 50 copies/mL after 48 weeks of therapy (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information) [160]. In addition, dosing and efficacy data in infants under age 6 months is available [161].

Nelfinavir as alternative PI: There is extensive pediatric experience with nelfinavir-based regimens in antiretroviral-naïve and -experienced children, with follow-up in children receiving the regimen for as long as 7 years [163]. The drug has been well tolerated, with diarrhea as the primary side effect, but virologic potency has had wide variability between studies, with reported rates of virologic suppression ranging from 26% to 69% (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information). Several studies have shown a correlation between nelfinavir trough concentrations and virologic response in treatment-naïve pediatric patients [164]. In one such study, virologic response at week 48 was observed in 29% of children with subtherapeutic nelfinavir troughs (< 0.8 mg/L) versus 80% in children with therapeutic nelfinavir troughs (> 0.8 mg/L) [164]. There is large interpatient variability in plasma concentrations in children, with lower levels in younger children [161].
The optimal dose of nelfinavir in younger children, particularly those under age 2 years, has not been well defined, and higher doses of nelfinavir are required to achieve adequate drug levels in infants than in older children [167]. Pharmacokinetic parameters in adolescent patients have not been well studied, and doses higher than those recommended in adults may be required for some patients. These data, combined with data in adults showing lesser potency of nelfinavir compared to lopinavir/ritonavir, make nelfinavir an alternative choice for initial therapy of treatment-naïve children over age 2 years, and not recommended for treatment of children under age 2 years.

The pediatric formulation of nelfinavir is a powder that has a poor acceptance rate when mixed with food or formula, and the pharmacokinetics of the drug are extremely variable in children. To overcome the problems associated with this formulation, tablets are dissolved in water or other liquids to make a slurry that is then ingested by children unable to swallow whole tablets, although there are no pharmacokinetic data regarding use in this fashion.

PIs for use in special circumstances (in alphabetical order):

Amprenavir/fosamprenavir: Amprenavir is available as a liquid and a capsule formulation. Fosamprenavir (the pro-drug of amprenavir) has largely replaced amprenavir capsules for use in adults because of the decreased pill burden. There is less pediatric experience with amprenavir than the other PIs, and this drug should not be used in children under age 4 years because of the lack of data in this age group and the uncertain impact of the high levels of vitamin E and propylene glycol found in the oral liquid formulation. Although ritonavir-boosted fosamprenavir is recommended as an alternative regimen for adults, there are insufficient data in children to recommend this combination for initial therapy in treatment-naïve patients (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information).

Indinavir: Unboosted indinavir is not recommended as initial therapy in adults and is recommended in children only under special circumstances. While good virologic and immunologic responses have been observed with indinavir-based regimens in adults, there is no liquid formulation and there has been a high rate of hematocyturia, sterile leukocyturia, and nephrolithiasis reported in pediatric patients [171-174]. The incidence of hematocyturia and nephrolithiasis with indinavir therapy may be higher in children than adults [171]. In addition, unboosted indinavir has to be administered 3 times daily on an empty stomach or with a light meal and with a large fluid requirement to decrease the risk of nephrolithiasis. Although ritonavir-boosted indinavir can be administered twice daily and eliminates the meal restrictions, there are insufficient data in children to recommend this combination for initial therapy in treatment-naïve patients (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information).

Ritonavir: Ritonavir as sole PI is not recommended as initial therapy in adults and is recommended in children only under special circumstances. Ritonavir is available as a liquid and a capsule formulation. Ritonavir is associated with a higher incidence of gastrointestinal toxicity and has greater potential for drug-drug interactions because it is a potent inhibitor of CYP3A4. Although well studied in pediatric patients, palatability of the liquid formulation is a barrier to successful therapy with ritonavir. Ritonavir has been studied in a clinical trial of antiretroviral-experienced, PI-naïve children, PACTG 338; drug combinations that included ritonavir were more effective than therapy with 2 NRTI antiretroviral drugs alone in reducing viral load to undetectable levels [175, 176]. Additionally, the combination of 2 NRTIs with ritonavir was significantly more effective than use of a single NRTI and ritonavir in reducing viral load to undetectable levels and increasing CD4 percentage after both 24 and 48 weeks of treatment. At 48 weeks, 42% of children receiving ritonavir and 2 NRTIs had HIV RNA < 400 copies/mL. However, the liquid formulation of ritonavir has poor palatability, and significant gastrointestinal intolerance (nausea and vomiting) may be a barrier to use of this drug in children (see Supplement I: Pediatric Antiretroviral Drug Information for detailed information).

Nelfinavir plus efavirenz: The combination of nelfinavir with the NNRTI efavirenz has been studied in children previously treated only with NRTIs [142]. In this pediatric clinical trial, nelfinavir in combination with efavirenz and 1 or 2 NRTIs reduced plasma viral load to < 400 copies/mL in 76% of treated children and to < 50 copies/mL in 63%; the regimen was well tolerated, and the virologic response was sustained through 48 weeks [142]. This regimen should be used only in special circumstances because of its greater complexity and use of 3 drug classes, which could potentially compromise future therapy. Additionally, in a study of antiretroviral-naïve adults comparing initial antiretroviral therapy with 2 NRTIs (stavudine/lamivudine) plus either efavirenz, nelfinavir, or both, patients who started therapy with efavirenz were significantly more likely to have virologic suppression than those starting nelfinavir or efavirenz/nelfinavir [177].

Low-dose ritonavir-boosted indinavir, fosamprenavir or saquinavir in adolescents: Data on the use of dual PI combinations in children are limited, and thus they
are not recommended as components of initial therapy in children. However, for adolescents who can receive standard adult dosing, low-dose ritonavir-boosted indinavir, fosamprenavir, or saquinavir can be considered for initial therapy in special circumstances.

Triple NRTI Regimens:

Working Group Recommendations:

- **Use in special circumstances:**
 - A 3 NRTI-based regimen consisting of zidovudine + lamivudine + abacavir should only be used in special circumstances when a preferred or alternative NNRTI-based or PI-based regimen cannot be used as first-line therapy in treatment-naive children (e.g., due to significant drug interactions or adherence concerns).

The Working Group does not recommend the following triple NRTI regimens as initial therapy in children due to inferior virologic potency:

- Tenofovir + abacavir + lamivudine
- Tenofovir + didanosine + lamivudine

Summary: Triple NRTI regimens

Triple NRTI regimens are attractive for use in HIV-infected pediatric patients as initial therapy because of the ease of administration, availability of palatable liquid formulations, demonstrated tolerance, and avoidance of many drug interactions. Because these triple NRTI regimens can be administered twice a day in children (adolescents who can receive adult doses can consider the triple combination of zidovudine/lamivudine/abacavir in a fixed-dose single tablet formulation [Trizivir]), they may also facilitate adherence. Data on the efficacy of triple NRTI regimens for treatment of antiretroviral-naive children are limited; in small observational studies, response rates of 47% – 50% have been reported [178, 179]. In adult trials, these regimens have shown less potent virologic activity when compared to NNRTI- or PI-based regimens. Based on the results of these clinical trials and the potentially life-threatening hypersensitivity syndrome associated with abacavir use, the Working Group recommends that a 3 NRTI-based regimen consisting of zidovudine + lamivudine + abacavir should only be used in special circumstances when a preferred or alternative NNRTI-based or PI-based regimen cannot be used as first-line therapy in treatment-naive children (e.g., due to significant drug interactions or concerns related to adherence).

Following is a discussion of findings in clinical trials of triple NRTI regimens:

- **Zidovudine + lamivudine + abacavir:** In a randomized trial, the triple NRTI combination of zidovudine + lamivudine + abacavir was shown to reduce viral load to < 400 copies/mL in 51% of treatment-naive adults at 48 weeks of therapy, results equivalent to those of the PI-based comparison arm of zidovudine + lamivudine + indinavir [180]. In a study of this regimen in previously treated children, the combination showed evidence of only modest viral suppression, with only 10% of 102 children maintaining a viral load of < 400 copies/mL at 48 weeks of treatment [181]. Additionally, a clinical trial (ACTG 5095) in antiretroviral-naive adults that compared initial therapy with abacavir + zidovudine + lamivudine to efavirenz + zidovudine + lamivudine or efavirenz + abacavir + zidovudine + lamivudine found that the triple NRTI regimen was inferior to the efavirenz-based regimens, with a higher incidence of and an earlier time to virologic failure; after 48 weeks of therapy, 74% of adults receiving the triple NRTI regimen had HIV RNA < 200 copies/mL, compared to 89% of patients receiving efavirenz-based regimens [135, 182].

- **Other triple NRTI regimens:** Clinical trials in adults have also investigated triple NRTI regimens consisting of stavudine + didanosine + lamivudine, stavudine + lamivudine + abacavir, and didanosine + stavudine + abacavir [183-185]. All of these regimens demonstrated inferior virologic response compared to their regimens containing a PI or NNRTI. In addition, the M184V lamivudine drug resistance mutation was seen more frequently in patients treated with triple NRTI regimens containing lamivudine. Two additional triple NRTI regimens containing tenofovir have been studied in adults and are not recommended because of significantly higher rates of virologic failure. These two regimens are tenofovir + abacavir + lamivudine and tenofovir + didanosine + lamivudine [186-188].
Selection of Dual NRTI Backbone as Part of Initial Combination Therapy:

Working Group Recommendations:

- **Preferred 2 NRTI backbone combinations:**
 - Zidovudine + (lamivudine or didanosine or emtricitabine)
 - Didanosine + (lamivudine or emtricitabine)

- **Alternative 2 NRTI backbone combinations:**
 - Abacavir + (zidovudine or lamivudine or emtricitabine or stavudine)
 - Stavudine + (lamivudine or emtricitabine)

- **Use in special circumstances:**
 - Stavudine + didanosine

The Working Group does not recommend the following dual NRTI backbones for use in children:

- Tenofovir-containing dual NRTI combinations due to lack of pediatric dosing data and formulation and concerns related to bone toxicity
- Zidovudine + stavudine due to virologic antagonism
- Zalcitabine-containing dual NRTI combinations due to lack of pediatric formulation
- Lamivudine + emtricitabine due to similar resistance pattern and no additive benefit

Summary: Selection of dual NRTI backbone regimen

Currently, 6 NRTIs (zidovudine, didanosine, lamivudine, stavudine, abacavir, and emtricitabine) are FDA-approved for use in children less than 13 years of age. Dual NRTI combinations form the “backbone” of HAART regimens for both adults and children. Dual NRTI combinations that have been studied in children include zidovudine in combination with abacavir, didanosine, lamivudine, or zalcitabine; abacavir in combination with lamivudine, stavudine, or didanosine; and emtricitabine in combination with stavudine or didanosine [84, 86, 87, 160, 169, 189-191]. Advantages and disadvantages of different dual NRTI backbone options are delineated in Table 9.

The most experience in children is with combination zidovudine + lamivudine; zidovudine + didanosine; and didanosine + lamivudine, which are preferred dual NRTI combinations for inclusion in initial therapy regimens in children. While there is less experience in children with emtricitabine, it is similar to lamivudine, and the Working Group felt it could be substituted for lamivudine as one component of a preferred dual regimen (i.e., emtricitabine in combination with zidovudine or didanosine). The advantages of emtricitabine are once daily administration and its recent availability as an oral solution. Prescribing information for didanosine recommends administration on an empty stomach. However, this is impractical for infants who feed frequently, and may decrease medication compliance in older children by increasing regimen complexity. A comparison of didanosine given with or without food in children found that systemic exposure was similar, but with slower and more prolonged absorption with food [192]. To improve compliance, some practitioners recommend administration without regard to timing of meals for young children. However, there are inadequate data to allow a strong recommendation at this time, and it is preferred that didanosine be administered under fasting conditions when possible.

Alternative dual NRTI combinations include abacavir in combination with zidovudine, lamivudine, emtricitabine, or stavudine. Abacavir-containing regimens have been shown to be as or possibly more potent than zidovudine + lamivudine [169], but have the potential for abacavir-associated life-threatening hypersensitivity reactions in a small proportion of patients. Thus, abacavir-containing regimens are listed as alternative rather than as preferred dual NRTI combinations for inclusion in initial therapy regimens in children. Additional alternative dual NRTI combinations include stavudine in combination with lamivudine or emtricitabine. These stavudine-containing regimens are viewed as alternative dual NRTI backbone regimens because stavudine is associated with a higher risk of lipoatrophy and hyperlactatemia than other NRTI drugs [193-195].
The dual NRTI combination of stavudine + didanosine is recommended for use in special circumstances (e.g., documented resistance to other NRTI drugs). In small pediatric studies, stavudine + didanosine has been shown to have virologic efficacy and was well tolerated [84, 190, 196]. However, in studies in adults, stavudine + didanosine-based combination regimens were associated with greater rates of neurotoxicity, hyperlactatemia and lactic acidosis, and lipodystrophy than therapies based on zidovudine + lamivudine [197, 198]; additionally, cases of fatal and non-fatal lactic acidosis with pancreatitis/hepatic steatosis have been reported in women receiving this combination during pregnancy [12, 195].

Tenofovir has been studied in HIV-infected children in combination with other NRTIs and as an investigational oral suspension formulation [199-202]. However, at this time there are insufficient data to recommend use of this drug for initial therapy in infected children. Because of potential bone toxicity and renal toxicity, the drug may have greater utility for treatment of children in whom other antiretroviral drugs have failed than for initial therapy of treatment-naive children. Decreases in bone mineral density have been shown in both adults and children taking tenofovir for 48 weeks in some, although not all, studies [199-202]. There are numerous drug-drug interactions with tenofovir and other antiretroviral drugs, including didanosine, lopinavir/ritonavir, atazanavir, and tipranavir, complicating appropriate dosing of this drug.

Certain dual NRTI drug combinations are not recommended. These include zidovudine + stavudine due to pharmacologic interactions that can result in potential virologic antagonism. Dual regimens containing zalcitabine are not recommended because pediatric experience with such combinations is limited, the drug is less potent and requires 3 times daily dosing, and there is overlapping neurotoxicity between some of these drugs [191]; also, the drug will stop being manufactured in 2006. The drug structure of emtricitabine is similar to lamivudine and the same single resistance mutation confers cross-resistance, so these drugs should not be used in combination.

Insufficient Data for Recommendation for Initial Therapy for Children

Working Group Recommendations:

Because of insufficient data, the following regimens should not be offered to children as initial therapy:

- Dual PIs, with the exception of lopinavir/ritonavir
- NRTI plus NNRTI plus PI, with the exception of 2 NRTIs plus efavirenz and nelfinavir
- Tenofovir-containing regimens
- Enfuvirtide (T-20)-containing regimens
- Atazanavir-containing regimens
- Fosamprenavir-containing regimens
- Tipranavir-containing regimens
- Darunavir-containing regimens

A number of antiretroviral drugs and drug regimens are not recommended for initial therapy of antiretroviral-naive children because of insufficient pediatric data. These are summarized below.

Dual PIs (with the exception of lopinavir/ritonavir):
Because information on the pharmacokinetics, safety, and efficacy of dual PI combinations in children are limited, with the exception of the co-formulated lopinavir/ritonavir, there are insufficient data to recommend use of dual PIs as a component of initial therapy in children. Low, non-therapeutic doses of ritonavir combined with saquinavir, amprenavir, tipranavir, fosamprenavir, or indinavir have been shown to act as a pharmacological “booster” to produce elevated therapeutic plasma concentrations of the second drug. However, while these combinations have antiviral activity in adults when combined with dual NRTIs, these studies have been predominantly conducted among treatment-experienced adults, and it is unclear whether boosted regimens offer any substantial benefit over a single PI for initial therapy of antiretroviral-naive individuals. Studies of saquinavir in combination with ritonavir or nelfinavir and studies of other dual PI combinations are
ongoing in treatment-experienced children, but complete
data are not yet available [203, 204]. These combinations
may have utility as components of secondary treatment
regimens for children who have failed initial therapy.

Regimens containing 3 drug classes: There are insufficient
data to recommend regimens containing agents from 3
drug classes (e.g., NRTI plus NNRTI plus PI), with the
exception of efavirenz plus nelfinavir plus 1 or 2 NRTIs,
which has been shown to be safe and effective in HIV-
infected children [142, 144].

New agents without sufficient pediatric data: At this
time there are several new agents that appear promising in
adults but do not have sufficient pediatric pharmacokinetic
and safety data to recommend their use. These include
atazanavir, darunavir, enfuvirtide, fosamprenavir (a
prodrug of amprenavir), tenofovir, and tipranavir.

Atazanavir, darunavir, fosamprenavir, and tipranavir are
being evaluated in children, but pharmacokinetic, safety,
and efficacy data are not yet available and no pediatric
formulations are commercially available. It is likely
that boosting with low-dose ritonavir will be required
for atazanavir, fosamprenavir, and tipranavir to achieve
adequate drug levels in children.

Enfuvirtide (T-20), the only fusion inhibitor currently
available, is approved for use in children age ≥ 6 years in
combination with other antiretroviral drugs in treatment-
experienced patients with evidence of HIV replication
despite ongoing antiretroviral therapy (Table 12). The
drug must be administered subcutaneously twice daily
and is associated with a high incidence of local injection
site reactions (98%). There are currently insufficient data
to recommend use of enfuvirtide for initial therapy of
children.

WHAT NOT TO USE:
**ANTIRETROVIRAL DRUG REGIMENS THAT SHOULD
NOT BE OFFERED AT ANY TIME (TABLE 8)**

Working Group Recommendations:
The following regimens should not be offered
to children for initial therapy:

- **Monotherapy**
- **Two NRTIs alone**
- **Certain 2 NRTI combinations as part of
 HAART regimen**
- **Two NRTIs + delavirdine**
- **Two NRTIs + saquinavir as a sole PI**
- **Amprenavir oral solution + ritonavir oral solution**
- **Amprenavir + fosamprenavir**
- **Atazanavir + indinavir**
- **Tenofovir + didanosine + (lamivudine or
 emtricitabine)**
- **Tenofovir + abacavir + (lamivudine or
 emtricitabine)**

A number of different antiretroviral drugs and drug
regimens are not recommended for use in therapy of
children or adults. These are summarized below.

Monotherapy: Therapy with a single antiretroviral drug
is not recommended because it is unlikely to result in
sustained viral suppression, leading to the development
of viral resistance to the drug being used and cross-
resistance to other drugs within the same drug class. The
exception is for preventive therapy of the newborn infant
born to an HIV-infected mother, in which case 6 weeks
of monotherapy with zidovudine is recommended for the
infant [12].
Dual nucleoside regimens alone: Dual NRTI therapy alone is not recommended for initial therapy because it is unlikely to result in sustained viral suppression, leading to the development of viral resistance to the drugs being used and cross-resistance to other drugs within the same drug class. For children previously initiated on a dual NRTI regimen who have achieved viral suppression, it is reasonable to either continue on this therapy or to add a PI or NNRTI to the regimen. If a child is to stay on a 2 NRTI regimen, the plan should be to change to a 3 or more drug combination if viral rebound should occur (see Management of the Treatment-Experienced Child).

Certain dual nucleoside backbone combinations: Certain dual NRTI combinations (zidovudine + stavudine and zalcitabine-containing regimens) are not recommended for initial therapy either because of pharmacological antagonism, potentially overlapping toxicities, or inferior virologic response. Emtricitabine should not be used in combination with lamivudine because the drug structure is similar and the same single resistance mutation (M184V) induces resistance to both drugs.

Certain NNRTIs: Delavirdine is not recommended for initial therapy in children due to lack of pediatric pharmacokinetic data, inferior virologic potency in adults, lack of pediatric formulation, and requirement for 3 times daily dosing.

Certain PIs: The use of the amprenavir oral solution and the ritonavir oral solution in combination results in consumption of a large amount of propylene glycol (the vehicle in the amprenavir oral solution), which may compete with ethanol (the vehicle in the oral ritonavir solution), possibly leading to accumulation of either one of the vehicles. The combination of amprenavir plus fosamprenavir is not recommended because amprenavir is the active antiviral in both drugs; the combined use has no benefit and may increase toxicity. The combination of atazanavir + indinavir has the potential for additive hyperbilirubinemia. As noted earlier, the appropriate pediatric dose of saquinavir has not been defined, and boosting with a second PI (nelfinavir or low-dose ritonavir) is required to produce efficacious plasma drug levels; however, there are currently insufficient data to determine appropriate dosage of such combinations in children [204, 205].

3 NRTI regimen of tenofovir + (didanosine or abacavir) + (lamivudine or emtricitabine): The triple NRTI combinations of tenofovir in combination with didanosine or abacavir plus lamivudine or emtricitabine have a high rate of early virologic non-response when used as initial therapy in treatment-naïve adults, and are not recommended [186-188].
Monitoring of Children on Antiretroviral Therapy

Working Group Recommendations:

- Children who start a new antiretroviral regimen should be evaluated in person or by a phone call within 2 weeks of starting medication to screen for clinical side effects and to assure that they are taking medication properly.

- Children should be seen within 4 to 8 weeks to assess for possible side effects and to evaluate initial response to therapy. More frequent evaluation may be needed following initiation or change in therapy to support adherence to the regimen.

- Subsequently, children should have a monitoring visit at least every 3 to 4 months to assess both efficacy and potential toxicity of their antiretroviral regimens.

Baseline laboratory assessments should be done prior to initiation of therapy; these include CD4 count/percentage and HIV RNA level; complete blood count and differential; serum chemistries (including electrolytes, BUN, creatinine, glucose, hepatic transaminases, calcium, and phosphorus); pancreatic enzyme evaluations (amylase, lipase) if therapy is being initiated with a drug with potential pancreatic toxicity, such as didanosine; and serum lipid evaluation (cholesterol, triglycerides). The child should be seen within 4 – 8 weeks after initiating or changing therapy to obtain a clinical history, with a focus on potential adverse effects and to assess adherence to medications; perform a physical examination; evaluate efficacy of therapy (measurement of CD4 count/percentage and HIV RNA levels); and to obtain a laboratory evaluation for toxicity. More frequent evaluation may be needed following a change in therapy to support adherence to the regimen. At a minimum, laboratory assessments should include a complete blood count and differential, serum chemistries, and assessment of renal and hepatic function. Assessment of initial virologic response to therapy is important, as an initial decrease in HIV viral load in response to antiretroviral treatment should be observed after 4 – 8 weeks of therapy.

Subsequently, children taking antiretroviral medication should have assessments of adherence, toxicity, and efficacy at least every 3 – 4 months. Table 13 provides one proposed monitoring schema, which will require adjustment based on the specific therapy the child is receiving. Assessments should include basic hematology, chemistry, CD4 count/percentage, and HIV viral load. Monitoring of drug toxicities should be tailored to the particular medications the child is taking; for example, periodic monitoring of pancreatic enzymes may be desirable in children receiving didanosine, or of serum glucose and lipids in patients receiving PIs. Children who develop symptoms of toxicity should have appropriate laboratory evaluations (e.g., evaluation of serum lactate in a child receiving NRTI drugs who develops symptoms suspect for lactic acidosis) performed more frequently until the toxicity resolves. For further details of adverse effects associated with particular antiretroviral medications, please see Supplement III: Adverse Drug Effects.
Specific Issues in Antiretroviral Therapy for HIV-Infected Adolescents

Working Group Recommendations:

- Antiretroviral therapy regimens must be individually tailored to the adolescent, as those with perinatal exposure generally have a very different clinical course and treatment history than those who acquired HIV during adolescence.

- Appropriate dosing of antiretroviral medications for adolescents is complex, not always predictable, and dependent upon multiple factors, including Tanner staging of puberty, body mass, and chronologic age.

- Effective and appropriate contraceptive methods should be selected to reduce the likelihood of unintended pregnancy. Providers should be aware of potential interactions between antiretroviral drugs and hormonal contraceptives, which could lower contraceptive efficacy.

- Efavirenz should be avoided for the adolescent girl who desires to become pregnant or who does not use effective and consistent contraception. Efavirenz also should be avoided throughout the first trimester of pregnancy.

- Pediatric and adolescent care providers should work with older adolescent patients to prepare them for transition into adult care settings.

BACKGROUND

An increasing number of HIV-infected children who acquired HIV infection through perinatal transmission are now surviving into adolescence. They generally have had a long clinical course and extensive antiretroviral treatment history. Adolescents with behaviorally acquired infection (i.e., infection acquired via sexual activity or intravenous substance use) generally follow a clinical course that is similar to that of adults; they are in an earlier stage of infection, making them potential candidates for early intervention [1, 206-208].

DOING OF ANTIRETROVIRAL THERAPY FOR HIV-INFECTED ADOLESCENTS

Puberty is a time of somatic growth and sexual maturation, with females developing more body fat and males more muscle mass. These physiologic changes may affect drug pharmacokinetics, which is especially important for drugs with a narrow therapeutic index that are used in combination with protein-bound medicines or hepatic enzyme inducers or inhibitors [209]. Dosages of medications for HIV infection and opportunistic infections traditionally have been prescribed according to Tanner staging of puberty [210] rather than strictly on the basis of age [1]. Using this method, adolescents in early puberty (Tanner Stages I and II) are administered doses using pediatric schedules, whereas those in late puberty (i.e., Tanner Stage V) are administered doses using adult schedules. However, Tanner stage and age are not necessarily directly predictive of drug pharmacokinetics.

In addition, puberty may be delayed in perinatally HIV-infected children [211], adding to discrepancies between Tanner stage-based dosing and age-based dosing.

Many antiretroviral medications (e.g., abacavir, emtricitabine, lamivudine, tenofovir, and some PIIs) are administered to children at higher weight- or surface area-based doses than would be predicted by direct scaling of adult doses, based upon reported pharmacokinetic data indicating higher drug oral clearance in children. Continued...
use of these pediatric weight- or surface area-based doses as a child grows during adolescence can result in medication doses that are higher than the usual adult doses. Data suggesting optimal doses for every antiretroviral medication for adolescents are not available; Supplement 1: Pediatric Antiretroviral Drug Information includes discussion of data relevant to adolescents for individual drugs, and Appendix A: Characteristics of Available Antiretroviral Drugs notes the age listed on the drug label for adult dosing, when available. Other factors, such as toxicity, pill burden, adherence, and virologic and immunologic parameters, may also help determine when to transition adolescents from pediatric to adult doses.

ADOLESCENT CONTRACEPTION, PREGNANCY, AND ANTIRETROVIRAL THERAPY

Adolescents with HIV infection, regardless of mode of acquisition, may be sexually active. Contraception advice and safer sex techniques for prevention of HIV transmission should be discussed with them regularly (see Incorporating HIV Prevention into the Medical Care of Persons Living with HIV) [212].

In adolescent girls, antiretroviral regimen selection should account for the possibility of planned or unplanned pregnancy. The most vulnerable period in fetal organogenesis is early in gestation, often before pregnancy is recognized. Sexual activity, reproductive plans, and use of effective contraception should be discussed with the patient. Efavirenz-containing regimens should be avoided in adolescent girls who are trying to conceive or are not using effective and consistent contraception because of the potential for teratogenicity with fetal exposure to efavirenz in the first trimester [12].

Contraceptive-Antiretroviral Drug Interactions

Several PI and NNRTI drugs are known to interact with oral contraceptives, resulting in possible decreases in ethinyl estradiol or increases in estradiol or norethindrone levels (see Appendix A, Drug Interaction Matrix 3). These changes may decrease the effectiveness of the oral contraceptives or potentially increase the risk of estrogen or progestin-related side effects. Providers should be aware of these drug interactions and an alternative or additional contraceptive method should be considered in cases in which there are documented interactions. It is unknown whether the contraceptive effectiveness of progestogen-only injectable contraceptives (such as depot medroxyprogesterone acetate [DMPA]) would be compromised, as these methods produce higher blood hormone levels than other progestogen-only oral contraceptives and combined oral contraceptives. In one study, the efficacy of DMPA was not altered among women receiving concomitant nelfinavir-, efavirenz-, or nevirapine-based treatment, with no evidence of ovulation during concomitant administration for 3 months, no additional side effects, and no clinically significant changes in antiretroviral drug levels [213]. There is minimal information about drug interactions with use of newer hormonal contraceptive methods (e.g., patch, vaginal ring). Adolescents who express a desire to become pregnant should be referred for pre-conception counseling and care, including discussion of special considerations with antiretroviral therapy use during pregnancy (see Public Health Service Task Force Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women and Interventions for Prevention of Perinatal HIV-1 Transmission in the United States) [12].

Pregnant Adolescents

Pregnancy should not preclude the use of optimal therapeutic regimens. However, because of considerations related to prevention of mother-to-child transmission and to maternal and fetal safety, timing of initiation of treatment and selection of regimens may be different for pregnant women than for non-pregnant adults or adolescents. Details regarding choice of antiretroviral regimen in pregnant HIV-infected women, including adolescents, are provided in the Public Health Service Task Force Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women and Interventions for Prevention of Perinatal HIV-1 Transmission in the United States [12].

TRANSITION OF ADOLESCENTS INTO ADULT HIV CARE SETTINGS

Facilitating a smooth transition for adolescents with any chronic health condition from the child or adolescent health system to one devoted to the care of adults may be difficult, and is especially so for those infected with HIV. Transition is described as “a multifaceted, active process that attends to the medical, psychosocial, and educational or vocational needs of adolescents as they move from the child-focused to the adult-focused health-care system” [214]. HIV care models for children and perinatally infected adolescents

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection
tend to be family-centered, with input from members of a multidisciplinary team that often includes pediatric or adolescent physicians, nurses, social workers, and mental health professionals. These providers generally have a long-standing relationship with patients and their families, and the care is rendered in discreet, more intimate settings. Although expert care is also rendered in the adult HIV care medical model, the adolescent may feel unfamiliar with the more individual-centered, busier clinics typical of adult medical providers, who themselves may not have as long-standing a relationship with the adolescent. Providing support and guidance to the adolescent and to the adult medical care provider as to what is expected from each may be helpful. Some general guidelines about transitional plans and who might best benefit from them are available [215, 216]. Pediatric and adolescent programs may benefit from the establishment of formal programs to introduce adolescents to the adult care setting.
Adherence to Antiretroviral Therapy in HIV-Infected Children and Adolescents

Working Group Recommendations:

- Strategies to maximize adherence should be discussed prior to initiation of antiretroviral therapy and again at the time of changing regimens.
- Adherence to therapy must be stressed at each visit, along with continued exploration of strategies to maintain and/or improve adherence.
- Multiple methods of determining adherence to antiretroviral therapy should be used simultaneously (e.g., quantitative self-report, pharmacy refill checks, pill counts).
- A non-judgmental attitude and trusting relationship will foster open communication and ease assessment of adherence.

BACKGROUND

Medication adherence is fundamental to successful antiretroviral therapy. Adherence is a major factor in determining the degree of viral suppression achieved in response to antiretroviral therapy [217-220]. Poor adherence can lead to virologic failure. Prospective adult and pediatric studies have shown the risk of virologic failure to increase as the proportion of missed doses increases [217, 221-223]. Subtherapeutic antiretroviral drug levels resulting from poor adherence may facilitate the development of drug resistance to one or more drugs in a given regimen, as well as possible cross-resistance to other drugs in the same class. Therefore, in addition to compromising the efficacy of the current regimen, suboptimal adherence has implications for limiting future effective drug regimens for patients who develop drug-resistant viral strains.

Evidence indicates that adherence problems occur frequently in children and adolescents. Multiple studies have reported that fewer than 50% of children and/or caretakers reported full adherence to their regimens. Rates of adherence varied with method of ascertainment (parent/child report, pharmacy records), antiretroviral regimens, and study characteristics. [218, 219, 224-227]. A variety of factors, including medication formulation, frequency of dosing, child age, and psychosocial characteristics of the child and parent, have been associated with adherence, but no clear predictors of either good or poor adherence in children have been consistently identified [222, 226, 227]. These findings illustrate the difficulty of maintaining high levels of adherence and underscore the need to work in partnership with families to make adherence education, support, and assessment integral components of care.

SPECIFIC ADHERENCE ISSUES IN CHILDREN

Adherence is a complex health behavior that is influenced by the regimen prescribed, patient factors, and characteristics of health care providers. Limited availability of palatable formulations for young children is especially problematic [223, 228]. Furthermore, infants and young children are dependent on others for administration of medication; thus, assessment of the capacity for adherence to a complex multi-drug regimen requires evaluation of the caregivers and their environments as well as the ability and willingness of the child to take the drug. Some caregivers may place too much responsibility on older children for managing medications before they are developmentally able to take on such tasks. Many other barriers to adherence exist for children with HIV infection. For example, unwillingness of the caregivers to disclose the child’s HIV infection status to others may create specific problems, including reluctance of caregivers to fill prescriptions in their home neighborhoods, hiding or relabeling medications to maintain secrecy within the household, reduction of
social support, and a tendency to skip doses when the parent is away from the home or when the child is at school.

SPECIFIC ADHERENCE ISSUES FOR ADOLESCENTS

HIV-infected adolescents also face specific adherence challenges [222, 229, 230]. Several studies have identified pill burden as well as lifestyle issues (not carrying medication, change in schedule) as barriers to complete adherence [222, 229]. Denial and fear of their HIV infection is common, especially in recently diagnosed youth; this may lead to refusal to initiate or continue antiretroviral therapy. Distrust of the medical establishment, misinformation about HIV, and a lack of knowledge about the availability and effectiveness of antiretroviral treatments can all be barriers to linking adolescents to care and maintaining successful antiretroviral therapy. Perinatally infected youth are familiar with the challenges of taking complex drug regimens and with the routine of chronic medical care; nevertheless, they may have long histories of inadequate adherence. Regardless of the mode of acquisition of HIV infection, HIV-infected adolescents may suffer from low self-esteem, may have unstructured and chaotic lifestyles and concomitant mental illnesses, or may cope poorly with their illness due to a lack of familial and social support. Depression, alcohol or substance abuse, poor school attendance, and advanced HIV disease stage all correlate with nonadherence [230]. Adherence to complex regimens is particularly challenging at a time of life when adolescents do not want to be different from their peers. Further difficulties face adolescents who live with parents or partners to whom they have not yet disclosed their HIV status and those who are homeless and have no place to store medicine. Treatment regimens for adolescents must balance the goal of prescribing a maximally potent antiretroviral regimen with realistic assessment of existing and potential support systems to facilitate adherence. Interventions to promote long-term adherence to antiretroviral treatment have not been rigorously evaluated in adolescents. Preliminary data suggest that interventions based on the “stages of change” model, which assesses adolescents’ readiness to adhere to medications, may facilitate adherence [231]. An intervention approach involving both family and peers to increase adherence in HIV positive youth appears to be effective [232]. In clinical practice, the use of reminder systems, such as beepers and alarm devices, is well accepted by some youth. Small, discreet pillboxes in which to store medications in an organized fashion may be useful [233].

ADHERENCE ASSESSMENT AND MONITORING

The process of adherence preparation and assessment should begin before therapy is initiated or changed, and a routine adherence assessment should be incorporated into every clinic visit. A comprehensive assessment should be instituted for all children in whom antiretroviral treatment initiation or change is considered. Evaluations should include nursing, social, and behavioral assessments of factors that may affect adherence by the child and family and can be used to identify individual needs for intervention. Adherence preparation should focus on establishing a dialogue and a partnership in medication management. Specific, open-ended questions should be used to elicit information about past experience as well as concerns and expectations about treatment. When assessing readiness and preparing to begin treatment, it is important to obtain explicit agreement with the treatment plan, including strategies to support adherence.

Adherence is difficult to assess accurately; different methods of assessment have been shown to yield different results, and each approach has limitations [234]. Both caregivers and health care providers often overestimate adherence. Regular monitoring is key to early identification of problems and can reinforce the importance of taking medications as prescribed.

Use of multiple methods to assess adherence is recommended. Viral load response to a new regimen is often the most accurate indication of adherence, but it may be a less valuable measure in children with long treatment histories and multi-drug-resistant virus. Other measures include quantitative self-report of missed doses by caregivers and children or adolescents (focusing on recent missed doses during a 3-day or 1-week period), descriptions of the medication regimens, and reports of barriers to administration of medications. Targeted questions about stress, pill burden, and daily routine are recommended [222, 227, 234]. Pharmacy refill checks and pill counts can identify adherence problems not evident from self-reports [235]. Electronic monitoring devices, such as Medication Event Monitoring Systems (MEMS) caps, which record opening of medication bottles on a computer chip in the cap [236], have been shown to be useful tools to measure adherence in some settings [235, 237]. Home visits can play an important role in assessing adherence, and in some cases, suspected nonadherence is confirmed only when dramatic clinical responses to antiretroviral therapy occur during hospitalizations or in other supervised settings [238-240]. Preliminary studies suggest that monitoring plasma concentrations of PIs, or
therapeutic drug monitoring, may be a useful method to identify nonadherence [241].

It is important for clinicians to recognize that nonadherence is a common problem and that it can be difficult for patients to share information about missed doses or difficulties adhering to treatment. Furthermore, adherence can change over time. An adolescent who was able to strictly adhere to treatment upon initiation of a regimen may not be able to maintain complete adherence over time. A non-judgmental attitude and trusting relationship fosters open communication and facilitates assessment. It is often helpful to ask both older children and caregivers about missed doses and problems. There can be significant discrepancies between parent and child reports. Therefore, clinical judgment is required to best interpret adherence information obtained from multiple sources [242].

STRATEGIES TO IMPROVE AND SUPPORT ADHERENCE

Intensive follow-up is required, particularly during the critical first few months after therapy is started; patients should be seen frequently to assess adherence and determine the need for strategies to improve and support adherence. Strategies include the development of patient-focused treatment plans to accommodate specific patient needs, integration of medication administration into the daily routines of life (e.g., associating medication administration with daily activities such as toothbrushing), and use of social and community support services. Multifaceted approaches that include regimen-related strategies; educational, behavioral, and supportive strategies focused on children and families; and strategies that focus on health care providers—rather than one specific intervention—may be most effective [243-245]. Although quite labor intensive, programs designed to administer directly observed HAART to adults in either the clinic or at home have demonstrated successful results in both the United States and in international, resource-poor settings [246-249]. Table 5 summarizes some of the strategies that can be used to support and improve adherence to antiretroviral medications.

Regimen-Related Strategies

Highly active antiretroviral regimens often require the administration of large numbers of pills or unpalatable liquids, each with potential side effects and drug interactions, in multiple daily doses. To the extent possible, regimens should be simplified with respect to the number of pills or volume of liquid prescribed, as well as frequency of therapy, and chosen to minimize drug interactions and side effects. When nonadherence is a problem, addressing medication-related issues, such as side effects, may result in improvement. If a regimen is overly complex, it may be simplified. For example, when the burden of pills is great, one or more drugs can be changed to result in a regimen containing fewer pills. When nonadherence is related to poor palatability of a liquid formulation or crushed pills, the offending taste may be masked by a small amount of flavoring syrups or food, as long as the medication is not one with contraindications to simultaneous administration of food (see Appendix A: Characteristics of Available Antiretroviral Drugs), or the child may be taught to swallow pills in order to overcome medication aversion [250].

Child/Family-Related Strategies

The primary approach taken by the clinical team to promote medication adherence in children is patient/caregiver education. Educating families about adherence should begin before antiretroviral medications are initiated or changed, and should include a discussion of the goals of therapy, the reasons for making adherence a priority, and the specific plans for supporting and maintaining the child’s medication adherence. Caregivers should understand that the first antiretroviral regimen has the best chance of long-term success. Caregiver adherence education strategies should include the provision of both information and adherence tools, such as written and visual materials, a daily schedule illustrating times and doses of medications, and demonstration of the use of syringes, medication cups, and pillboxes.

A number of behavioral tools can be used to integrate medication-taking into the HIV-infected child’s daily routine. The use of behavior modification techniques, especially the application of positive reinforcements and the use of small incentives for taking medications, can be effective tools to promote adherence [251-253]. Availability of mental health services and treatment of mental health disorders may also facilitate adherence to complex antiretroviral regimens. For nonadherent children who are at risk of disease progression and for whom aversion to taking medications is severe and persistent, a gastrostomy tube may be considered [254]. Home nursing interventions may also be beneficial where adequate resources are available [255]. Directly observed dosing of antiretroviral medications has been implemented in adults with promising results [246-249, 256], and such an approach has been implemented in some pediatric HIV programs, using home nursing services as well as daily medication administration in the clinic setting.
Health Care Provider-Related Strategies

Providers have the ability to improve adherence through their relationships with the families. This process begins early in the provider’s relationship with the family, when the clinician obtains explicit agreement about the medication and treatment plan and any further strategies to support adherence. Fostering a trusting relationship and engaging in open communication are particularly important. Provider characteristics that have been associated with improved patient adherence in adults include consistency, giving information, asking questions, technical expertise, and commitment to follow-up. Several online resources are available to assist HIV health care providers to become knowledgeable about adherence, the factors affecting it, and strategies to support and improve adherence in children, youth, and adults:

- http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL_AdherenceSup.pdf
- http://www.positivelife.net
Management of the Treatment-Experienced Child

OVERVIEW: CONSIDERATIONS RELATED TO CHANGING ANTIRETROVIRAL THERAPY

Although many children can remain on stable antiretroviral therapy for several years [88, 117, 163, 257], at some point reassessment of a therapeutic regimen will become necessary. This section will discuss the definitions, causes, assessment, and management of antiretroviral treatment failure and specific issues to consider when changing a drug regimen. Treatment failure is defined as suboptimal response or a lack of sustained response to therapy. It is important to recognize that not all instances of treatment failure require an immediate change in antiretroviral therapy, and a careful assessment is required to evaluate the etiology of treatment failure and determine the appropriate management strategy.

The assessment and management of treatment failure is more complex for children who have been on several antiretroviral drug regimens. A change in antiretroviral therapy should take into consideration the child’s prior treatment experience, presence of drug-resistant virus, current immunologic and clinical status, ability to adhere to a new regimen, and the number of treatment options available. The assessment of treatment response, approach to managing treatment failure, and goals of therapy differ based on these characteristics, and decisions regarding changing antiretroviral therapy should be individualized and made in consultation with a pediatric HIV specialist.

A change in antiretroviral therapy may be considered in a number of different situations, including:

- Suboptimal virologic response to therapy or a sustained increase in viral load;
- Suboptimal immune response to therapy or immunologic deterioration;
- Suboptimal clinical response to therapy or clinical disease progression;
- Significant drug intolerance or toxicity; and
- Significant and unmodifiable adherence issues.

Definitions and Causes of Antiretroviral Treatment Failure

Antiretroviral treatment failure may be defined as an inadequate virologic, immunologic, or clinical response to antiretroviral therapy. In most cases, the primary
assessments of the efficacy of a particular antiretroviral regimen relates to its effectiveness in suppressing viral replication to undetectable levels and maintaining it at undetectable levels. When a child or adolescent is highly antiretroviral experienced, however, complete or sustained viral suppression may not be possible. In this situation, other measures of virologic response and determinants of immunologic and clinical response should be utilized to assess the benefit of a specific antiretroviral regimen.

A number of factors can be associated with treatment failure in children, and multiple factors may be present in an individual child. These factors include:

- Baseline characteristics of the child prior to initiation of a new therapeutic regimen, including viral load and CD4 cell percentage or count; high levels of immune cell activation; history of treatment with non-suppressive drug regimens or prior treatment failure; history of prior nonadherence; the number of prior treatment changes; and the presence of drug resistance [143, 258-263];
- Incomplete adherence to the drug regimen;
- Drug toxicity or side effects;
- Suboptimal drug levels due to pharmacokinetic issues (e.g., age-related changes in metabolism, drug-drug interactions with concomitant medications, fasting/food requirements of regimen, concurrent illness associated with malabsorption) [264]; and
- Suboptimal potency of the regimen.

HIV-infected children have more limited treatment choices than do adults because there are fewer drugs studied in children and approved for pediatric use, many drugs lack formulations appropriate for children, and drugs often lack appropriate dosing information for all age groups. Hence, frequent switching of drug regimens can severely limit a child’s future treatment options and should be avoided unless necessary. The following virologic, immunologic, and clinical findings require review, evaluation, and consideration in changing the child’s antiretroviral regimen. These factors should not be viewed in isolation, and therapeutic decisions must include consideration of the child’s viral, immune, and clinical findings as a collective and inter-related entity.

Definitions (see Table 14)

Virologic Failure:

The following situations indicate a need to re-evaluate therapy in infected children. A confirmatory virologic evaluation at least 1 week after the initial test should always be performed before concluding there is virologic failure.

- **Incomplete viral response to therapy:**
 - For *previously antiretroviral-naïve children or those with limited antiretroviral experience*, this is defined as a $< 1.0 \log_{10}$ decrease in HIV RNA copy number from baseline after 8 – 12 weeks of therapy, or repeated HIV RNA > 400 copies/mL after 6 months of therapy. Children with higher HIV RNA levels at initiation of therapy may take longer to fully suppress viral replication. The initial HIV RNA of the child at the start of therapy and the level achieved with therapy should be considered when contemplating potential drug changes. For example, an immediate change in therapy may not be warranted if there is a sustained 1.5 to 2.0 \log_{10} fall in HIV RNA copy number, even if RNA remains detectable at low levels.
 - For *children with more extensive antiretroviral experience*, this is defined as $< 1.0 \log_{10}$ decrease in HIV RNA after 6 months of treatment with a new therapeutic regimen.

- **Viral rebound:**
 - For *children who have previously suppressed viral replication to undetectable levels in response to therapy*, this is defined as repeated detection of HIV RNA > 400 copies/mL. Continued observation with more frequent evaluation of HIV RNA levels should be considered if the HIV RNA increase is limited (e.g., $< 5,000$ copies/mL).
 - For *children who demonstrated an initial HIV RNA response but still had low levels of detectable HIV RNA while receiving a particular regimen*, this is defined as a confirmed $> 0.5 \log_{10}$ (greater than 3-fold) increase in HIV RNA copy number for children age \geq 2 years; because of the greater biologic variability of HIV RNA in young children, this is defined as $> 0.7 \log_{10}$ (greater than 5-fold) increase for children age < 2 years.
Immunologic Failure

Evaluation of immune response in children is complicated by the normal age-related changes in CD4 cell count discussed previously (see Immunologic Monitoring in Children). Thus, the age of the child needs to be taken into account when evaluating declines in CD4 parameters, as there is a normal decline with age. CD4 percentage tends to vary less with age; absolute CD4 count values in children approach those of adults at about age 4–6 years; thus, changes in absolute count may be used in older children.

Potent antiretroviral therapy usually increases CD4 cell values. Median increases in CD4 cell counts in PI-naive children treated with a PI-based combination regimen were 168 cells/mm3 by week 48 [265]. However, children who begin therapy with a normal CD4 percentage may not have an increase in CD4 percentage with therapy, but should maintain a normal percentage over time [88, 117, 261, 266]. Children with the greatest immunosuppression have the greatest increase in their CD4 cell percentage with therapy, but the children with severe immunosuppression at the start of therapy may never reach a normal CD4 cell percentage, even with prolonged treatment [88, 114, 260, 261, 266]. In a pediatric cohort in Spain, treatment-naive children who had a pre-HAART baseline CD4 < 15% did not reach a mean CD4 > 25% after 4 years on HAART [260]. Similarly, in data from a pediatric cohort initiating PI therapy in the United States, there was a strong association between CD4 increase with treatment and baseline CD4 value at the time of initiation of therapy; while the increase in CD4 percentage was largest among children with the most severe immune suppression at the time therapy was initiated, less than half of children with pre-therapy CD4 < 25% achieved CD4 values above 25% after 3 years of therapy, compared to 84% of those with pre-therapy values above 25% [266].

The following situations indicate a need to re-evaluate therapy in infected children. A confirmatory immunologic evaluation should always be performed at least one week after the initial test before concluding there is a suboptimal immunologic response to therapy.

- **Incomplete immunologic response to therapy:** This is defined as a failure by a child with severe immune suppression (CD4 percentage or cell count in CDC immune class 3 [see Table 1]) to improve CD4 percentage by at least 5 percentage points above baseline or, for children over age 4–6 years, to increase their CD4 cell counts by at least 50 cells/mm3 above baseline over the first year of therapy.

- **Immunologic decline:** This is defined as a sustained decline of 5 percentage points in CD4 percentage at any age, or decline to below pre-therapy baseline in absolute CD4 cell count in children who are older than age 4–6 years at baseline.

Clinical Failure

Clinical findings should be viewed in the context of virologic and immunologic response to therapy; in patients with stable virologic and immunologic parameters, development of clinical symptoms may not represent an indication to change therapy. For example, development of a new opportunistic infection in a patient who had severe immune suppression at the time of initiation of therapy may not reflect failure of virologic suppression, but rather persistence of immune dysfunction despite adequate viral response. Additionally, immune reconstitution syndrome (see later discussion) should be excluded as a possible cause of clinical symptoms before it is concluded that there is suboptimal clinical response to therapy.

The following clinical criteria indicate a need to re-evaluate therapy in infected children. At least 6 months of therapy should be received before it is concluded that there is clinical treatment failure.

- **Progressive neurodevelopmental deterioration:** The presence of two or more of the following findings documented on repeated assessments: impairment in brain growth, decline of cognitive function documented by psychometric testing, or clinical motor dysfunction.

- **Growth failure:** Persistent decline in weight-growth velocity despite adequate nutritional support and without other explanation.

- **Severe or recurrent infection or illness:** Recurrence or persistence of AIDS-defining conditions or other serious infections.

Discordance between Viral, Immune, and Clinical Response

Studies have demonstrated that some patients who are maintained on combination antiretroviral therapy may maintain immunologic and clinical benefit despite detectable viral replication for up to 3 years [220, 259, 261, 267-271]. Therefore, in patients who have persistent improvement in CD4 cell count despite detectable viremia, some clinicians would consider continuation of antiretroviral therapy as long as immunologic benefit was observed [259]. However, sequential development of...
resistance mutations is noted with increasing time since virologic failure [119, 272]. Children who are maintained on a partially suppressive regimen should have resistance testing repeated upon any change in clinical, immunologic, or virologic status that might warrant a consideration of changing the antiretroviral regimen. If appropriate alternative drugs become available, it is usually preferable to change therapy before higher levels of resistance or broad cross-resistance develops. Consultation with a pediatric HIV specialist would be advised in this situation.

Management of Medication Toxicity or Intolerance

Working Group Recommendations:

- If a child has severe or life-threatening toxicity, all components of the drug regimen should be stopped immediately. Once the symptoms of toxicity have resolved, antiretroviral therapy should be resumed with substitution of another antiretroviral drug for the responsible drug.

- Children with moderate medication toxicity should continue on antiretroviral therapy when possible while an assessment is done to identify and substitute for the offending agent.

- Children with mild toxicity can be treated symptomatically, and do not require drug discontinuation or change in drug therapy.

- When changing therapy because of toxicity or intolerance to a specific drug, changing a single drug in a multi-drug regimen is permissible; if possible, an agent with a different toxicity and side effect profile should be chosen.

- The toxicity and the medication thought to be responsible for it should be documented in the medical record and the caregiver and patient made aware of the drug-related toxicity to assist in making future medication choices if care is transferred.

- Dose reduction is not a recommended option in the setting of antiretroviral toxicity except in the instance when therapeutic drug monitoring has been performed and indicated a drug concentration above the normal therapeutic range.

Side effects of antiretroviral agents or intolerance to them occur with moderate frequency and should prompt a re-evaluation of the antiretroviral regimen. Drug-related toxicity may be acute, occurring soon after a drug has been administered; subacute, occurring within 1 – 2 days of administration; or late, occurring after prolonged drug administration. Such adverse events may vary in severity from mild to severe and life-threatening.

Identification of the responsible agent may allow substitution of a similar agent to which the patient’s virus is sensitive. Knowledge of the patient’s prior antiretroviral history and, if possible, viral resistance profile prior to the current course of antiretroviral therapy is essential. Any new agent used should be assessed both for likely effectiveness against the patient’s virus and for possible interactions with the other medications the patient will take.

Experience with antiretroviral drugs has led to the recognition of several types of distinct adverse drug effects that may be most common with certain antiretroviral drugs or drug classes, including:

- Hematological adverse events associated with drug-induced bone marrow suppression, most common with zidovudine;

- Mitochondrial dysfunction, primarily seen with the NRTI drugs, including lactic acidosis, hepatic toxicity, pancreatitis, and peripheral neuropathy;

- Lipodystrophy and metabolic abnormalities, primarily seen with stavudine and the PI drugs, and to a lesser degree with certain other NRTI drugs (abnormalities include fat maldistribution and body habitus changes;
hyperlipidemia; hyperglycemia, insulin resistance, and diabetes mellitus; and osteopenia, osteoporosis, and osteonecrosis); and

- Allergic reactions such as skin rashes and hypersensitivity reactions, more common with the NNRTI drugs but also seen with certain NRTI drugs, such as abacavir.

Detailed information about specific adverse drug effects and their management can be found in Supplement III: Adverse Effects.

In general, mild and moderate toxicities do not require discontinuation of therapy or drug substitution; symptomatic treatment may be given, such as antihistamines for a mild rash. Some moderate toxicities may require the substitution of an antiretroviral drug associated with toxicity with a drug in the same drug class but with a different toxicity profile, but do not require discontinuation of all therapy. The response to a medication-related toxicity should be discussed by the physician, patient, and caregiver, and should take into account the severity of toxicity, the relative need for viral suppression, and the available antiretroviral options. Severe, life-threatening toxicity requires discontinuation of all antiretroviral drugs and the initiation of appropriate supportive therapy (depending on the type of toxicity), and another drug can be substituted for the drug associated with the toxicity once the patient is stabilized and the toxicity is resolved.

When a patient experiences adverse effects from antiretroviral therapy and it is unclear which medication is responsible, every attempt should be made to identify the agent and replace it with another effective agent to minimize the amount of time a patient is on suboptimal therapy. For example, if therapy needs to be stopped due to a severe or life-threatening side effect, all antiretroviral drugs should be stopped and, ideally, all drugs should be resumed simultaneously, rather than starting one at a time and observing for adverse effects. Many experts recommend stopping efavirenz or nevirapine several days before stopping other drugs if possible, because these drugs have a significantly longer half-life than NRTI antiretroviral drugs (see Discontinuation or Interruption of Therapy). However, if a patient has a severe or life-threatening toxicity, all components of the drug regimen should be stopped simultaneously, regardless of drug half-life.

When therapy is changed because of toxicity or intolerance in the context of virologic suppression, agents with different toxicity and side-effect profiles should be chosen, when possible. Clinicians should have comprehensive knowledge of the toxicity profile of each agent before selecting a new regimen. In the event of drug intolerance, change of a single drug in a multi-drug regimen is a permissible option.

Therapeutic drug monitoring is not available on a routine basis to most clinicians, and the settings in which it is useful are unclear, especially in children. One such setting, however, may be in the context of a child with mild or moderate toxicity possibly attributable to a particular antiretroviral agent (see Therapeutic Drug Monitoring). In this situation, it is reasonable for the clinician to use therapeutic drug monitoring (if available) to determine if the toxicity is due to a concentration of drug exceeding the normal therapeutic range. This is the only setting in which dose reduction would be considered appropriate management of drug toxicity, and even then should be used with caution.

Management strategies for drug intolerance include:

- Symptomatic treatment of mild to moderate transient side effects.
- Change from one drug to another drug to which the patient’s virus is sensitive within the same drug class, if necessary (e.g., change to stavudine for zidovudine-related anemia or to nevirapine for efavirenz-related central nervous system symptoms).
- Change drug classes, if necessary (e.g., from PI to an NNRTI or vice versa) and if the patient’s virus is sensitive to a drug in that class.
- Dose reduction only when drug levels have been determined to be excessive.
October 26, 2006

ASSESSMENT OF ANTIRETROVIRAL TREATMENT FAILURE

Working Group Recommendations:

- Assessment of the patient with treatment failure should include:
 - Evaluation of adherence to therapy, drug intolerance, and pharmacokinetic issues;
 - Antiretroviral treatment history and results of prior resistance testing;
 - Current HIV RNA level and CD4 cell percentage/count and change over time;
 - History and physical exam to assess clinical status; and
 - Future antiretroviral therapy options available.

- In managing treatment change due to treatment failure, distinction should be made between limited (1 or 2 prior regimens), intermediate, and extensive prior treatment exposure and drug resistance.

- For children with virologic failure, drug resistance testing should be performed while the child is still receiving the failing antiretroviral regimen or within 4 weeks after regimen discontinuation.

General

The patient should be assessed to determine the cause of treatment failure, as the approach to management and subsequent treatment may differ depending on the etiology of the problem. The general approach to a patient with treatment failure is to review the medical history, perform a physical examination to assess for signs of clinical progression, and to conduct relevant laboratory evaluations. Important elements in the patient assessment include all of the elements listed in the box above and detailed below.

Initial Assessment and Management

The initial general assessment of a child with possible treatment failure should include evaluation of adherence to the drugs, medication intolerance, issues related to pharmacokinetics that could result in low drug levels, and evaluation of suspected drug resistance.

Adherence (for more details, see Adherence): When treatment failure is observed, clinicians need to assess the likely contribution of adherence problems to the failure of the current regimen. Even small lapses in adherence can lead to antiretroviral treatment failure [218, 219, 225, 228, 241].

Issues regarding adherence should be addressed to increase the likelihood of a successful outcome when initiating any new regimen. Evaluation of whether adherence problems are related to drug formulation, number of pills, drug dose timing and frequency, food or fasting requirements, or drug side effects is important for determining what changes would be most suited to the individual requirements of the child and family. Intensive family education, training in the
administration of prescribed medications, and discussion of the importance of adherence to the drug regimen should be completed before initiation of new treatment. In addition, frequent patient visits and intensive follow-up during the initial months after a new antiretroviral regimen is started are necessary to support and educate the family and to monitor adherence, tolerance, and virologic response to the new regimen.

In difficult cases, a trial of directly observed therapy, which could include inpatient hospitalization, can improve adherence and virologic and immunologic success [238, 240].

Pharmacokinetic Issues: In addition to poor adherence, inadequate drug exposure can result in treatment failure [264]. Causes of subtherapeutic drug levels may include suboptimal dosing because of rapid growth of the child or gastrointestinal symptoms, such as vomiting or diarrhea, that can cause malabsorption. Drug exposure may be enhanced or reduced by administering medications with food; the clinician should review the food/fasting requirements of the regimen with the patient and caregiver. Drug interactions can alter drug metabolism; all concomitant medications, including over-the-counter medications and nutritional and herbal supplements, should be reviewed to evaluate whether they are contributing to poor treatment response. In some circumstances, therapeutic drug monitoring can be considered for children receiving selected drugs (see Therapeutic Drug Monitoring).

Suspected Drug Resistance (see Antiretroviral Drug Resistance Testing): Antiretroviral drug resistance testing should be done while the patient is still taking the failing regimen, or within 4 weeks of its discontinuation. Antiretroviral drug resistance mutations may fade from detectability with standard resistance assays once the drug regimen is stopped and drug selection pressure no longer exists.

Working Group Recommendations:

- When deciding how to treat a child with treatment failure, a clinician should consider the likelihood of achieving durable suppression based on the prior treatment history, drug resistance, likelihood of adherence, and the future options available should durable suppression not be achieved.

- The ideal goal of treatment is to re-establish and maintain maximal viral suppression.

- When durable viral suppression is not possible, preservation of immune function, prevention of clinical disease progression, and preservation of future antiretroviral options are the primary goals.

General

After adherence, drug intolerance/toxicity, and drug pharmacokinetics are ruled out or determined to be the cause of treatment failure, the child should be assessed to determine whether a change in the antiretroviral regimen is necessary. This will depend on the urgency and likelihood of achieving durable viral suppression. The urgency of achieving viral suppression depends on the clinical and immunologic status and reserve of the child. The likelihood of achieving and maintaining viral suppression depends on whether there is limited, intermediate, or extensive prior antiretroviral therapy and drug resistance and on the expectation of continued adherence to the regimen by the child and caregiver.

Relative Importance of Virologic Suppression

Because immunologic improvement is directly related to virologic suppression [271], the urgency of re-establishing...
virologic suppression depends on the clinical and immunologic status of a child. For patients with lower CD4 cell counts (e.g., < 100 cells/mm³), a change in therapy may be critical to prevent further immunologic decline or clinical progression, and is therefore indicated. A patient with a higher CD4 cell count may not be at significant risk of clinical progression in the near future, so an immediate change in therapy is less urgent.

Data from some, but not all, studies in children indicate that a low baseline CD4 percentage or count may be associated with a less complete immune response to therapy [103, 260, 261, 266, 273]. For example, in a Spanish cohort of infected children, those who initiated therapy with baseline CD4 ≥ 15% were more likely to achieve reconstitution to CD4 ≥ 30% and did so more rapidly than children who initiated therapy with baseline CD4 < 15% [260]. Thus, evaluation of the level of immune reconstitution achieved with therapy and the need for therapy change must take into account the level of immune compromise of the child at the time therapy was initiated.

In the setting of suppressed viremia, immunologic deterioration may not represent a failure of antiretroviral therapy and thus may not warrant a change in therapy. An assessment should be made to rule out other possible causes of immunosuppression (e.g., drug toxicity; coinfections that can lower CD4 cell count, such as tuberculosis). Although the use of immune-based therapies (e.g., interleukin-2) have been shown to improve immunologic response in the context of viral suppression, these therapies have received little evaluation in children and require evaluation in clinical trial settings before recommendations can be made [274].

Clinical symptoms within the first 3 months after starting effective antiretroviral therapy often represent a response of the improving immune system to previously existing pathogens. Clinicians should consider the possibility of immune reconstitution syndrome before changing therapy in a child with good virologic response [275-278]. Immune reconstitution syndrome is characterized by worsening symptoms of inflammation or infection temporally associated with initiation of antiretroviral therapy and not explained by newly acquired infection or disease or the usual course of previously acquired disease in an individual that is demonstrating response to therapy (e.g., > 1 log₁₀ decrease in HIV RNA and/or increase in CD4 cell percentage or count) [275].

Likelihood of Viral Suppression

When deciding whether to change a child’s antiretroviral regimen, a clinician must assess whether such a change is likely to achieve significantly better virologic suppression than the current regimen. While suppression of viral replication to undetectable levels is ideal, this may not always be achievable in HIV-infected children. Clinical benefit may be observed with decrements in HIV RNA levels that do not result in undetectable levels [271]. However, failure to maximally suppress viral replication may be associated with an increased probability of viral mutations and the emergence of drug resistance.

The likelihood of adherence plays a significant role in determining whether or not to change an antiretroviral regimen; if a child is unlikely to adhere to a new regimen, resistance will develop and viral suppression will not be maintained. Although studies differ on the exact predictors of adherence, several factors have been noted. These include medication characteristics [279], psychosocial stressors [226, 280], health beliefs [224], and prior adherence to medication (see Adherence for more detail). Importantly, children’s adherence to antiretroviral therapy may change over time. Thus, a clinician may choose to target a new antiretroviral regimen to start at a time when the child is most likely to adhere to this regimen for a sustained period.

Limited Prior Treatment (1 or 2 Prior Regimens) and Limited Resistance

The goal in this situation is to re-suppress HIV RNA levels maximally and prevent further selection of resistance mutations. If adherence is likely, the clinician should change the antiretroviral regimen to one to which the patient’s virus is sensitive based on both resistance testing and past antiretroviral history. In interpreting results of resistance testing, the timing of the drug resistance test should be considered because detectable virus may quickly revert back to wild-type and fail to show resistance mutations if the patient is not receiving the drug at the time of testing. In most cases, the clinician should choose as many drugs as possible in the regimen.

Intermediate Prior Treatment and Intermediate Drug Resistance

The goal in this situation is usually to re-suppress HIV RNA levels maximally and prevent further selection of resistance mutations, but if there is a significant likelihood of nonadherence to a new regimen, the clinician may choose to maintain the current regimen in order to preserve future antiretroviral choices. Immunologic and clinical stability have been demonstrated in some children who did not receive new antiretroviral regimens for virologic failure, but instead remained on nonsuppressive therapy [259, 270].
Extensive Prior Treatment and Extensive Drug Resistance

The goal is to re-suppress the HIV RNA levels maximally; however, viral suppression may be difficult to achieve in some patients. In this case, the goal is to preserve immunologic function and prevent clinical progression. Several cohort studies show a clinical benefit of remaining on therapy whether or not the therapy decreases the viral load. Discontinuing or briefly interrupting therapy may lead to a rapid increase in viral load, a decrease in CD4 cell count, and an increased risk of clinical progression [280-286] and therefore should only be considered in special circumstances and when a patient has enough immunologic reserve to assure that the risk of clinical progression is outweighed by the potential benefit of maintaining future options for more substantial virologic suppression.

General Approach

If possible, change at least 2 drugs to new antiretroviral agents on the basis of resistance testing and/or use of a new drug class. A change in one drug or addition of a single drug to a failing regimen is suboptimal. Whenever possible, the new regimen should contain at least 3 medications, with combinations guided by the same decision process used to develop the initial regimen. The potential for cross-resistance between antiretroviral drugs should be considered. A drug may be “new” to the patient but have diminished antiviral potency due to the presence of drug mutations that confer cross-resistance within a drug class. In children who are changing therapy due to neurodevelopmental clinical failure, choice of a new treatment regimen should include consideration of antiretroviral attributes that will allow control of plasma viremia as well as the ability of the drug to penetrate the central nervous system, which may also be associated with improvement in neurologic complications of HIV [287-289].

A change to a new regimen, especially one containing PIs or NNRTIs, must include a discussion of treatment adherence issues by the clinician with the patient, when age-appropriate, and with the caregivers of the infected child. The clinician must recognize that certain medications are difficult to take in combination because of exacting and often conflicting requirements with respect to whether they can be taken with food and other antiretroviral drugs. Palatability, pill size, pill number, and dosing frequency are part of the considerations in choice of new regimen and should be discussed with the child, when appropriate, and with the child’s caregivers.

When changing therapy because of disease progression in a patient with advanced disease, the patient’s quality of life must be considered. The relative benefits (reduced viral fitness, continued clinical benefit despite resistance, etc.) and burdens of continued antiretroviral therapy should be discussed. Decisions to continue or discontinue antiretroviral therapy should be made collaboratively with patients, families, and clinicians and should be consistent with the patient’s/family’s stated values and goals for care. There may be clinical and immunologic benefit in continuing a “failing” regimen because of the decrease in viral fitness associated with continuing therapy despite multi-drug-resistant virus and increasing viral load [239, 261, 271, 290-292].

The creation of an effective and sustainable therapeutic regimen may be limited by the availability of potent and/or tolerable therapeutic agents. When deciding whether to change therapy and the contents of a new regimen, the

CHANGING AN ANTIRETROVIRAL REGIMEN FOR TREATMENT FAILURE

Working Group Recommendations:

- Antiretroviral regimens should be chosen based on treatment history and drug-resistance testing, including past and current resistance test results.
- Ideally, use at least 2 fully active antiretroviral medications in the new regimen, using the past treatment history and resistance test results to determine which antiretroviral medications will demonstrate antiretroviral activity.
- Specialist advice is recommended to interpret resistance test results showing complex combinations of mutations and to make recommendations about future treatment options.

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection
Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

clinician should consider the potential availability and future use of newer therapeutic agents that may be in clinical development. Information concerning potential clinical trials can be found at http://aidsinfo.nih.gov/clinical_trials or through discussions with a pediatric HIV expert.

Failure of Initial First-Line Therapy: Choice of Second-Line Therapy

Antiretroviral regimens should be chosen based on treatment history and drug resistance testing to optimize antiretroviral drug potency in the second regimen. A general strategy for regimen change is shown in Table 15. If a child has received initial therapy with an NNRTI-based regimen, a change to a PI-based regimen would be recommended; if a child received initial therapy with a PI-based regimen, a change to an NNRTI-based regimen would be recommended. An NNRTI should not be used following development of NNRTI resistance because of the risk of selection of additional NNRTI-associated mutations and cross-resistance among members of the drug class.

Choice of the new dual NRTI component is particularly important in selecting an NNRTI-based regimen, in which drug resistance may occur rapidly to the NNRTI if the NRTIs are not sufficiently potent. Resistance testing is essential in such cases to allow selection of an NRTI combination to which the child’s virus is susceptible. Consultation with an expert in pediatric HIV infection may be necessary if resistance testing indicates that there is not a dual NRTI combination to which the child’s virus is susceptible; in such cases, use of a triple class regimen may be desirable. If a patient has substantial pre-existing resistance or if the initial regimen contained drugs from all 3 major classes (NRTI, NNRTI, and PI), the current resistance profile is likely to resemble that of a patient who has had multiple antiretroviral regimen failures. In this situation, consultation with a pediatric HIV specialist is essential and the recommendations in the next section are applicable.

Multiple Antiretroviral Regimen Failure

Table 16 provides some strategies for management of the multi-treatment-experienced child with treatment failure. Adult studies of treatment-experienced patients have shown that using a new class of drug (e.g., HIV entry inhibitors) and using ritonavir-boosted PIs in PI-experienced patients is associated with better virologic responses [1, 293]. Lopinavir/ritonavir-based regimens have shown durable antiretroviral activity in antiretroviral treatment-experienced children, including children with prior PI therapy [294-296]. The HIV entry inhibitor enfuvirtide (T-20) has been approved for use in heavily treatment-experienced patients based on potent antiretroviral activity in heavily treatment-experienced adults, and has been approved for use in children age 6 years and above based on safety data [297, 298]. No data have been published on the efficacy of enfuvirtide in heavily treatment-experienced children, and this therapy has the disadvantage of administration by subcutaneous injection twice daily. However, for older children and adolescents who have failed treatment with 3 classes of antiretroviral medications but have not been treated with an entry inhibitor, enfuvirtide should be considered when designing a new regimen.

The use of multi-drug regimens, sometimes including up to 3 PIs and/or 2 NNRTIs, has shown efficacy in a pediatric case series [299]. The use of multi-drug regimens may be limited by complexity, poor tolerability, and unfavorable drug-drug interactions.

It is sometimes possible to reintroduce previously prescribed drugs that were originally poorly tolerated, particularly if the drugs were discontinued for toxicities that can now be better addressed. Limited data in adults suggest that continuation of lamivudine can contribute to suppression of HIV replication despite the presence of lamivudine resistance mutations [300]. The use of new drugs that have been evaluated in adults but have not been fully evaluated in children might be justified and is ideally done in the framework of a clinical trial [301]. Expanded access programs might be available. New drugs should be used in combination with at least 1, and ideally 2, other active agents.

Additional Specific Issues to Consider

Sequencing/Cross-resistance

Consideration of the implications of changing regimens and the choice of new drugs should include an acknowledgment of the potential for limiting the patient’s future options for potent therapy. The order of use of some antiretroviral agents may be important. Cross-resistance among NRTIs is common, but varies by drug. Most NNRTI-associated resistance mutations confer resistance to all approved NNRTIs. Accumulation of multiple mutations to PIs confers broad cross-resistance to the entire PI class. Consultation with a pediatric HIV expert is recommended for choosing drugs for children with extensive prior antiretroviral therapy with treatment failure.
New Agents

Investigational drugs may be under study in clinical trials; some of the drugs may demonstrate distinct resistance patterns and activity against drug-resistant virus, while others may have newer mechanisms of action. Consultation with a pediatric HIV expert is recommended, and information concerning potential trials can be found at [http://aidsinfo.nih.gov/clinical_trials].

THERAPEUTIC DRUG MONITORING

Therapeutic drug monitoring (TDM) is the term used to describe the use of plasma drug concentration measurements as part of a strategy to optimize drug dosing to minimize toxicity and maximize treatment benefit. TDM has been recommended for use in antiretroviral treatment because [302].

- There is high interpatient variability in antiretroviral exposure (plasma drug concentrations) using standard recommended doses;
- Low drug exposure can lead to suboptimal virologic response to therapy; and
- High plasma concentrations can be associated with increased risk of drug toxicity.

Developmental pharmacokinetic differences contribute to greater variability in pediatric patients and a greater frequency of suboptimal antiretroviral exposure than in adults. Pediatric dosing is designed to mimic adult exposure and rarely reflects the maximum tolerated antiretroviral drug dose. Even when using dose recommendations from published pediatric guidelines, children frequently receive inadequate antiretroviral doses [264].

For TDM to be useful, there needs to be a clearly defined relationship between antiretroviral concentrations and anti-HIV effects [303-305]. This association is strongest with PI and NNRTI drugs [306], but maintaining adequate NRTI serum concentrations has also been shown to be important for maximal anti-HIV activity [307]. The exposure-toxicity response relationship is less well defined, but has been determined for some agents [304]. Concentration-response relationships have been established with minimum plasma concentrations (C_{min} or C_{trough}) or area under the curve (AUC), but the optimal measure is not defined for all antiretroviral drugs [308].

In patients with wild-type virus, Table 17, derived from the Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents, presents recommendations for the minimum target trough concentrations of PIs and NNRTIs. In antiretroviral-experienced patients, TDM should include viral sensitivity or resistance patterns and estimation of an individualized target exposure, such as calculation of an inhibitory quotient (IQ)—the ratio of the C_{max} and IC_{50}—or another integrated measure of drug exposure and viral sensitivity [309-311]. Although it is intriguingly difficult to demonstrate benefit of TDM using double-blind studies, limited data suggest targeted concentrations can be achieved with TDM and clinical responses improved with increased or modified doses, and that TDM information can be helpful in decision making [306, 312-316].

Situations in which pediatric antiretroviral TDM is potentially useful may include:

- Patients in whom clinical response is different from that expected;
- Treatment-experienced patients infected with virus with reduced drug susceptibility, for whom calculation of inhibitory quotient may be useful;
- Patients with potential drug administration difficulties, including suboptimal dietary intake, caregiver measuring errors, or adherence concerns; and
- Drug or food interactions, including alteration of drug formulations by crushing or mixing with various foods and liquids.

Current limitations for pediatric antiretroviral TDM include:

- Need for rapid evaluation, as there may be diminishing benefit the longer the patient is on inadequate therapy; however, processing time for many laboratories is quite long;
- Difficulties in coordinating sample collections at appropriate times make determination of true C_{min} or AUC difficult;
- High interpatient variability from single drug concentration measurements may complicate interpretation of results [317, 318];
• Inadequate information on safety and effectiveness of dose adjustment strategies in children and adolescents;

• Limited availability of certified laboratories capable of assaying drug concentrations; and

• Lack of third party reimbursement of costs associated with TDM.

DISCONTINUATION OR INTERRUPTION OF THERAPY

General

Discontinuation of antiretroviral therapy may be indicated in some situations, including serious treatment-related toxicity, acute illnesses or planned surgeries that preclude oral intake, lack of available medication, or patient or parent request. While these events are usually unplanned, purposeful discontinuation of therapy has been widely used in the adult population to reduce toxicity, costs, and drug-related failure associated with antiretroviral therapy. At this time, there are minimal data in infants, children, and adolescents about planned structured treatment interruptions (STIs). Thus, STI should not be attempted in children or adults outside of a clinical trial setting. The discussion below provides general guidance for the interruption of antiretroviral therapy and the risks and benefits in specific situations.

Short-Term Therapy Interruption

In the pediatric patient, short-term therapy interruptions are most often necessitated by acute illnesses that limit oral intake. These illnesses are often infectious diseases that result in vomiting and/or diarrhea. The clinician has no choice but to stop all therapy at the same time. Planned short-term interruption of therapy may also be required in the event of surgery or sedation for procedures, but when possible, the patient should be allowed to continue regular antiretroviral therapy with minimal fluid intake. If the period of restricted oral intake will be prolonged, then all therapy should be stopped at the same time if the medications have similar half-lives. In the case of serious or life-threatening antiretroviral therapy toxicity, all drugs should be stopped immediately.

When a short-term therapy interruption is indicated, all antiretroviral therapy should be stopped at the same time in most cases. This can be problematic with agents with a long half-life. Stopping agents with different half-lives at the same time can result in functional monotherapy with the drug with the longest half-life. This is particularly concerning in the case of the NNRTIs efavirenz and nevirapine.

Efavirenz and nevirapine have very long half-lives and can be detected for 21 days or longer after discontinuation [319-322]. As the other drugs with shorter half-lives are cleared, only nevirapine or efavirenz may persist, resulting in functional monotherapy, which can increase the risk of selection of NNRTI-resistant mutations. In addition, it is known that certain genetic polymorphisms may result in a slower rate of drug clearance. These polymorphisms may be more common among some ethnic groups, such as in African Americans and Hispanics [321, 322]. To prevent this functional monotherapy, some experts recommend stopping the NNRTI first and continuing the other antiretroviral drugs (i.e., NRTI backbone or PI) for a period of time [320]. However, the optimal interval between stopping an NNRTI and the other antiretroviral drugs is not known. Detectable levels of NNRTIs may be present from less than 1 week to greater than 3 weeks after discontinuation [322]. An alternative is to substitute a PI for up to 4 weeks prior to the interruption of all drugs; however, there are no data to support this practice. Studies are ongoing in adults to help determine an effective strategy. There is no information, in children and because the pharmacokinetics of these agents are different in children, the recommendations for adults may not be applicable [142, 144, 323].

An additional consideration is reintroduction of nevirapine. Currently, a 2-week, half-dose escalation is recommended in patients who are started on nevirapine. Dose escalation is necessary because nevirapine induces its own metabolism by inducing CYP3A4 metabolic liver enzymes; thus, initial administration of the full therapeutic dose will result in elevated drug levels until metabolic enzyme induction has occurred. Lower rates of rash toxicity have been observed with the 2-week dose escalation [323]. In cases where nevirapine has been discontinued for more than 2 weeks, it is recommended that another 2-week dose escalation be used when the drug is reintroduced.

Long-Term Structured Treatment Interruptions

Long-term STIs have been proposed to reduce toxicities and costs associated with long-term antiretroviral therapy; STIs have also been proposed in patients who have limited treatment options to allow a return to their wild-type virus,
which may be more susceptible to treatment. At this time, there is only minimal information about STI in children. In 1 study, children with controlled viral load (HIV RNA < 400 copies/ml for ≥12 months) were subjected to increasing intervals of treatment interruption. Of 14 children studied, 4 maintained undetectable viral loads with interruptions of up to 27 days. It has been hypothesized that enhanced HIV-specific immune responses may play a role in the viral suppression [324]. However, new drug resistance mutations were detected in 3 of 14 children in the STI study.

Recently, the results of two large, randomized clinical trials in adults have demonstrated inferior responses when CD4 cell count was used as an indication to stop and start therapy. The Strategies for Management of Anti-Retroviral Therapy stopped antiretroviral therapy when the CD4 cell count was above 350 cells/mm³ and reintroduced therapy when the count was less than 250 cells/mm³. In comparison to the group receiving continuous antiretroviral therapy, the STI group had an increased risk of disease progression and death [286]. Similarly, in the Trivican trials, which used the same CD4 cell count triggers to stop and restart therapy, STI was shown to be inferior [325]. However, in studies in adults using a CD4 count below 350 cells/mm³ as a trigger to restart therapy, no significant difference in serious disease progression or death was seen [326, 327]. A large cohort study in Italy showed an increased risk of disease progression after interruption of first-line therapy [283]. There are currently several additional trials ongoing in adults at this time.

Many questions remain about STI in children and adolescents. In the United States and other developed countries, the majority of HIV-infected children began antiretroviral therapy during infancy [328, 329]. Many of these children have had controlled viral replication for many years and are growing and developing normally. It is unclear if these children could discontinue therapy at some point and reinitiate based on CD4 cell decline. While this has been speculated as plausible, there are no data to support this strategy and it should not be attempted outside of a clinical trial setting.

An additional scenario that is often raised is the patient who has limited treatment options and who, despite aggressive antiretroviral therapy, cannot reach an undetectable viral load. In these cases, interruption of therapy is generally not recommended because, despite detectable viral replication, immunologic benefit has been well documented [220, 267-269].

With either unplanned or STI therapy, the clinician should discuss the reasons and plans with the parent or guardian and, if applicable, the patient, prior to proceeding. The parent and child should be made aware of the possibility of viral rebound resulting in a worsening of clinical symptoms, the risk of developing drug resistance, and the need for protection against opportunistic pathogens. The timelines and criteria for restarting therapy should be clear.
Antiretroviral Drug Resistance Testing

Working Group Recommendations:

- Antiretroviral drug resistance testing is recommended prior to initiation of therapy in all treatment-naïve children.

- Antiretroviral drug resistance testing is recommended prior to changing therapy for treatment failure.

- Resistance assays should be obtained when patients have a viral load of greater than 1,000 copies/mL and are still on the failing regimen or within 4 weeks of discontinuation of the regimen.

- The presence of viral resistance to a particular drug suggests the drug is unlikely to suppress viral replication.

- The absence of resistance to a drug does not ensure that its use will be successful, particularly if it shares cross-resistance with drugs previously used. Thus, the history of past use of antiretroviral agents as well as resistance testing is important in making decisions regarding the choice of new agents for patients with virologic failure.

- Consultation with a specialist in pediatric HIV infection is recommended for interpretation of resistance assays when considering starting or changing an antiretroviral regimen in a pediatric patient.

The optimal goal of antiretroviral therapy is to reduce plasma HIV RNA to below the limit of detection of the most sensitive assay available (< 50 copies/mL). Accomplishing this level of viral suppression, while not always possible in perinatally infected infants and children, will reduce the likelihood that genotypic (GT)/phenotypic (PT) resistance will emerge.

Several GT assays are available for detecting specific HIV genetic variants (mutations). They are based on amplification procedures and can usually detect mutations in plasma samples with more than 1,000 copies/mL of HIV RNA [330]. A compilation of the most common HIV-1 mutations selected by currently available antiretroviral agents is on the World Wide Web at http://hiv-web.lanl.gov or http://hivdb.stanford.edu; a recent review of Web resources for HIV genotypic resistance test mutations has been published [331].

PT assays directly measure the ability of the viral isolate to grow in the presence of a drug and measure the 50% or 90% inhibitory concentrations of a drug against the virus *in vitro* as compared to a laboratory strain of wild-type virus. The result is expressed as a “fold-change” in susceptibility above a particular cut-off level, below which the virus is assumed to be drug sensitive. These assays have historically been more complex than GT assays, but are now available from commercial laboratories.

A method for predicting PT based on the GT is also available. This method matches mutations obtained from the patient sample with a large database of samples for which both genotype and phenotype are known. Thus, the sample is assigned a predicted phenotype susceptibility based on the mean of all the individual samples matching the patient’s genotype. The result is expressed as a fold-change. In this assay, both the GT and predicted PT are contained in the test report.

As discussed earlier in the What to Start section, antiretroviral drug resistance testing is recommended prior to the initiation of therapy in all treatment-naïve children. Additionally, the Working Group recommends the use of resistance assays when considering changing antiretroviral
therapy because of virologic failure. While there are insufficient pediatric data to recommend use of one type of resistance assay over the other, an individual patient should have one assay used consistently. In children who have complex antiretroviral treatment histories, the use of both assay types (GT and PT) may provide complementary information that could prove useful in selecting a new regimen [293].

Results of adult clinical trials with laboratory endpoints have indicated that using genotypic or phenotypic testing to help guide changes in antiretroviral therapy results in a significantly greater short-term virologic response compared to clinical judgment alone [332, 333]. Some, although not all, reports in children have shown GT resistance testing to be useful for guiding therapy, particularly for children with extensive antiretroviral drug experience [334-336].

Resistance assays should be obtained when the patient is still on the failing regimen or within 4 weeks of discontinuation of the regimen and while the patient has a viral load of greater than 1,000 copies/mL. If no resistance to currently used antiretroviral agents is detected in the face of virologic failure, it is likely that the patient is not adhering to the current regimen, and adherence issues should be addressed.

The presence of viral resistance to a particular drug suggests that this drug is unlikely to suppress viral replication. However, the absence of resistance to a drug does not insure that its use will be successful, particularly if it shares cross-resistance with drugs previously used. GT or PT assays will detect resistance of the major viral species present, but will not detect resistance in minor viral species constituting less than 10% – 20% of the circulating viral population. Thus, drug-resistant virus could still be present at levels below detection with the current assays if resistance developed to an antiretroviral drug used previously, but that is not part of the child’s current regimen. Inability to detect virus is due to the loss of growth advantage of the resistant virus after a specific drug is discontinued. The history of past use of antiretroviral agents and past resistance testing results are therefore essential in making decisions regarding the choice of new agents for patients with virologic failure. Consultation with a specialist in pediatric HIV infection is recommended for interpretation of resistance assays when considering starting or changing an antiretroviral regimen in a pediatric patient.
Managing Complications of HIV Infection

The Pediatric Antiretroviral Treatment Guidelines includes the supplements Managing Complications of HIV Infection and Adverse Drug Effects. These supplements contain guidelines on two important issues in pediatric HIV infection—nutrition and pain management—as well as separate sections on specific adverse drug effects, including lactic acidosis, hepatic toxicity, fat maldistribution and body habitus changes, hyperlipidemia, hyperglycemia, osteopenia, hematological complications, and hypersensitivity reactions and skin rashes. The U.S. Public Health Service and Infectious Disease Society of America jointly developed and published guidelines for the prevention of opportunistic infections in both children and adults with HIV, available online at http://aidsinfo.nih.gov/guidelines. Guidelines for the treatment of opportunistic infections in HIV-exposed and infected children have also been published [337], and are also available at http://aidsinfo.nih.gov/guidelines.

Conclusion

The care of HIV-infected children is complex and evolving rapidly as results of new research are reported and new antiretroviral drugs and newer classes of drugs are approved. Clinical trials to define appropriate drug dosing and toxicity in children ranging in age from infancy to adolescence are critical as new drugs become available. As additional antiretroviral drugs become approved and optimal use of these drugs in children becomes better understood, the Working Group will modify these guidelines. It should be noted that guidelines are only a starting point for medical decision making, and are not meant to supersede the judgment of clinicians experienced in the care of HIV-infected children. Because of the complexity of caring for HIV-infected children, health care providers with limited experience in the care of these patients should seek consultation with an expert in such care.
Table 1. 1994 Revised Human Immunodeficiency Virus Pediatric Classification System: Immune Categories Based on Age-Specific CD4 Cell Count and Percentage*

<table>
<thead>
<tr>
<th>Immune category</th>
<th><12 mos</th>
<th></th>
<th>1–5 yrs</th>
<th></th>
<th>6–12 yrs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No./mm³</td>
<td>(%)</td>
<td>No./mm³</td>
<td>(%)</td>
<td>No./mm³</td>
<td>(%)</td>
</tr>
<tr>
<td>Category 1: No suppression</td>
<td>≥1,500</td>
<td>(≥25%)</td>
<td>≥1,000</td>
<td>(≥25%)</td>
<td>≥500</td>
<td>(≥25%)</td>
</tr>
<tr>
<td>Category 2: Moderate suppression</td>
<td>750–1,499</td>
<td>(15%–24%)</td>
<td>500–999</td>
<td>(15%–24%)</td>
<td>200–499</td>
<td>(15%–24%)</td>
</tr>
<tr>
<td>Category 3: Severe suppression</td>
<td><750</td>
<td>(<15%)</td>
<td><500</td>
<td>(<15%)</td>
<td><200</td>
<td>(<15%)</td>
</tr>
</tbody>
</table>

Table 2. 1994 Revised Human Immunodeficiency Virus Pediatric Classification System: Clinical Categories*

<table>
<thead>
<tr>
<th>Category N: Not Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children who have no signs or symptoms considered to be the result of HIV infection or who have only one of the conditions listed in category A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category A: Mildly Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children with 2 or more of the following conditions but none of the conditions listed in categories B and C:</td>
</tr>
<tr>
<td>• Lymphadenopathy (>0.5 cm at more than 2 sites; bilateral = 1 site)</td>
</tr>
<tr>
<td>• Hepatomegaly</td>
</tr>
<tr>
<td>• Splenomegaly</td>
</tr>
<tr>
<td>• Dermatitis</td>
</tr>
<tr>
<td>• Parotitis</td>
</tr>
<tr>
<td>• Recurrent or persistent upper respiratory infection, sinusitis, or otitis media</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category B: Moderately Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children who have symptomatic conditions attributed to HIV infection, other than those listed for category A or category C. Examples of conditions in clinical category B include, but are not limited to, the following:</td>
</tr>
<tr>
<td>• Anemia (<8 gm/dL), neutropenia (<1,000 cells/mm³), or thrombocytopenia (<100,000 cells/mm³) persisting >30 days</td>
</tr>
<tr>
<td>• Bacterial meningitis, pneumonia, or sepsis (single episode)</td>
</tr>
<tr>
<td>• Candidiasis, oropharyngeal (i.e., thrush) persisting for >2 months in children age >6 months</td>
</tr>
<tr>
<td>• Cardiomyopathy</td>
</tr>
<tr>
<td>• Cytomegalovirus infection with onset before age 1 month</td>
</tr>
<tr>
<td>• Diarrhea, recurrent or chronic</td>
</tr>
<tr>
<td>• Hepatitis</td>
</tr>
<tr>
<td>• Herpes simplex virus (HSV) stomatitis, recurrent (i.e., more than 2 episodes within 1 year)</td>
</tr>
<tr>
<td>• HSV bronchitis, pneumonitis, or esophagitis with onset before age 1 month</td>
</tr>
<tr>
<td>• Herpes zoster (i.e., shingles) involving at least 2 distinct episodes or more than 1 dermatome</td>
</tr>
<tr>
<td>• Leiomyosarcoma</td>
</tr>
<tr>
<td>• Lymphoid interstitial pneumonia (LIP) or pulmonary lymphoid hyperplasia complex</td>
</tr>
<tr>
<td>• Nephropathy</td>
</tr>
<tr>
<td>• Nocardiosis</td>
</tr>
<tr>
<td>• Fever lasting >1 month</td>
</tr>
<tr>
<td>• Toxoplasmosis with onset before age 1 month</td>
</tr>
<tr>
<td>• Varicella, disseminated (i.e., complicated chickenpox)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category C: Severely Symptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children who have any condition listed in the 1987 surveillance case definition for acquired immunodeficiency syndrome, with the exception of LIP (which is a category B condition)</td>
</tr>
</tbody>
</table>

* Centers for Disease Control and Prevention. 1994 Revised classification system for human immunodeficiency virus infection in children less than 13 years of age. MMWR, 1994; 43 (No. RR-12): p. 1-10.
Table 3. Likelihood of Developing AIDS or Death Within 12 Months, by Age and CD4 Cell Percentage or Log_{10} HIV-1 RNA Copy Number, in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy

<table>
<thead>
<tr>
<th>Age</th>
<th>CD4 Percentage</th>
<th>Log_{10} HIV-1 RNA Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>6 Months</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td>31</td>
</tr>
<tr>
<td>1 Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>(45–57)</td>
<td>(18–23)</td>
</tr>
<tr>
<td>2 Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(26–31)</td>
<td>(11–14)</td>
</tr>
<tr>
<td>5 Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>(12–18)</td>
<td>(3.9–5.7)</td>
</tr>
<tr>
<td>10 Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>(5.0–10.8)</td>
<td>(1.6–2.8)</td>
</tr>
</tbody>
</table>

Percent Mortality (95% Confidence Interval)

<table>
<thead>
<tr>
<th>Age</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>6.0</th>
<th>5.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Months</td>
<td>30</td>
<td>12</td>
<td>6.4</td>
<td>4.6</td>
<td>9.7</td>
<td>4.1</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>(26–35)</td>
<td>(10–15)</td>
<td>(5.3–7.8)</td>
<td>(3.8–5.5)</td>
<td>(8.1–12.0)</td>
<td>(2.9–5.4)</td>
<td>(0.9–4.1)</td>
</tr>
<tr>
<td>1 Year</td>
<td>20</td>
<td>6.8</td>
<td>3.3</td>
<td>2.5</td>
<td>8.8</td>
<td>3.1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>(18–23)</td>
<td>(5.6–8.4)</td>
<td>(2.8–3.9)</td>
<td>(2.0–3.1)</td>
<td>(7.2–11.0)</td>
<td>(2.4–4.0)</td>
<td>(0.8–2.8)</td>
</tr>
<tr>
<td>2 Years</td>
<td>12</td>
<td>3.1</td>
<td>1.5</td>
<td>1.2</td>
<td>8.2</td>
<td>2.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>(11–14)</td>
<td>(2.6–3.7)</td>
<td>(1.2–1.9)</td>
<td>(0.9–1.6)</td>
<td>(6.4–10.4)</td>
<td>(1.8–3.1)</td>
<td>(0.6–1.8)</td>
</tr>
<tr>
<td>5 Years</td>
<td>4.9</td>
<td>0.9</td>
<td>0.5</td>
<td>0.5</td>
<td>7.8</td>
<td>2.1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>(3.8–5.9)</td>
<td>(0.7–1.2)</td>
<td>(0.3–0.7)</td>
<td>(0.3–0.7)</td>
<td>(5.9–10.2)</td>
<td>(1.4–2.9)</td>
<td>(0.4–1.0)</td>
</tr>
<tr>
<td>10 Years</td>
<td>2.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>7.7</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>(1.3–3.0)</td>
<td>(0.2–0.5)</td>
<td>(0.1–0.4)</td>
<td>(0.1–0.4)</td>
<td>(5.7–10.0)</td>
<td>(1.2–2.9)</td>
<td>(0.3–0.9)</td>
</tr>
</tbody>
</table>

Table 4. Association of Baseline Human Immunodeficiency Virus RNA Copy Number and CD4 Cell Percentage with Long-Term Risk for Death in Infected Children*

<table>
<thead>
<tr>
<th>Baseline HIV RNA (copies/mL)/Baseline CD4 percentage</th>
<th>No. of patients</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥15%</td>
<td>103</td>
<td>15 (15%)</td>
</tr>
<tr>
<td><15%</td>
<td>24</td>
<td>15 (63%)</td>
</tr>
<tr>
<td>>100,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥15%</td>
<td>89</td>
<td>32 (36%)</td>
</tr>
<tr>
<td><15%</td>
<td>36</td>
<td>29 (81%)</td>
</tr>
</tbody>
</table>

* Data from the National Institute of Child Health and Human Development Intravenous Immunoglobulin Clinical Trial.
† Mean follow-up: 5.1 years.
§ Tested by NASBA assay (manufactured by Organon Teknika, Durham, North Carolina) on frozen stored serum.
¶ Mean age: 3.4 years.

Table 5. Strategies to Improve Adherence to Antiretroviral Medication Regimens in Children

<table>
<thead>
<tr>
<th>Initial Intervention Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish trust and identify mutually acceptable goals for care.</td>
</tr>
<tr>
<td>Obtain explicit agreement on need for treatment and adherence.</td>
</tr>
<tr>
<td>Identify depression, low self-esteem, drug use, or other mental health issues for the child/adolescent and/or caregiver that may decrease adherence. Treat prior to starting antiretroviral drugs, if possible.</td>
</tr>
<tr>
<td>Identify family, friends, health team members, or others who can help with adherence support.</td>
</tr>
<tr>
<td>Educate patient and family about the critical role of adherence in therapy outcome.</td>
</tr>
<tr>
<td>Specify the adherence target: 95% of prescribed doses.</td>
</tr>
<tr>
<td>Educate patient and family about the relationship between partial adherence and resistance.</td>
</tr>
<tr>
<td>Educate patient and family about resistance and constraint of later choices of antiretroviral drug; explain that while a failure of adherence may be temporary, the effects on treatment choice may be permanent.</td>
</tr>
<tr>
<td>Develop a treatment plan that the patient and family understand and to which they feel committed.</td>
</tr>
<tr>
<td>Establish readiness to take medication by practice sessions or other means.</td>
</tr>
<tr>
<td>For patient education and to assess tolerability of medications chosen, consider a brief period of hospitalization at start of therapy in selected circumstances.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medication Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose the simplest regimen possible, reducing dosing frequency and number of pills.</td>
</tr>
<tr>
<td>Choose a regimen with dosing requirements that best conform to daily and weekly routines and variations in patient and family activities.</td>
</tr>
<tr>
<td>Choose the most palatable medicine possible (pharmacists may be able to add syrups or flavoring agents to increase palatability).</td>
</tr>
<tr>
<td>Choose drugs with the fewest side effects; provide anticipatory guidance for management of side effects.</td>
</tr>
<tr>
<td>Simplify food requirements for medication administration.</td>
</tr>
<tr>
<td>Prescribe drugs carefully to avoid adverse drug-drug interactions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Follow-up Intervention Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor adherence at each visit, as well as in between visits by telephone or letter as needed.</td>
</tr>
<tr>
<td>Provide ongoing support, encouragement, and understanding of the difficulties of the demands of attaining >95% adherence with medication doses.</td>
</tr>
<tr>
<td>Use patient education aids, including pictures, calendars, and stickers.</td>
</tr>
<tr>
<td>Use pill boxes, reminders, alarms, pagers, and timers.</td>
</tr>
<tr>
<td>Provide nurse, social worker, or other practitioner adherence clinic visits or telephone calls.</td>
</tr>
<tr>
<td>Provide access to support groups, peer groups, or one-on-one counseling for caregivers and patients, especially for those with known depression or drug use issues, which are known to decrease adherence.</td>
</tr>
<tr>
<td>Provide pharmacist-based adherence support.</td>
</tr>
<tr>
<td>Consider gastrostomy tube use in selected circumstances.</td>
</tr>
<tr>
<td>For selected circumstances of apparent virologic failure, consider a brief period of hospitalization to assess adherence and reinforce that medication adherence is fundamental to successful antiretroviral therapy.</td>
</tr>
<tr>
<td>Consider directly observed therapy at home, in the clinic, or during a brief inpatient hospitalization.</td>
</tr>
</tbody>
</table>
Table 6. Indications for Initiation of Antiretroviral Therapy in Children Infected with Human Immunodeficiency Virus

This table provides general guidance rather than absolute recommendations for an individual patient. Factors to be considered in decisions about initiation of therapy include the risk of disease progression as determined by CD4 percentage or count and plasma HIV RNA copy number; the potential benefits and risks of therapy; and the ability of the caregiver and child to adhere to administration of the therapeutic regimen. Issues associated with adherence should be fully assessed, discussed, and addressed with the caregiver and child, if age-appropriate, before the decision to initiate therapy is made.

<table>
<thead>
<tr>
<th>Age</th>
<th>Criteria</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td><12 months</td>
<td>• HIV-related symptoms<sup>1</sup>
 OR
 • Asymptomatic<sup>2</sup> and CD4 <25%
 • Asymptomatic<sup>2</sup> and CD4 ≥25%</td>
<td>Treat</td>
</tr>
<tr>
<td>1–<4 years</td>
<td>• AIDS or significant HIV-related symptoms<sup>3</sup>
 OR
 • Asymptomatic or mild symptoms<sup>4</sup> and CD4 <20%
 • Asymptomatic or mild symptoms<sup>4</sup> and CD4 20%–24%
 • HIV RNA ≥100,000 copies/mL
 • Asymptomatic<sup>2</sup> and CD4 ≥25%
 • HIV RNA <100,000 copies/mL</td>
<td>Treat</td>
</tr>
<tr>
<td>≥4–12 years</td>
<td>• AIDS or significant HIV-related symptoms<sup>3</sup>
 OR
 • Asymptomatic or mild symptoms<sup>4</sup> and CD4 <15%<sup>5</sup>
 • Asymptomatic or mild symptoms<sup>4</sup> and CD4 15%–24%
 • HIV RNA ≥100,000 copies/mL
 • Asymptomatic<sup>2</sup> and CD4 ≥25%
 • HIV RNA <100,000 copies/mL</td>
<td>Treat</td>
</tr>
<tr>
<td>≥13 years</td>
<td>• AIDS or significant HIV-related symptoms<sup>3</sup>
 OR
 • Asymptomatic or mild symptoms<sup>4</sup> and CD4 <200 cells/mm<sup>3</sup>
 • Asymptomatic or mild symptoms<sup>4</sup> and CD4 201–350 cells/mm<sup>3</sup>
 • HIV RNA ≥100,000 copies/mL
 • Asymptomatic<sup>2</sup> and CD4 >350 cells/mm<sup>3</sup>
 • HIV RNA <100,000 copies/mL</td>
<td>Treat</td>
</tr>
</tbody>
</table>

¹ CDC clinical category A, B, and C • ² CDC clinical category N • ³ CDC clinical category C and B (except for the following category B conditions: single episode of serious bacterial infection or lymphoid interstitial pneumonitis) • ⁴ CDC clinical category A or N or the following category B conditions: single episode of serious bacterial infection or lymphoid interstitial pneumonitis • ⁵ Or for children in upper end of this age category, absolute CD4 cell count is <200–300 cells/mm³ • ⁶ Because HIV infection progresses more rapidly in infants than older children or adults, some experts would treat all HIV-infected infants age <6 months or <12 months, regardless of clinical, immunologic, or virologic parameters • ⁷ Clinical and laboratory data should be re-evaluated every 3–4 months.
A combination antiretroviral regimen in treatment-naive children generally contains 1 NNRTI or 1 PI combined with a 2-drug NRTI backbone. A 3-drug NRTI regimen consisting of zidovudine, abacavir, and lamivudine is recommended only if a PI or NNRTI-based regimen can’t be used. Regimens should be individualized based on advantages and disadvantages of each combination (see Tables 10, 11, 12).

Non-Nucleoside Reverse Transcriptase Inhibitor-Based Regimens

Preferred Regimen:
- Children ≥3 years: 2 NRTIs plus efavirenz
- Children <3 years or who can’t swallow capsules: 2 NRTIs plus nevirapine

Alternative:
- 2 NRTIs plus nevirapine (children ≥3 years)

Protease Inhibitor-Based Regimens

Preferred Regimen:
- 2 NRTIs plus lopinavir/ritonavir

Alternative:
- 2 NRTIs plus nelfinavir (children >2 years)

Use in Special Circumstances

1 or 2 NRTIs plus nelfinavir plus (efavirenz [children ≥3 years] or nevirapine)

2 NRTIs plus (ritonavir or indinavir or amprenavir [children ≥4 years])

Zidovudine plus lamivudine plus abacavir

2 NRTIs plus low-dose ritonavir plus (indinavir or fosamprenavir or saquinavir), only in adolescents who can receive adult doses

2-Drug NRTI Backbone Options (for use in combination with additional drugs)

Preferred:
- Zidovudine plus (lamivudine or didanosine or emtricitabine)
- Didanosine plus (lamivudine or emtricitabine)

Alternative:
- Abacavir plus (zidovudine or lamivudine or emtricitabine or stavudine)
- Stavudine plus (lamivudine or emtricitabine)

Use in Special Circumstances:
- Stavudine plus didanosine

Table 7 continued next page
Table 7. Recommended Antiretroviral Regimens for Initial Therapy for Human Immunodeficiency Virus Infection in Children

<table>
<thead>
<tr>
<th>Insufficient Data to Recommend</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dual PIs with the exception of lopinavir/ritonavir³</td>
</tr>
<tr>
<td>- NRTI plus NNRTI plus PI⁴</td>
</tr>
<tr>
<td>- Tenofovir-containing regimens</td>
</tr>
<tr>
<td>- Enfuvirtide (T-20)-containing regimens</td>
</tr>
<tr>
<td>- Atazanavir-containing regimens</td>
</tr>
<tr>
<td>- Darunavir-containing regimens</td>
</tr>
<tr>
<td>- Fosamprenavir-containing regimens</td>
</tr>
<tr>
<td>- Tipranavir-containing regimens</td>
</tr>
</tbody>
</table>

¹ Efavirenz is currently available only in capsule form; nevirapine would be the preferred NNRTI for children under age 3 years or who require a liquid formulation.

² Amprenavir should not be administered to children under age 4 years due to the propylene glycol and vitamin E content of the oral liquid preparation and lack of pharmacokinetic data in this age group (see Appendix and Supplement I).

³ With the exception of lopinavir/ritonavir, data on the pharmacokinetics and safety of dual PI combinations are limited; use of dual PIs other than lopinavir/ritonavir as components of initial therapy is not recommended, although such regimens may have utility as secondary treatment regimens for children who have failed initial therapy. The use of low-dose ritonavir-boosted indinavir, fosamprenavir, or saquinavir can be considered in special circumstances for adolescents who can receive standard adult doses.

⁴ With the exception of efavirenz plus nelfinavir plus 1 or 2 NRTIs, which has been studied in HIV-infected children and shown to have virologic and immunologic efficacy in a clinical trial [134].

⁵ Use of low-dose ritonavir-boosted fosamprenavir can be considered as initial therapy in special circumstances for adolescents who can receive standard adult doses.
<table>
<thead>
<tr>
<th>Antiretroviral regimens not recommended</th>
<th>Rationale</th>
<th>Exceptions</th>
</tr>
</thead>
</table>
| Monotherapy | • Rapid development of resistance
• Inferior antiviral activity compared to combination with ≥3 antiretroviral drugs | • HIV-exposed infants (with negative viral testing) during 6-week period of prophylaxis to prevent perinatal transmission |
| 2 NRTIs alone | • Rapid development of resistance
• Inferior antiviral activity compared to combination with ≥3 antiretroviral drugs | • Not recommended for initial therapy; for patients currently on this treatment, some clinicians may opt to continue if virologic goals are achieved |
| Tenofovir + abacavir + (lamivudine or emtricitabine) as a triple NRTI regimen | • High rate of early virologic failure when this triple NRTI regimen was used as initial therapy in treatment-naive adults | • No exception |
| Tenofovir + didanosine + (lamivudine or emtricitabine) as a triple NRTI regimen | • High rate of early virologic failure when this triple NRTI regimen was used as initial therapy in treatment-naive adults | • No exception |

<table>
<thead>
<tr>
<th>Antiretroviral components not recommended as part of an antiretroviral regimen</th>
<th>Rationale</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amprenavir oral solution in children <4 years, or with renal or hepatic failure, or who are receiving metronidazole</td>
<td>• Oral liquid contains large amount of excipient propylene glycol, which may be toxic in at-risk patients</td>
<td>• No exception</td>
</tr>
<tr>
<td>Amprenavir oral solution + ritonavir oral solution</td>
<td>• Large amount of propylene glycol excipient in amprenavir oral solution may compete with ethanol excipient in ritonavir oral solution for same metabolic elimination pathway, leading to accumulation of either excipient and toxicity</td>
<td>• No exception</td>
</tr>
<tr>
<td>Amprenavir + fosamprenavir</td>
<td>• Amprenavir is active antiretroviral drug for both drugs; combined use has no benefit and may increase toxicities</td>
<td>• No exception</td>
</tr>
<tr>
<td>Atazanavir + indinavir</td>
<td>• Potential additive hyperbilirubinemia</td>
<td>• No exception</td>
</tr>
</tbody>
</table>

Table 8 continued next page
Table 8. Antiretroviral Regimens or Components that Should Not Be Offered for Treatment of Human Immunodeficiency Virus Infection in Children

<table>
<thead>
<tr>
<th>Antiretroviral components not recommended as part of an antiretroviral regimen (cont.)</th>
<th>Rationale</th>
<th>Exceptions</th>
</tr>
</thead>
</table>
| Delavirdine | • Lack of pediatric formulation or pediatric pharmacokinetic data
• Inferior virologic potency in adults | • No exception |
| Dual NRTI combinations | • Lamivudine + emtricitabine
• Stavudine + zidovudine
• Zalcitabine-containing | • Similar resistance profile and no additive benefit
• Antagonistic effect on HIV
• Lack of pediatric formulation | • No exception |
| Efavirenz in first trimester of pregnancy or for sexually active adolescent girls of childbearing potential | • Potential for teratogenicity | • When no other antiretroviral option is available and potential benefits outweigh risks |
| Nevirapine initiation in adolescent girls with CD4 cell count >250/mm³ or adolescent boys with CD4 cell count >400/mm³ | • Increased incidence of symptomatic (including serious and potentially fatal) hepatic events in these patient groups | • Only if benefit clearly outweighs risk |
| Saquinavir as single sole PI | • Poor oral bioavailability
• Inferior virologic activity compared to other PIs | • No exception |

NRTI: Nucleoside analogue reverse transcriptase inhibitor
NNRTI: Non-nucleoside analogue reverse transcriptase inhibitor
PI: Protease inhibitor
Table 9. Advantages and Disadvantages of Different Nucleoside or Nucleotide Analogue Reverse Transcriptase Inhibitor (NRTI) Backbone Combinations for Use in Highly Active Antiretroviral Therapy Regimens

<table>
<thead>
<tr>
<th>Preferred Combinations</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine +</td>
<td>Extensive pediatric experience</td>
<td>Bone marrow suppression with zidovudine</td>
</tr>
<tr>
<td>(lamivudine or emtricitabine)</td>
<td>Coformulated as single pill for older/larger patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Palatable liquid formulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can give with food</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emtricitabine available as a palatable liquid formulation administered once daily</td>
<td></td>
</tr>
<tr>
<td>Zidovudine + didanosine</td>
<td>Extensive pediatric experience</td>
<td>Bone marrow suppression with zidovudine</td>
</tr>
<tr>
<td></td>
<td>Delayed-release capsules of didanosine may allow once daily dosing of didanosine in older children who can swallow pills and receive adult dosing</td>
<td>Pancreatitis, neurotoxicity with didanosine</td>
</tr>
<tr>
<td></td>
<td>In children 16 years of age and older, delayed-release didanosine plus lamivudine can both be given once daily</td>
<td>Didanosine liquid formulation less palatable than lamivudine or emtricitabine liquid formulations</td>
</tr>
<tr>
<td></td>
<td>Delayed-release capsules of didanosine plus emtricitabine can both be given once daily</td>
<td>Food effect (didanosine is recommended to be taken 1 hour before or 2 hours after food)—some experts give didanosine without regard to food in infants or when compliance is an issue</td>
</tr>
<tr>
<td></td>
<td>Emtricitabine available as a palatable liquid formulation administered once daily</td>
<td></td>
</tr>
<tr>
<td>Didanosine + (lamivudine or emtricitabine)</td>
<td>Delayed-release capsules of didanosine may allow once daily dosing in older children able to swallow pills and who can receive adult dosing</td>
<td>Food effect (didanosine is recommended to be taken 1 hour before or 2 hours after food)—some experts give didanosine without regard to food in infants or when compliance is an issue</td>
</tr>
<tr>
<td></td>
<td>In children 16 years of age and older, delayed-release didanosine plus lamivudine can both be given once daily</td>
<td>Limited pediatric experience using delayed-release capsules in younger children</td>
</tr>
<tr>
<td></td>
<td>Delayed-release capsules of didanosine plus emtricitabine can both be given once daily</td>
<td>Pancreatitis, neurotoxicity with didanosine, potentially additive with lamivudine</td>
</tr>
<tr>
<td></td>
<td>Emtricitabine available as a palatable liquid formulation administered once daily</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternate Combinations</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abacavir + zidovudine</td>
<td>Palatable liquid formulations</td>
<td>Potential for abacavir hypersensitivity reaction</td>
</tr>
<tr>
<td></td>
<td>Can give with food</td>
<td>Bone marrow suppression with zidovudine</td>
</tr>
<tr>
<td>Abacavir + lamivudine or emtricitabine</td>
<td>Palatable liquid formulations</td>
<td>Potential for abacavir hypersensitivity reaction</td>
</tr>
<tr>
<td></td>
<td>Can give with food</td>
<td></td>
</tr>
</tbody>
</table>

Table 9 continued next page
Table 9. Advantages and Disadvantages of Different Nucleoside or Nucleotide Analogue Reverse Transcriptase Inhibitor (NRTI) Backbone Combinations for Use in Highly Active Antiretroviral Therapy Regimens

<table>
<thead>
<tr>
<th>Alternate Combinations (continued)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Stavudine + abacavir | • Palatable liquid formulations
• Can give with food | • Potential for abacavir hypersensitivity reaction
• Stavudine associated with higher incidence of hyperlactatemia/lactic acidosis, lipoatrophy, peripheral neuropathy, hyperlipidemia |
| Stavudine + (lamivudine or entecitabine) | • Moderate pediatric experience
• Palatable liquid formulations
• Can give with food
• Emtricitabine available as a palatable liquid formulation administered once daily | • Stavudine associated with higher incidence of hyperlactatemia/lactic acidosis, lipoatrophy, peripheral neuropathy, hyperlipidemia
• Limited pediatric experience with stavudine plus emtricitabine |

Use in Special Circumstances

| Stavudine + didanosine | • Delayed-release didanosine may allow once daily dosing in older children who can swallow pills and receive adult dosing
• Stavudine available as palatable liquid formulation | • Stavudine associated with higher incidence of hyperlactatemia/lactic acidosis, lipoatrophy, peripheral neuropathy, hyperlipidemia
• Potential synergistic toxicity (neurotoxicity, lactic acidosis, hepatic steatosis) of the combination
• Food effect (didanosine is recommended to be taken 1 hour before or 2 hours after food)—some experts give didanosine without regard to food in infants or when compliance is an issue |

Insufficient Data to Make Recommendation

| Tenofovir-containing regimens | • Resistance slow to develop
• Once daily dosing for tenofovir (adults)
• Less mitochondrial toxicity than other NRTIs
• Can give with food | • Limited pediatric experience
• Potential bone and renal toxicity
• Numerous drug-drug interactions with other antiretrovirals, including didanosine, lopinavir/ritonavir, atazanavir, and tipranavir, complicating appropriate dosing |

Not Recommended

| Zidovudine + stavudine | • None | • Pharmacologic and antiviral antagonism |
| Lamivudine + emtricitabine | • None | • Similar drug structure
• Single mutation (M184V) associated with resistance to both drugs |
| Zalcitabine-containing regimens | • None | • Potentially synergistic neurotoxicity between some of the drugs
• No liquid formulation for zalcitabine
• Requirement of three times daily dosing
• Limited pediatric experience with zalcitabine
• Less potent than other NRTIs |
Table 10. Advantages and Disadvantages of Different Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) for Use in Highly Active Antiretroviral Combination Regimens

<table>
<thead>
<tr>
<th>General Issues</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| NNRTI-Based Regimens | **NNRTI Class Advantages:**
- Less dyslipidemia and fat maldistribution than PIs
- PI-sparing
- Lower pill burden than PIs for those taking solid formulation; easier to use and adhere to than PI-based regimens | **NNRTI Class Disadvantages:**
- Single mutation can confer resistance, with cross-resistance among NNRTIs
- Rare but serious and potentially life-threatening cases of skin rash, including Stevens-Johnson syndrome, and hepatic toxicity with all NNRTIs (but highest risk with nevirapine)
- Potential for multiple drug interactions due to metabolism via hepatic enzymes (e.g., CYP3A4), although less than with PIs |

Preferred

Efavirenz (for children ≥3 years and who can swallow capsules)
- Potent antiretroviral activity
- Once daily administration
- Can give with food (but avoid high fat meals)

Efavirenz (for children ≥3 years and who can swallow capsules)
- Neuropsychiatric side effects (bedtime dosing to reduce central nervous system effects)
- No commercially available liquid formulation
- No data on dosing for children <3 years
- Teratogenic in primates; use with caution in adolescent females of childbearing potential

Alternative

Nevirapine (alternative NNRTI for children ≥3 years; alternative NNRTI for children <3 years or who can’t swallow capsules)
- Liquid formulation available
- Dosing information for young infants available
- Can give with food

Nevirapine (alternative NNRTI for children ≥3 years; alternative NNRTI for children <3 years or who can’t swallow capsules)
- Higher incidence of rash/ hypersensitivity reaction than other NNRTIs
- Higher rates of serious hepatic toxicity than efavirenz
- Need for initiating therapy with a lower dose and increasing in a stepwise fashion. This is to allow for auto-induction of nevirapine metabolism and is associated with a lower incidence of toxicity

Not Recommended

Delavirdine
- Can give with food

Delavirdine
- No liquid formulation
- No pediatric studies, so dose not established in children
Table 11. Advantages and Disadvantages of Different Protease Inhibitors (PIs) for Use in Highly Active Antiretroviral Combination Regimens

<table>
<thead>
<tr>
<th>General Issues</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-Based Regimens</td>
<td>PI Class Advantages:</td>
<td>PI Class Disadvantages:</td>
</tr>
<tr>
<td></td>
<td>• NNRTI-sparing</td>
<td>• Metabolic complications including dyslipidemia, fat maldistribution, and insulin resistance</td>
</tr>
<tr>
<td></td>
<td>• Clinical, virologic, and immunologic efficacy well documented</td>
<td>• Potential for multiple drug interactions due to metabolism via hepatic enzymes (e.g., CYP3A4)</td>
</tr>
<tr>
<td></td>
<td>• Resistance to PIs requires multiple mutations</td>
<td>• Higher pill burden than NRTI- or NNRTI-based regimens for those taking solid formulations</td>
</tr>
<tr>
<td></td>
<td>• In combination with NRTIs, targets HIV at 2 steps of viral replication: viral reverse transcriptase and protease enzymes</td>
<td>• Poor palatability of liquid preparations, which may affect adherence to treatment regimen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir/ritonavir</td>
<td>• Coformulated liquid and tablet formulations</td>
<td>• Poor palatability of liquid (bitter taste), although better than ritonavir alone</td>
</tr>
<tr>
<td></td>
<td>• Can give with food</td>
<td>• Food effect (should be administered with food)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ritonavir component associated with large number of drug interactions (see ritonavir)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelfinavir</td>
<td>• Powder formation (for liquid preparation or to be added to food)</td>
<td>• Diarrhea</td>
</tr>
<tr>
<td></td>
<td>• Can give with food</td>
<td>• Powder formulation poorly tolerated</td>
</tr>
<tr>
<td></td>
<td>• Simplified 2 tablets (625 mg) twice a day regimen has a reduced pill burden compared to other PI-containing regimens in older adolescents where the adult dose is appropriate</td>
<td>• Food effect (should be administered with food)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Appropriate dosage for younger children not well defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Need for 3 times daily dosing for younger children</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adolescents may require higher doses than adults</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use in Special Circumstances</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amprenavir</td>
<td>• Can give with food</td>
<td>• Poor palatability of liquid (bitter taste)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Due to potential toxicity from high amounts of propylene glycol in oral solution, cannot use in children <4 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Skin rash</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Large volume of liquid formulation required</td>
</tr>
</tbody>
</table>

Table 11 continued next page
Table 11. Advantages and Disadvantages of Different Protease Inhibitors (PIs) for Use in Highly Active Antiretroviral Combination Regimens

<table>
<thead>
<tr>
<th>Use in Special Circumstances (continued)</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indinavir</td>
<td>None</td>
<td>• Only available in capsule formulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Possible higher incidence of nephrotoxicity in children</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires 3 times daily dosing unless boosted with ritonavir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High fluid intake required to prevent nephrolithiasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Food effect (should be taken 1 hour before or 2 hours after food)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lack of pediatric pharmacokinetic data</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>Liquid formulation</td>
<td>• Poor palatability of liquid (bitter taste)</td>
</tr>
<tr>
<td></td>
<td>Can be given with food</td>
<td>• Gastrointestinal intolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Food effect (should be administered with food)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Largest number drug interactions (most potent inhibitor of CYP3A4)</td>
</tr>
</tbody>
</table>

Insufficient Data to Recommend

Atazanavir	Once daily dosing (adults)	Limited data on pediatric dosing or safety
	Minimal effect on triglyceride and total cholesterol levels than other PIs (adults)	No liquid formulation
		Food effect (should be administered with food)
		Indirect hyperbilirubinemia common but asymptomatic
		Use caution in patients with pre-existing cardiac conduction system defects (can prolong PR interval of electrocardiogram)
		May require low-dose ritonavir boosted regimens in pediatric patients to achieve adequate plasma concentrations

Darunavir	Effective in PI-experienced adults	Limited data on pediatric dosing or safety
		Food effect (should be given with food)
		Must be given with ritonavir boosting to achieve adequate plasma concentrations
		Contains sulfam moiety; potential for cross-sensitivity between darunavir and other drugs in sulfonamide class is unknown

Fosamprenavir	Oral prodrug of amprenavir with lower pill burden	Skin rash
	Can give with food	Limited pediatric experience
		Food effect (should be given with food)
		May require low-dose ritonavir boosted regimens in pediatric patients to achieve adequate plasma concentrations

Tipranavir	Effective in PI-experienced adults	Limited data on pediatric dosing or safety
		Food effect (should be administered with food)
		May require low-dose ritonavir boosted regimens in pediatric patients to achieve adequate plasma concentrations

Saquinavir	None	Should not be used as sole PI in children
		Limited information on appropriate dosing in children; will require boosting with another PI (e.g., ritonavir) to achieve adequate concentrations, but pharmacokinetic data in children on appropriate dosing of combination not available
		No liquid formulation
		High pill burden
		Must be taken with food
		Photosensitivity reactions can occur
Table 12. Advantages and Disadvantages of Fusion Inhibitors for Use in Highly Active Antiretroviral Combination Regimens

<table>
<thead>
<tr>
<th>General Issues</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Inhibitors</td>
<td>• Susceptibility of HIV to a new class of antiretrovirals</td>
<td>• Rapid development of resistance</td>
</tr>
</tbody>
</table>

Use in Special Circumstances

<table>
<thead>
<tr>
<th>Use in Special Circumstances</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfuvirtide</td>
<td>• Susceptibility of HIV to a new class of antiretrovirals</td>
<td>• Twice daily subcutaneous injections</td>
</tr>
<tr>
<td></td>
<td>• Route of administration assures adequate drug levels</td>
<td>• 98%–100% incidence of local injection site reactions</td>
</tr>
</tbody>
</table>

Table 13. Example of Minimum Schedule for Monitoring of Children on Antiretroviral Therapy

<table>
<thead>
<tr>
<th>Time after Starting Therapy</th>
<th>Toxicity Monitoring*</th>
<th>Adherence and Efficacy Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (prior to initiation of therapy)</td>
<td>Clinical history, complete blood count and differential, chemistries†</td>
<td>CD4 cell count/percentage, HIV RNA level</td>
</tr>
<tr>
<td>2 weeks</td>
<td>Clinical history</td>
<td>Adherence screen</td>
</tr>
<tr>
<td>4–8 weeks</td>
<td>Clinical history, complete blood count and differential, chemistries†</td>
<td>Adherence screen, CD4 cell count/percentage, HIV RNA level</td>
</tr>
<tr>
<td>Every 3–4 months</td>
<td>Clinical history, complete blood count and differential, chemistries†</td>
<td>Adherence screen, CD4 cell count/percentage, HIV RNA level</td>
</tr>
<tr>
<td>Every 6–12 months</td>
<td>Lipid Panel</td>
<td></td>
</tr>
</tbody>
</table>

* For children receiving nevirapine, serum transaminase levels should be measured every 2 weeks for the first 4 weeks of therapy, then monthly for 3 months, followed by every 3–4 months.

† Chemistries may include electrolytes, glucose, liver function tests (hepatic transaminases and bilirubin), renal function tests (BUN, creatinine), calcium, and phosphate. Additional evaluations should be tailored to the particular drugs the child is receiving; for example, pancreatic enzymes (amylase and lipase) may be considered if the child is starting drugs with potential pancreatic toxicity, such as didanosine.
Table 14. Considerations for Changing Antiretroviral Therapy for Human Immunodeficiency Virus-Infected Children

Virologic Considerations*

- **Incomplete viral response to therapy:**
 - For previously antiretroviral-naïve or children with limited antiretroviral experience: $<1.0 \log_{10}$ decrease in HIV RNA copy number from baseline after 8–12 weeks of therapy, or repeated HIV RNA >400 copies/mL after 6 months of therapy.†
 - For children with more extensive antiretroviral experience: $<1 \log_{10}$ decrease in HIV RNA after 6 months of treatment with a new therapeutic regimen.

- **Viral rebound:**
 - For children who have previously suppressed viral replication to undetectable levels: Repeated detection of HIV RNA >400 copies/mL.§
 - For children who demonstrated an initial HIV RNA response but still had low levels of detectable HIV RNA: Confirmed $>0.5 \log_{10}$ (greater than 3-fold) increase in HIV RNA copy number for children age \geq 2 years or $>0.7 \log_{10}$ (greater than 5-fold) increase for children age <2 years.

Immuneologic Considerations*

- **Incomplete immunologic response to therapy:** Failure of a child with severe immune suppression (CD4 percentage or cell count in CDC immune class 3) to improve CD4 percentage by at least 5 percentage points above baseline or, for children age 4-6 years, to increase their CD4 cell count by at least 50 cells/mm3 above baseline over the first year of therapy.

- **Immunologic decline:** Persistent decline of 5 percentage points in CD4 percentage or decline to below pre-therapy baseline in CD4 absolute cell count in children who are age 4-6 years at baseline.

Clinical Considerations

- **Progressive neurodevelopmental deterioration**
- **Growth failure:** Persistent decline in weight-growth velocity despite adequate nutritional support and without other explanation.
- **Severe or recurrent infection or illness:** Recurrence or persistence of AIDS-defining conditions or other serious infections.

* At least two measurements (taken 1 week apart) should be performed before considering a change in therapy.
† The initial HIV RNA level of the child at the start of therapy and the level achieved with therapy should be considered when contemplating potential drug changes. For example, an immediate change in therapy may not be warranted if there is a sustained $1.5–2.0 \log_{10}$ decrease in HIV RNA copy number, even if RNA remains detectable at low levels.
§ Continued observation with more frequent evaluation of HIV RNA levels should be considered if the HIV RNA increase is limited (i.e., less than 5,000 copies/mL). The presence of repeatedly detectable or increasing RNA levels suggests the development of resistance mutations.
Table 15. Treatment Options Following Failure of Initial Antiretroviral Regimen*

<table>
<thead>
<tr>
<th>Initial Regimen</th>
<th>Recommended Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 NRTIs + NNRTI**</td>
<td>• 2 NRTIs (based on resistance testing) plus PI</td>
</tr>
<tr>
<td>2 NRTIs + PI</td>
<td>• 2 NRTIs (based on resistance testing) plus NNRTI</td>
</tr>
<tr>
<td></td>
<td>• 2 NRTIs (based on resistance testing) plus alternative PI (with low-dose ritonavir</td>
</tr>
<tr>
<td></td>
<td>boosting if possible, based on resistance testing)</td>
</tr>
<tr>
<td></td>
<td>• NRTI(s) (based on resistance testing) plus NNRTI plus alternative PI (with low-dose</td>
</tr>
<tr>
<td></td>
<td>ritonavir boosting if possible, based on resistance testing)</td>
</tr>
<tr>
<td>3 NRTIs (recommended only in special circumstances)</td>
<td>• 2 NRTIs (based on resistance testing) plus NNRTI or PI</td>
</tr>
<tr>
<td></td>
<td>• NRTI(s) (based on resistance testing) plus NNRTI plus PI</td>
</tr>
<tr>
<td>Failed regimens including NRTI, NNRTI, PI (recommended only in special circumstances)</td>
<td>• >1 NRTI (based on resistance testing) plus a newer PI (with low-dose ritonavir, based on resistance testing)</td>
</tr>
</tbody>
</table>

* Antiretroviral regimens should be chosen based on treatment history and drug resistance testing to optimize antiretroviral drug effectiveness in the second regimen. This is particularly important in selecting NRTI components of an NNRTI-based regimen, in which drug resistance to the NNRTI may occur rapidly if the virus is not sufficiently sensitive to the NRTIs.

** An NNRTI should not be used following development of NNRTI resistance because of the risk for selection of additional NNRTI-associated mutations and cross resistance among members of the drug class.
Table 16. Novel Strategies to Consider for Treatment-Experienced Children with Few Available Active Treatment Options

Use of enfuvirtide (T-20) as part of a multi-drug regimen.	Enfuvirtide has been shown to be most effective when used with at least 1 other new drug as part of the regimen.
Pharmacologic enhancement	with ritonavir may increase drug concentrations of most PIs (except nelfinavir) and may overcome some degree of drug resistance; there are few data on appropriate dosing of boosted PIs in children, but consider for older children for whom dosing information may be available.
Therapeutic drug monitoring	may be considered (see Therapeutic Drug Monitoring).
Retreating with prior medications	may be useful, particularly if they were discontinued previously for toxicities that can now be better addressed. Reusing prior medications (even with documented drug resistance) may provide some degree of partial antiretroviral activity. Continued drug therapy and maintenance of drug-resistant virus may compromise viral fitness, but it is not known if this has clinical applicability.
The use of empiric multi-drug regimens	(including up to 3 PIs and/or 2 NNRTIs) has been advocated by some, but may be limited by complexity, poor tolerability, and unfavorable drug-drug interactions.
New antiretroviral drugs	(drugs in existing classes with activity against resistant virus or new drug classes with novel mechanisms of action), including those available in clinical trials or on expanded access. Optimally, a new active agent should be used with 1 or more other active agents in the regimen.
Table 17. Suggested Minimum Target Trough Concentrations for Persons with Wild-Type HIV-1
(Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents, Table 26)*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Concentration (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amprenavir or Fosamprenavir</td>
<td>400</td>
</tr>
<tr>
<td>(measured as amprenavir concentration)</td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>150</td>
</tr>
<tr>
<td>Indinavir</td>
<td>100</td>
</tr>
<tr>
<td>Lopinavir/ritonavir</td>
<td>1000</td>
</tr>
<tr>
<td>Nelfinavir ¹</td>
<td>800</td>
</tr>
<tr>
<td>Ritonavir ²</td>
<td>2100</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>100–250</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>1000</td>
</tr>
</tbody>
</table>

¹ Measurable active (M8) metabolite
² Ritonavir given as a single PI

Figure 1: Estimated Probability of AIDS Within 12 Months by Age and CD4 Percentage in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11]

Figure 2: Estimated Probability of Death Within 12 Months by Age and CD4 Percentage in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11]
Figure 3: Estimated Probability of AIDS Within 12 Months by Age and HIV RNA Copy Number in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11]

Figure 4: Estimated Probability of Death Within 12 Months by Age and HIV RNA Copy Number in HIV-Infected Children Receiving No Therapy or Zidovudine Monotherapy [modified from Lancet 2003;362:1605-11]
References

74 Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

60. Centers for Disease Control and Prevention. 1994 revised classification system for human immunodeficiency virus infection in children less than 13 years of age. MMWR. 1994. 43(RR-12):1-10.

van Leth F, Hassink E, Phanuphak P, et al. The 2NN study: a randomized comparative open label trial of first-line antiretroviral therapy with regimens containing either nevirapine, efavirenz, or both drugs combined in addition to stavudine and lamivudine. 10th Conference on Retroviruses and Opportunistic Infections; February 10-14, 2003; Boston, MA. Abstract 176.

Zugar A. Studies disagree on frequency of late CNS side effects from efavirenz. AIDS Clin Care. 2006. 4(1).

185. Wells CJ, Sharland M, Smith CJ, et al. Triple nucleoside analogue therapy with zidovudine (AZT), lamivudine (3TC), and abacavir (ABC) in the paediatric HIV London South Network (PHILS-NET) cohort. XIV International AIDS Conference; July 7-12, 2002; Barcelona, Spain. Abstract TuPeB4625.

292. el-Sadar W, Neaton JD, et al. Episodic CD4 guided use of antiretroviral therapy is inferior to continuous therapy; results of the SMART study. 13th Conference on Retroviruses and Opportunistic Infections, February 5-8, 2006; Denver, CO. Abstract 106LB.

APPENDIX A
Characteristics of Available Antiretroviral Drugs

Nucleoside/Nucleotide Analogue Reverse Transcriptase Inhibitors (NRTIs/NtRTIs) ***

Abacavir (ABC, ZIAGEN)
See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1

Preparations: Pediatric oral solution: 20 mg/mL. Tablets: 300 mg.

Tablets in combination with zidovudine and lamivudine: TRIZIVIR — 300 mg ZDV, 150 mg 3TC, and 300 mg ABC.

Tablets in combination with lamivudine: EPZICOM — 300 mg 3TC and 600 mg ABC.

Dosing
Neonatal/Infant dose: Not approved for use in infants aged < 3 months.

Pediatric (age ≥ 3 months) dose: 8 mg per kg of body weight (maximum dose 300 mg) twice daily.

Adolescent dose: There are limited ABC data for adolescents. A clinical trial is in progress to further evaluate age-related changes in pharmacokinetic parameters in youth aged 13 to 24 years. There are no data on once daily dosing in adolescents.

Adult dose: 300 mg twice daily or 600 mg once daily.

Adult dose of TRIZIVIR: One tablet twice daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute or patients with impaired hepatic function.

Adult dose of EPZICOM: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute.

Dosing of ABC in patients with hepatic impairment: Decreased dosage should be used in patients with mild hepatic impairment (recommended dose for adults with mild hepatic impairment is 200 mg twice daily). No dosing information is available for children, or for adults with moderate to severe hepatic impairment.

Major Toxicties
More common: Nausea, vomiting, fever, headache, diarrhea, rash, and anorexia.

Less common (more severe): Approximately 5% of adults and children receiving ABC develop a potentially fatal hypersensitivity reaction. Symptoms include fever, fatigue, malaise, nausea, vomiting, diarrhea, and abdominal pain or respiratory symptoms such as shortness of breath. Physical findings include lymphadenopathy, ulceration of mucous membranes, and maculopapular or urticarial skin rash. The hypersensitivity reaction can occur without a rash. Laboratory and imaging abnormalities include elevated liver function tests, elevated creatine phosphokinase, elevated creatinine, lymphopenia, and pulmonary infiltrates. This reaction generally occurs in the first 6 weeks of therapy and has occurred after a single dose. Patients suspected of having a hypersensitivity reaction should have ABC stopped and NOT RESTARTED BECAUSE HYPOTENSION AND DEATH HAVE OCCURRED UPON RECHALLENGE. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. Pancreatitis may occur.

Rare: Increased liver enzymes, elevated blood glucose, and elevated triglycerides.

Drug Interactions
See: Drug Interaction Matrices 2 – 4

- ABC does not inhibit, nor is it metabolized by, hepatic cytochrome P450 enzymes. Thus, it should not cause changes in clearance of agents metabolized through these pathways, such as protease inhibitors and non-nucleoside reverse transcriptase inhibitors.
- ABC is metabolized by alcohol dehydrogenase and glucuronyltransferase. Alcohol increases ABC levels by 41%.

Special Instructions
- Can be given without regard to food.
- Patients and parents must be cautioned about the risk of serious hypersensitivity reaction. A medication guide and warning card should be provided. Patients experiencing a hypersensitivity reaction should be reported to the Abacavir Hypersensitivity Registry (1-800-270-0425).
- Because of concerns for possibly severe hypersensitivity reactions, patients should not interrupt and restart therapy without consulting their physicians.

Didanosine (dideoxyinosine, ddl, VIDEX)

See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)

See: [Drug Interaction Matrix 1](#)

Preparations: Pediatric powder for oral solution (when reconstituted as solution containing antacid): 10 mg/mL.

VIDEX EC delayed-release capsules (enteric-coated beadlets): 125 mg, 200 mg, 250 mg, and 400 mg.
Generic didanosine delayed-release capsules: 200 mg, 250 mg, and 400 mg.

Dosing

Neonatal/Infant dose (infants aged 2 weeks to 8 months): 100 mg per m² of body surface area every 12 hours. The manufacturer recommends this dose for infants aged 2 weeks to 8 months. However, because of pharmacokinetic differences in younger infants (2 weeks to 4 months) compared to older children, a dose of 50 mg per m² of body surface area every 12 hours may be more appropriate.

Pediatric (age > 8 months) usual dose: In combination with other antiretrovirals: 120 mg per m² of body surface area every 12 hours; clinical studies have used a pediatric dose range of 90 to 150 mg per m² of body surface area every 12 hours.

Adolescent/Adult dose:
- ddl oral solution: Body weight ≥ 60 kg: 200 mg twice daily. Body weight < 60 kg: 125 mg twice daily. The total daily dose (400 mg or 250 mg, depending on weight) may be administered once daily in adolescents/adults to improve compliance; however, twice daily dosing provides better therapeutic response than once daily dosing, and twice daily dosing is preferred when possible.
- ddl delayed release capsule formulation: Body weight ≥ 60 kg: 400 mg once daily. Body weight < 60 kg: 250 mg once daily.

Didanosine in combination with tenofovir (adults):
For adult patients with body weight ≥ 60 kg receiving combination therapy with tenofovir, the recommended dose of ddl delayed release capsule formulation is 250 mg once daily. For adult patients with body weight < 60 kg, limited data suggest that a ddl delayed release capsule formulation dose of 200 mg once daily may be used. There are no data concerning this combination in children or adolescents < 18 years of age.

Dosing of ddl in patients with renal insufficiency:
Decreased dosage should be used for patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with creatinine clearance.

Major Toxicities

More common: Diarrhea, abdominal pain, nausea, and vomiting.

Less common (more severe): Peripheral neuropathy (dose related), electrolyte abnormalities, and hyperuricemia. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. Pancreatitis (dose related, less common in children than adults, more common in adults when used in combination with tenofovir [TDF]), increased liver enzymes, and retinal depigmentation have been reported. The combination of stavudine (d4T) with ddl may result in enhanced toxicity (increased risk of fatal and non-fatal cases of lactic acidosis or pancreatitis); this combination should not be used unless the potential benefit clearly outweighs potential risk.

Drug Interactions

See: [Drug Interaction Matrices 2 – 4](#)

- **Absorption:** The presence of antacids in the ddl suspension and tablets has the potential to decrease the absorption of a number of medications if given at the same time. Many of these interactions can be avoided by the appropriate timing of doses.
- **Mechanism unknown:** ddl serum concentrations are increased when coadministered with TDF.
Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection

October 26, 2006

Appendix A: Characteristics of Available Antiretroviral Drugs

- **Renal elimination**: Drugs that decrease renal function could decrease clearance.
- **Enhanced toxicity**: ddl mitochondrial toxicity is enhanced by ribavirin.
- **Overlapping toxicities**: Increased risk of pancreatitis and peripheral neuropathy with some NRTIs (d4T, zalcitabine [ddC]). Combination of d4T and ddl is not recommended (unless the benefits clearly outweigh the risks) because of overlapping toxicities and reports of serious, even fatal, cases of lactic acidosis with hepatic steatosis with or without pancreatitis in pregnant women.

Special Instructions
- ddl contains antacids that may interfere with the absorption of other medications.
- Food decreases absorption; administer ddl on an empty stomach (30 minutes before or 2 hours after a meal).
- When coadministered, ddl delayed release capsule formulation and TDF may be taken under fasted conditions or with a light meal. Coadministration of ddl buffered tablet formulation with TDF should be under fasted conditions.
- For oral solution: shake well and keep refrigerated; admixture is stable for 30 days.
- To ensure adequate buffering capacity when administering chewable tablets, it is essential that patients take at least 2 of the appropriate strength tablets (i.e., if the child’s dose is 50 mg, administer two 25 mg tablets, not one 50 mg tablet).

Emtricitabine (FTC, EMTRIVA)

See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1

Preparations: Capsules: 200 mg. Oral solution: 10 mg/mL.

Tablets in combination with tenofovir: TRUVADA — 200 mg FTC and 300 mg TDF.

Tablets in combination with tenofovir and efavirenz: ATRIPLA — 200 mg FTC, 300 mg TDF, and 600 mg EFV.

Dosing

- Neonatal/Infant dose: Not approved for use in neonates/infants below age 3 months.
- Pediatric (age 3 months through 17 years) dose: Oral solution: 6 mg per kg of body weight (maximum dose 240 mg) once daily. Capsules (for patients weighing > 33 kg): 200 mg once daily.

Adolescent (age ≥ 18 years)/Adult dose: Capsules: 200 mg once daily. Oral solution: 240 mg (24 mL) administered once daily.

Adult dose of TRUVADA: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 30 mL/minute or patients requiring hemodialysis.

Adult dose of ATRIPLA: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute.

Dosing of FTC in patients with renal insufficiency: The effects of renal impairment on FTC pharmacokinetics in pediatric patients is not known. Decreased dosage should be used in patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with creatinine clearance.

Major Toxicities

- **More common**: Headache, insomnia, diarrhea, nausea, rash, and skin discoloration (hyperpigmentation on palms and/or soles, predominantly observed in non-Caucasian patients).
- **Less common (more severe)**: Neutropenia. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. In patients coinfected with HIV and HBV, exacerbations of hepatitis have occurred when changes have been made from FTC-containing regimens to non-FTC-containing regimens.

Drug Interactions

See: Drug Interaction Matrices 2 – 4

- **Metabolism**: No inhibition of CYP450 isoenzymes or hepatic glucuronidation enzymes.
- **Renal elimination**: Competition with other compounds that undergo renal elimination (possible competition for renal tubular secretion).
- **Other NRTIs**: Do not use in combination with lamivudine (3TC) because of the similar resistance profiles and no potential additive benefit.

Special Instructions

- Can be given without regard to food. It is recommended that ATRIPLA be administered on an empty stomach.
Patients should be screened for HBV infection before starting therapy; exacerbation of hepatitis has been reported in patients after discontinuation of FTC. HIV/HBV-coinfected patients should have close clinical and laboratory monitoring for at least several months after stopping therapy with FTC.

Oral solution should be refrigerated. Can be kept at room temperatures up to 77°F (25°C) if used within 3 months.

Lamivudine (3TC, EPIVIR, EPIVIR HBV)
See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1

Preparations: Solution: 10 mg/mL (EPIVIR); 5 mg/mL (EPIVIR HBV\(^{b}\)). Tablets: 150 mg and 300 mg (EPIVIR); 100 mg (EPIVIR HBV\(^{b}\)).

Tablets in combination with zidovudine: COMBIVIR — 300 mg ZDV and 150 mg 3TC.

Tablets in combination with zidovudine and abacavir: TRIZIVIR — 300 mg ZDV, 150 mg 3TC, and 300 mg ABC.

Tablets in combination with abacavir: EPZICOM — 300 mg 3TC and 600 mg ABC.

Dosing

Neonatal/Infant dose (infants aged < 30 days): 2 mg per kg of body weight twice daily.

Pediatric dose: 4 mg per kg of body weight (maximum dose, 150 mg) twice daily.

Adolescent (age ≥ 16 years)/Adult dose: Body weight ≥ 50 kg: 150 mg twice daily or 300 mg once daily. Body weight < 50 kg: 4 mg per kg of body weight (maximum dose, 150 mg) twice daily.

Adolescent (age > 12 years)/Adult dose of COMBIVIR: One tablet twice daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute or patients with impaired hepatic function.

Adolescent (weight ≥ 40 kg)/Adult dose of TRIZIVIR:
One tablet twice daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute or patients with impaired hepatic function.

Adult dose of EPZICOM: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute.

Dosing of 3TC in patients with renal insufficiency:
Decreased dosage should be used in patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with creatinine clearance.

Major Toxicities

More common: Headache, fatigue, nausea, decreased appetite, diarrhea, skin rash, and abdominal pain.

Less common (more severe): Pancreatitis (primarily seen in children with advanced HIV infection receiving multiple other medications), peripheral neuropathy, anemia, decreased neutrophil count, increased liver enzymes, and fat redistribution. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. In patients coinfected with HIV and HBV, exacerbations of hepatitis have occurred when changes have been made from 3TC-containing regimens to non-3TC-containing regimens.

Drug Interactions
See: Drug Interaction Matrices 2 – 4

- **Renal elimination:** Drugs that decrease renal function could decrease clearance.
- **Other NRTIs:** When used with ZDV, 3TC may prevent emergence of ZDV resistance; with ZDV-resistant virus, reversion to phenotypic ZDV sensitivity may be observed. Do not use in combination with FTC because of the similar resistance profiles and no potential additive benefit.

Special Instructions

- Can be given without regard to food.
- For oral solution: store at room temperature.
- Patients should be screened for HBV infection before starting therapy; exacerbation of hepatitis has been reported after discontinuation of 3TC. HIV/HBV coinfected patients should have close clinical and laboratory monitoring for at least several months after stopping therapy with 3TC.

\(^{b}\) Note: EPIVIR HBV oral solution and tablets contain a lower amount of 3TC than EPIVIR oral solution and tablets. EPIVIR HBV is only recommended for use in treatment of HBV infection or HIV/HBV coinfection at the doses recommended for treatment of HIV infection.
Stavudine (d4T, ZERIT)

See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)

Preparations: Capsules: 15 mg, 20 mg, 30 mg, and 40 mg. Solution: 1 mg/mL.

Dosing

- **Neonatal/Infant dose (age birth to 13 days):** 0.5 mg per kg of body weight every 12 hours.
- **Pediatric dose (age 14 days up to weight of 30 kg):** 1 mg per kg of body weight every 12 hours.
- **Adolescent (weight ≥30 kg)/Adult dose:** Body weight ≥ 60 kg: 40 mg twice daily. Body weight < 60 kg: 30 mg twice daily.

Dosing of d4T in patients with renal insufficiency: Decreased dosage should be used in patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with creatinine clearance.

Major Toxicities

- **More common:** Headache, gastrointestinal disturbances, skin rashes, and lipoatrophy.
- **Less common (more severe):** Peripheral neuropathy, pancreatitis, and lipodystrophy. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. The combination of d4T with ddi may result in enhanced toxicity (increased risk of fatal and non-fatal cases of lactic acidosis or pancreatitis); this combination should not be used unless the potential benefit clearly outweighs potential risk.
- **Rare:** Increased liver enzymes; motor weakness that may progress to mimic Guillain-Barre syndrome.

Drug Interactions

- **Renal elimination:** Drugs that decrease renal function could decrease d4T clearance.
- **Other NRTIs:** Should not be administered in combination with ZDV (poor antiretroviral effect).
- **Overlapping toxicities:** Combination of d4T and ddi is not recommended (unless the benefits clearly outweigh the risks) because of overlapping toxicities and reports of serious, even fatal, cases of lactic acidosis with hepatic steatosis with or without pancreatitis in pregnant women.

Special Instructions

- Can be given without regard to food.

Tenofovir (TDF, VIREAD)

See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)

Preparations: Tablet: 300 mg. Investigational formulations: Tablet, 75 mg. Powder formulation in development.

Tablets in combination with emtricitabine:

- TRUVADA – 200 mg FTC and 300 mg TDF
- Tablets in combination with emtricitabine and efavirenz: ATRIPLA — 200 mg FTC, 300 mg TDF, and 600 mg EFV.

Dosing

- **Neonatal/Infant dose:** Not approved for use in neonates/infants.
- **Pediatric dose:** Not approved for use in children aged < 18 years; only commercially available preparation is 300 mg tablets. Clinical trials are under way in children with investigational formulations (investigational dose: children aged 2 to 8 years, 8 mg per kg of body weight once daily; children aged > 8 years, median dose of 210 mg per m² of body surface area once daily, maximum dose of 300 mg once daily).
- **Adolescent (age ≥18 years)/Adult dose:** 300 mg once daily.

Adolescent dose of TRUVADA: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 30 mL/minute or patients requiring hemodialysis.

Adult dose of ATRIPLA: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute.

Tenofovir in combination with didanosine (adults):

- For adult patients with body weight ≥ 60 kg receiving combination therapy with TDF, the recommended dose of ddl delayed release capsule formulation is 250 mg once daily. For adult patients with body weight < 60 kg, limited data suggest that a ddl delayed release capsule formulation dose of 200 mg once daily may be used. There are no data concerning this combination in children or adolescents < 18 years of age.

Tenofovir in combination with atazanavir (adults):

- 300 mg ATV + 100 mg ritonavir (RTV) + 300 mg TDF, all once daily. Only ATV boosted with RTV should be used in combination with TDF.
Dosing of TDF in patients with renal insufficiency:
Decreased dosage should be used in patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with creatinine clearance.

Major Toxicities
More common: Nausea, diarrhea, vomiting, and flatulence.

Less common (more severe): Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. TDF caused bone toxicity (osteomalacia and reduced bone density) in animals when given in high doses. Decreases in bone mineral density have been shown in both adults and children taking TDF for 48 weeks; the clinical significance of these changes is not yet known. Evidence of renal toxicity, including increases in serum creatinine, blood urea nitrogen, glycosuria, proteinuria, phosphaturia, and/or calcuiuria and decreases in serum phosphate has been observed in animal studies at high exposure levels. Several cases of renal tubular dysfunction have been reported in patients receiving TDF; patients at increased risk of renal dysfunction should be closely monitored.

Drug Interactions
See: [Drug Interaction Matrices 2 – 4](#)

- **Renal elimination:** Drugs that decrease renal function or compete for active tubular secretion could reduce clearance of TDF.
- **Other NRTIs:** ddI serum concentrations are increased when coadministered with TDF.
- **PIs:** TDF decreases ATV plasma concentrations. In adults, it is recommended that when ATV is coadministered with TDF, ATV 300 mg should be given with RTV 100 mg and TDF 300 mg, all as a single daily dose with food. ATV without RTV should not be coadministered with TDF. In addition, ATV and lopinavir/ritonavir (LPV/RTV) increase TDF concentrations and could potentiate TDF-associated renal toxicity.

Special Instructions
- TDF can be administered without regard to food, although absorption is enhanced when administered with a high fat meal. **It is recommended that ATRIPLA be administered on an empty stomach.**
- When coadministered, ddI delayed release capsule formulation and TDF may be taken under fasted conditions or with a light meal.
- Patients should be screened for HBV prior to use of TDF. Severe acute exacerbation of hepatitis can occur when TDF is discontinued.

Zalcitabine (ddC, HIVID)
See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)
See: [Drug Interaction Matrix 1](#)

Note: The manufacturer is phasing out ddC in 2006 (see Roche, Letter to Physicians, August 2, 2006).

Preparations: Tablets: 0.375 mg and 0.75 mg.

Dosing
Neonatal/Infant dose: Not approved for use in neonates/infants.

Pediatric usual dose: Not approved for use in children aged < 13 years. Some clinical studies in children have been conducted (investigational dose: 0.01 mg per kg of body weight every 8 hours).

Adolescent (age ≥ 13 years)/Adult dose: 0.75 mg 3 times a day.

Dosing of ddC in patients with renal insufficiency:
Decreased dosage should be used in patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with creatinine clearance.

Major Toxicities
More common: Headache, gastrointestinal disturbances, and malaise.

Less common (more severe): Peripheral neuropathy, pancreatitis, hepatic toxicity, oral ulcers, esophageal ulcers, hematologic toxicity, and skin rashes. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. Cardiomyopathy and congestive heart failure have been infrequently reported in association with ddC use in adults.

Drug Interactions
See: [Drug Interaction Matrices 2 – 4](#)

- **Overlapping toxicities:** Concomitant use with ddi or d4T is not recommended because of the increased risk of pancreatitis and peripheral neuropathy.

Special Instructions
- Can be given without regard to food.
- Use with caution in patients with pre-existing neuropathy.
- Administer cautiously in patients at increased risk of peripheral neuropathy: patients with very low CD4 cell count (adults with CD4 count < 50 cells/mm³), diabetes, significant weight loss, or concomitant use of drugs associated with peripheral neuropathy.
Rare cases of hepatic failure and death have been reported in patients with underlying HBV infection; use with caution in patients with pre-existing liver disease, hepatitis, known ethanol abuse, or significant abnormalities of hepatic enzymes; use should be discontinued if clinical or laboratory evidence of hepatic toxicity develops.

Zidovudine (ZDV, AZT, RETROVIR)
See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1

Preparations: Capsules: 100 mg. Tablets: 300 mg. Syrup: 10 mg/mL. Concentrate for injection/ intravenous infusion: 10 mg/mL.

Tablets in combination with lamivudine: COMBIVIR — 300 mg ZDV and 150 mg 3TC.

Tablets in combination with lamivudine and abacavir: TRIZIVIR — 300 mg ZDV, 150 mg 3TC, and 300 mg ABC.

Dosing
Dose for premature infants (standard neonatal dose may be excessive in premature infants): 1.5 mg per kg of body weight (intravenous) or 2 mg per kg of body weight (oral) every 12 hours, increased to every 8 hours at 2 weeks of age (neonates ≥ 30 weeks gestational age) or at 4 weeks of age (neonates < 30 weeks gestational age).

Neonatal/Infant dose (age < 6 weeks): Oral: 2 mg per kg of body weight every 6 hours. Intravenous: 1.5 mg per kg of body weight every 6 hours.

Pediatric dose (age 6 weeks to 12 years):
Oral dosing: 160 mg per m² of body surface area every 8 hours. Although not FDA approved, twice daily dosing has been used by some investigators to improve compliance (180 mg per m² to 240 mg per m² of body surface area every 12 hours).

Intravenous dosing: Intermittent infusion: 120 mg per m² of body surface area every 6 hours. Continuous infusion: 20 mg per m² of body surface area per hour.

Adolescent (age ≥ 12 years)/Adult dose: 200 mg three times a day or 300 mg twice daily.

Adolescent/Adult dose of COMBIVIR: One tablet twice daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute or patients with impaired hepatic function.

Adolescent/Adult dose of TRIZIVIR: One tablet twice daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute or patients with impaired hepatic function.

Dosing of ZDV in patients with renal insufficiency: Decreased dosage should be used in patients with impaired renal function. Consult manufacturer’s prescribing information for adjustment of dosage in patients on hemodialysis or peritoneal dialysis.

Dosing of ZDV in patients with hepatic impairment: Limited data suggest decreased dosing may be required in patients with hepatic impairment.

Major Toxicities
More common: Hematologic toxicity, including granulocytopenia and anemia; headache.

Less common (more severe): Myopathy, myositis, and liver toxicity. Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. Potentially increased risk of hypospadias in infants after first trimester exposure to ZDV.

Drug Interactions
See: Drug Interaction Matrices 2 – 4

Other NRTIs: Should not be administered in combination with d4T (poor antiretroviral effect).

Special Instructions
• Can be given without regard to food.
• Substantial granulocytopenia or anemia may necessitate interruption of therapy until marrow recovery is observed; use of erythropoietin, filgrastim, or reduced ZDV dosage may be necessary in some patients.
• Infuse intravenous loading dose or intermittent infusion dose over 1 hour.
• For intravenous solution: Dilute with 5% dextrose injection solution to concentration ≤ 4 mg/mL; refrigerated diluted solution is stable for 24 hours.
• Many experts in pediatric HIV infection use a dose of 180 mg per m² to 240 mg per m² of body surface area every 12 hours when using ZDV in combination with other antiretroviral compounds, but data on this dosing in children are limited.
Non-Nucleoside Analogue Reverse Transcriptase Inhibitors (NNRTIs)

Delavirdine (DLV, RESCRIPTOR)
See also: Supplement I: Pediatric Antiretroviral Drug Information

Preparations: Tablets: 100 mg and 200 mg.

Dosing
Pediatric dose: Not approved for use in children aged < 16 years.
Adolescent/Adult dose: 400 mg three times daily.
Delavirdine in combination with indinavir (adults): 400 mg DLV 3 times daily + 600 mg IDV three times daily.

Major Toxicities
More common: Headache, fatigue, gastrointestinal complaints, increased transaminase levels, and rash (may be severe and life-threatening).
Less common (more severe): Hepatic failure.

Drug Interactions
See: Drug Interaction Matrices 2 – 4

- Metabolism: Metabolized in part by hepatic cytochrome P450 3A (CYP3A). There are multiple drug interactions.
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.
- Absorption: Absorption of DLV is decreased if given with antacids or medications containing buffering agents (e.g., ddl, histamine, receptor antagonists, or proton pump inhibitors).

Special Instructions
- Can be given without regard to food.
- Should be taken 1 hour before or 1 hour after ddl or antacids.
- The 100 mg tablets can be dissolved in water and the resulting dispersion taken promptly.
- The 200 mg tablets should be taken as intact tablets, because they are not readily dispersed in water.

Efavirenz (DMP-266, EFV, SUSTIVA)
See also: Supplement I: Pediatric Antiretroviral Drug Information

Preparations: Capsules: 50 mg, 100 mg, and 200 mg. Tablets: 600 mg.

Tablets in combination with emtricitabine and tenofovir: ATRIPLA — 200 mg FTC, 300 mg TDF, and 600 mg EFV.

Dosing

Pediatric dose: Administer EFV once daily:

Body Weight	Kilograms	Pounds	EFV dose (mg)
10 to < 15	22 to < 33		200
15 to < 20	33 to < 44		250
20 to < 25	44 to < 55		300
25 to < 32.5	55 to < 71.5		350
32.5 to < 40	71.5 to < 88		400
≥ 40	≥ 88		600

** The dose in mg could be dispensed in any combination of capsule strengths; dose represents the maximum recommended EFV dose for each weight band.

There are currently no data available on the appropriate dosage for children under age 3 years.

Adolescent (weight ≥ 40 kg)/Adult dose: 600 mg once daily.

Adult dose of ATRIPLA: One tablet once daily. Because this is a fixed dose combination product, it should not be used in patients with creatinine clearance of < 50 mL/minute.

Efavirenz in combination with amprenavir (adults): 1,200 mg APV + 200 mg RTV twice daily + 600 mg EFV once daily. Only APV boosted with RTV should be used in combination with EFV.

Efavirenz in combination with fosamprenavir (adults): 700 mg f-APV + 100 mg RTV twice daily + 600 mg EFV once daily; or 1,400 mg f-APV + 300 mg RTV +

" See Endnotes page 20.
600 mg EFV, all once daily. Only f-APV boosted with RTV should be used in combination with EFV.

Efavirenz in combination with atazanavir (adults): 300 mg ATV + 100 mg RTV + 600 mg EFV, all once daily with food. Only ATV boosted with RTV should be administered with EFV.

Efavirenz in combination with indinavir (adults): 1,000 mg IDV three times daily + 600 mg EFV once daily (higher doses of IDV are required).

Major Toxicities
More common: Skin rash, increased transaminase levels. Central nervous system abnormalities (e.g., somnolence, insomnia, abnormal dreams, confusion, abnormal thinking, impaired concentration, amnesia, agitation, depersonalization, hallucinations, euphoria), primarily reported in adults.

Rare: In cynomolgus monkeys, prenatal EFV exposure has been associated with central nervous system congenital abnormalities in infant monkeys. Based on these data and retrospective reports in humans of an unusual pattern of severe central nervous system defects in 4 infants after first trimester exposure to EFV-containing regimens (3 meningomyeloceles and 1 Dandy-Walker malformation), EFV has been classified as FDA Pregnancy Class D (positive evidence of human fetal risk). EFV use in the first trimester of pregnancy should be avoided, and women of childbearing potential should undergo pregnancy testing as well as counseling about the risk to the fetus and the need to avoid pregnancy before initiating EFV therapy.

Drug Interactions
See: Drug Interaction Matrices 2 – 4

• Metabolism: Mixed inducer/inhibitor of cytochrome P450 3A4 enzymes; concentrations of concomitant drugs can be increased or decreased depending on specific enzyme pathway involved. There are multiple drug interactions.
• Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions
• EFV should be taken on an empty stomach, preferably at bedtime. The relative bioavailability of EFV was increased by 50% (range 11 – 126%) following a high fat meal. Because there is no information on safety of EFV when given above the recommended dose, administration with a high fat meal should be avoided due to the potential for increased absorption. It is recommended that ATRIPLA be administered on an empty stomach.

• Capsules may be opened and added to liquids or small amounts of food.
• Bedtime dosing is recommended, particularly during the first 2 – 4 weeks of therapy, to improve tolerability of central nervous system side effects.

Nevirapine (NVP, VIRAMUNE)
See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1

Preparations: Tablets: 200 mg. Suspension: 10 mg/mL.

Dosing
Note: NVP is initiated at a lower dose and increased in a stepwise fashion. This allows induction of cytochrome P450 metabolizing enzymes, which results in increased clearance of drug. The occurrence of rash may be diminished by the stepwise increase in dose. The following suggested incremental increases in dose are based on days on treatment (not age).

Neonatal/Infant dose (through age 2 months): 5 mg per kg of body weight or 120 mg per m² of body surface area once daily for the first 14 days, followed by 120 mg per m² of body surface area twice daily for 14 days, followed by 200 mg per m² of body surface area twice daily.

Pediatric dose: 120 – 200 mg per m² of body surface area twice daily.

Note: Initiate therapy with 120 mg per m² of body surface area (maximum dose, 200 mg) administered once daily for the first 14 days. If no rash or untoward effects, increase to full dose, 120 mg to 200 mg per m² of body surface area administered twice daily (maximum dose, 200 mg twice daily); younger children (e.g., age < 8 years) may require

*§†¶ See Endnotes page 20.
the higher dosage (i.e., 200 mg per m² of body surface area twice daily).

OR

7 mg per kg of body weight twice daily if age < 8 years;
4 mg per kg of body weight twice daily if age ≥ 8 years.

Note: Initiate therapy with 4 mg per kg of body weight (maximum dose, 200 mg) given once daily for the first 14 days. If there is no rash or other untoward effects, increase to 7 mg per kg of body weight (maximum dose, 200 mg) administered twice daily if age < 8 years or 4 mg per kg of body weight (maximum dose, 200 mg) administered twice daily if age > 8 years.

Adolescent/Adult dose: 200 mg twice daily.

Note: Initiate therapy with 200 mg given once daily for the first 14 days. Increase to 200 mg administered twice daily if there is no rash or other untoward effects.

Dosing of NVP in patients with renal failure receiving hemodialysis: For patients with renal failure on chronic hemodialysis, an additional dose of NVP should be given following dialysis.

Dosing of NVP in patients with hepatic impairment: NVP should not be administered to patients with severe hepatic impairment.

Major Toxicities (Note: These are seen with continuous dosing regimens, not single-dose NVP prophylaxis.)

More common: Skin rash (some severe and requiring hospitalization; some life-threatening, including Stevens-Johnson syndrome and toxic epidermal necrolysis), fever, nausea, headache, and abnormal liver function tests. NVP should be permanently discontinued and not restarted in children or adults who develop severe rash or rash with constitutional symptoms.

Less common (more severe): Severe, life-threatening, and in rare cases fatal hepatotoxicity, including fulminant and cholestatic hepatitis, hepatic necrosis, and hepatic failure (these are less common in children than adults). Majority of cases occur in the first 12 weeks of therapy; may be associated with rash or other signs or symptoms of hypersensitivity reaction. Risk factors for NVP-related hepatic toxicity in adults include: baseline elevation in serum transaminase levels, hepatitis B or C infection, female gender, and higher CD4 count at time of therapy initiation (CD4 count > 250 cells/mm² in adult females and > 400 cells/mm² in adult males). Hypersensitivity reactions have been reported, including, but not limited to, severe rash or rash accompanied by fever, blisters, oral lesions, conjunctivitis, facial edema, muscle or joint aches, general malaise, and significant hepatic abnormalities. NVP should be permanently discontinued and not restarted in children or adults who develop symptomatic hepatitis, severe transaminase elevations, or hypersensitivity reactions.

Drug Interactions

See: Drug Interaction Matrices 2 – 4

• Metabolism: Induces hepatic cytochrome P450 enzymes, including CYP3A and 2B6; autoinduction of metabolism occurs in 2 – 4 weeks, with a 1.5-fold to 2-fold increase in clearance. There is potential for multiple drug interactions.

• Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions

• Can be given without regard to food.

• May be administered concurrently with ddI.

• NVP-associated skin rash usually occurs within the first 6 weeks of therapy. If rash occurs during the initial 14-day lead-in period, do not increase dose until rash resolves. NVP should be discontinued immediately in patients who develop severe rash or a rash accompanied by constitutional symptoms (i.e., fever, oral lesions, conjunctivitis, or blistering).

• If NVP dosing is interrupted for more than 7 days, NVP dosing should be restarted with once daily dosing for 14 days, followed by escalation to the full twice daily regimen.

• Most cases of NVP-associated hepatic toxicity occur during the first 12 weeks of therapy; frequent and intensive clinical and laboratory monitoring, including liver function tests, is important during this time period. However, about one-third of cases occurred after 12 weeks of treatment, so continued periodic monitoring of liver function tests is needed. In some cases, patients presented with non-specific prodromal signs or symptoms of hepatitis and rapidly progressed to hepatic failure; patients with symptoms or signs of hepatitis should have liver function tests performed. Patients should be instructed to contact their HIV specialist if signs or symptoms develop to determine the need for evaluation. NVP should be permanently discontinued and not restarted in patients who develop clinical hepatitis or hypersensitivity reactions.

• For suspension: Must be shaken well; store at room temperature.

*†§¶ See Endnotes page 20.
Protease Inhibitors (PIs)\(^{****}\)

Amprenavir (APV, AGENERASE)
See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)
See: [Drug Interaction Matrix 1](#)

Preparations: Capsules: 50 mg. Pediatric oral solution (note: contains 550 mg propylene glycol/mL and 46 IU vitamin E/mL): 15 mg/mL.

Dosing

Neonatal/Infant dose: Not approved for use in neonates/infants. Should not be administered to neonates/infants due to propylene glycol content of oral solution.

Pediatric dose: Not approved or recommended for use in children aged < 4 years due to propylene glycol content of oral solution. For children aged 4 to 12 years or children aged 13 to 16 years weighing < 50 kg: Oral Solution—22.5 mg per kg of body weight twice daily or 17 mg per kg of body weight three times daily (maximum daily dose: 2,800 mg). Capsules—20 mg per kg of body weight twice daily or 15 mg per kg of body weight three times daily (maximum daily dose: 2,400 mg). For children aged 13 to 16 years weighing ≥ 50 kg: Oral Solution—1,400 mg twice daily (note: consideration should be given to switching patients from oral solution to capsules as soon as they are able to take the capsule formulation due to high propylene glycol and vitamin E content of oral solution).

Adolescent (weight ≥ 50 kg or age > 16 years)/Adult dose: 1,200 mg twice daily (twenty-four 50 mg capsules).

Amprenavir in combination with efavirenz (adults): 1,200 mg APV + 200 mg RTV twice daily + 600 mg EFV once daily. Only APV boosted with RTV should be used in combination with EFV.

Amprenavir in combination with ritonavir (adults): 600 mg APV + 100 mg RTV twice daily or 1,200 mg APV + 200 mg RTV once daily.

Dosing of APV in patients with hepatic impairment: APV oral solution is contraindicated in patients with hepatic failure. Patients with hepatic impairment are at increased risk of propylene glycol-associated adverse effects. APV capsules should be used with caution in patients with moderate or severe hepatic impairment. Consult manufacturer’s prescribing information for adjustment of dosage in accordance with degree of hepatic impairment.

Major Toxicities

More common: Vomiting, nausea, diarrhea, perioral paresthesias, rash, and lipid abnormalities.

Less common (more severe): Life-threatening rash, including Stevens-Johnson syndrome, in 1% of patients. Fat redistribution, neutropenia, and elevated serum creatine kinase levels.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, hemolytic anemia, and elevation in serum transaminases.

Drug Interactions

See: [Drug Interaction Matrices 2 – 4](#)

- **Metabolism:** APV is a substrate for and an inhibitor of the cytochrome P450 isoenzyme CYP3A4/5. Data also suggest that APV is an inducer of CYP3A4. There is potential for multiple drug interactions.\(^{6}\)
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions

- APV should not be used in children aged < 4 years because of the uncertain impact of extremely high doses of vitamin E and the high propylene glycol content of the oral liquid preparation.
- Adult and pediatric patients should be advised not to take supplemental vitamin E because the vitamin E content of APV capsules exceeds the reference daily intake.
- The oral solution and capsule formulation are not interchangeable on a mg per mg basis. The oral bioavailability of the oral solution is 14% less than that of the capsule.
- Concurrent use of APV oral solution and RTV oral solution is not recommended because the large amount of propylene glycol in APV oral solution and ethanol in RTV oral solution may compete for the same metabolic pathway for elimination. This combination has not been studied in pediatric patients.
- APV may be given without regard to food, but should not be given with a high fat meal, as there is a 21% decrease in the AUC when APV is administered after a high fat meal.
Patients taking antacids or the buffered formulation of ddI should take APV at least 1 hour before or 1 hour after antacid or ddI use.

APV is a sulfonamide. The potential for cross-sensitivity between APV and other drugs in the sulfonamide class is unknown. APV should be used with caution in patients with sulfonamide allergy.

Atazanavir (ATV, REYATAZ)

See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)

Preparations: Capsules: 100 mg, 150 mg, and 200 mg.

Dosing

Neonatal/Infant dose: Not approved for use in neonates/infants. Should not be administered to infants below the age of 3 months due to the risks associated with hyperbilirubinemia (kernicterus).

Pediatric dose: Not approved for use in children. Clinical trials are under way in children, who may require higher doses than adults; dose-finding studies are ongoing to determine the optimal dosing in children.

Adolescent (age ≥16 years)

Adult dose:

- **Antiretroviral-naive patients:** ATV 400 mg (two 200 mg capsules) once daily.
- **Antiretroviral-experienced patients:** ATV 300 mg (two 150 mg capsules) + RTV 100 mg once daily.

Atazanavir in combination with efavirenz (adults):

300 mg ATV + 100 mg RTV + 600 mg EFV, all once daily with food. Only ATV boosted with RTV should be used in combination with EFV.

Atazanavir in combination with tenofovir (adults):

300 mg ATV + 100 mg RTV + 300 mg TDF, all once daily. Only ATV boosted with RTV should be used in combination with TDF.

Dosing of ATV in patients with hepatic impairment:

ATV should be used with caution in patients with mild-moderate hepatic impairment; consult manufacturer’s prescribing information for adjustment of dosage in patients with moderate impairment. ATV should not be used in patients with severe hepatic impairment.

Atazanavir in combination with efavirenz (adults):

300 mg ATV + 100 mg RTV + 600 mg EFV, all once daily with food. Only ATV boosted with RTV should be used in combination with EFV.

Atazanavir in combination with tenofovir (adults):

300 mg ATV + 100 mg RTV + 300 mg TDF, all once daily. Only ATV boosted with RTV should be used in combination with TDF.

Dosing of ATV in patients with hepatic impairment:

ATV should be used with caution in patients with mild-moderate hepatic impairment; consult manufacturer’s prescribing information for adjustment of dosage in patients with moderate impairment. ATV should not be used in patients with severe hepatic impairment.

Major Toxicities

More common: Asymptomatic elevations in indirect bilirubin (30% of patients), jaundice (10% of patients), headache, fever, arthralgia, depression, insomnia, dizziness, nausea, vomiting, diarrhea, and paresthesias.

Less common (more severe): Prolongation of PR interval of electrocardiogram. Abnormalities in AV conduction, generally limited to first-degree AV block, but with rare reports of second-degree AV block. Rash, generally mild to moderate, but in rare cases include life-threatening Stevens-Johnson syndrome. Fat redistribution and lipid abnormalities may be less common than with other PIs.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, and elevation in serum transaminases.

Drug Interactions

See: [Drug Interaction Matrices 2 – 4](#)

Metabolism: ATV is both a substrate and an inhibitor of the CYP3A4 enzyme system and has significant interactions with drugs highly dependent on CYP3A4 for metabolism. ATV also competitively inhibits CYP1A2 and CYP2C9. There is potential for multiple drug interactions.

- ATV inhibits the glucuronidation enzyme uridine diphosphate glucoronosyltransferase (UGT1A1).

- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

- NRTIs: TDF decreases ATV plasma concentrations.

- NNRTIs: EFV decreases ATV plasma concentrations.

Absorption:

- **Antacids:** Antacids and buffered medications (including buffered ddI formulations) decrease ATV concentrations if administered at the same time; ATV should be administered 2 hours before or 1 hour after these medications.

- **H-2 Receptor Antagonists:** H-2 receptor antagonists are expected to decrease ATV concentrations by interfering with absorption. If given concurrently, separate dosing as far apart as possible, preferably by 12 hours.

- **Proton-pump Inhibitors:** Coadministration of ATV with proton-pump inhibitors is expected to substantially decrease ATV plasma concentrations and decrease ATV’s therapeutic effect. Coadministration of ATV and proton-pump inhibitors is not recommended.

[Note: Low-dose RTV boosting may be considered for adolescents because adequacy of the unboosted ATV adult dose for adolescents has not been established.](#)

†§¶ See Endnotes page 20.
Special Instructions
- ATV should be administered with food to enhance absorption.
- ATV does not appear to increase cholesterol or triglyceride levels.
- Because ATV can prolong the electrocardiogram PR interval, it should be used with caution in patients with pre-existing cardiac conduction system disease or with other drugs known to prolong the PR interval (e.g., calcium channel blockers, beta-blockers, digoxin, verapamil).
- Patients taking antacids or the buffered formulation of ddl should take ATV at least 2 hours before or 1 hour after antacid or ddl administration.
- Individuals with HBV or HCV infections and individuals with marked elevations in transaminases prior to treatment may be at increased risk for further elevations in transaminases or hepatic decompensation.

Darunavir (DRV, TMC 114, PREZISTA)
See also: Supplement I: Pediatric Antiretroviral Drug Information
Preparations: Tablets 300 mg
Dosing
Neonatal/infant dose: Not approved for use in neonates/infants.
Pediatric: Not approved for use in children age < 18 years.
Adolescent (age ≥18 years)/Adult dose: DRV 600 mg (two 300 mg tablets) + RTV 100 mg twice daily with food. DRV should not be used without RTV.

Dosing in patients with hepatic impairment: DRV is primarily metabolized by the liver. There are no data for dosing adult patients with varying degrees of hepatic impairment; caution should be used when administering RTV-boosted DRV to such patients.

Dosing in patients with renal impairment: No dose adjustment is required in patients with moderate renal impairment (CrCl 30–60 mL/min). There are no pharmacokinetic data in patients with severe renal impairment or end-stage renal disease.

Major Toxicities
More common: Diarrhea, nausea, vomiting, abdominal pain, headache, and fatigue.

Less common: Skin rash, including erythema multiforme and Stevens-Johnson syndrome, has been reported. Fever and elevated hepatic transaminases have been reported. Lipid abnormalities.

Drug Interactions
See: Drug Interaction Matrices 2 – 4
- Metabolism: DRV is primarily metabolized by cytochrome P450 3A4. RTV inhibits CYP3A4, thereby increasing the plasma concentration of RTV. There is the potential for multiple drug interactions.
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions
- Administer DRV with food, which increases AUC and Cmax by 30%. The number of calories and fat content of the meal does not significantly alter drug exposure.
- DRV contains a sulfa moiety. The potential for cross-sensitivity between DRV and other drugs in the sulfonamide class is unknown. DRV should be used with caution in patients with known sulfonamide allergy.
- Store at room temperature (25°C or 77°F)

Fosamprenavir (f-APV, LEXIVA)
See also: Supplement I: Pediatric Antiretroviral Drug Information
Preparations: Tablets: 700 mg fosamprenavir calcium (prodrug, equivalent to 600 mg APV). Investigational formulation: Suspension, 50 mg/mL.
Dosing
Neonate/Infant dose: Not approved for use in neonates/infants.
Pediatric dose: Not approved for use in children. Clinical trials are under way in children, but there are insufficient data to recommend a pediatric dose.
Adolescent/Adult dose: Dosing regimen depends on whether antiretroviral naïve or experienced:
Antiretroviral-naïve patients:
1,400 mg f-APV twice daily (without RTV)
1,400 mg f-APV + 200 mg RTV, both given once daily
700 mg f-APV + 100 mg RTV, both given twice daily
PI-experienced patients: (Note: Once daily administration of f-APV plus RTV is not recommended in PI-experienced patients.)
700 mg f-APV + 100 mg RTV, both given twice daily

Fos-amrenavir in combination with efavirenz (adults):
700 mg f-APV + 100 mg RTV twice daily + 600 mg EFV once daily, or 1,400 mg f-APV + 300 mg RTV + 600 mg EFV, all once daily. Only f-APV boosted with RTV should be used in combination with EFV.

Dosing of f-APV in patients with hepatic impairment:
Decreased dosage should be used in patients with mild to moderate hepatic impairment receiving f-APV without RTV (recommended dose for adults is 700 mg twice daily). f-APV should not be used in adult or pediatric patients with severe hepatic impairment. There are no data on the use of f-APV in combination with RTV in adult or pediatric patients with any degree of hepatic impairment.

Major Toxicities
More common: Vomiting, nausea, diarrhea, perioral paresthesias, headache, rash, and lipid abnormalities.

Less common (more severe): Life-threatening rash, including Stevens-Johnson syndrome, in < 1% of patients. Fat redistribution, neutropenia, and elevated serum creatinine kinase levels.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, hemolytic anemia, and elevation in serum transaminases.

Drug Interactions
See: Drug Interaction Matrices 2 – 4
(Note: drug interactions listed below are primarily from studies done with APV, because f-APV is rapidly metabolized to APV.)

- **Metabolism:** APV is a substrate for and an inhibitor of the cytochrome P450 isoenzyme CYP3A4. Data also suggest that APV is an inducer of CYP3A4. There is potential for multiple drug interactions.³

- **Before administration,** the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions
- Can be given without regard to food.
- Patients taking antacids or buffered formulations of ddI should take APV at least 1 hour before or 1 hour after antacid or ddI use.
- APV is a sulfonamide. The potential for cross-sensitivity between APV and other drugs in the sulfonamide class is unknown. APV should be used with caution in patients with sulfonamide allergy.

Indinavir (IDV, CRIXIVAN)
See also: Supplement I: Pediatric Antiretroviral Drug Information

Preparations: Capsules: 100 mg, 200 mg, 333 mg, and 400 mg (corresponding to 125 mg, 250 mg, 416.3 mg, and 500 mg IDV sulfate, respectively).

Dosing
Neonatal/Infant dose: Not approved for use in neonates/infants. Should not be administered to neonates due to the risks associated with hyperbilirubinemia (kernicterus).

Pediatric dose: Not approved for use in children. Some clinical studies have been conducted in children (investigational dose: 500 mg per m² of body surface area every 8 hours in children aged 4 to 15 years. This dose resulted in IDV AUC levels slightly higher than achieved with standard doses in adults, but trough levels below those observed in adults, in 50% of 28 children).

Adolescent/Adult dose: 800 mg every 8 hours.

Indinavir in combination with ritonavir (adults): 800 mg IDV + 200 mg RTV twice daily.

Indinavir in combination with efavirenz (adults): 1,000 mg IDV three times daily + 600 mg EFV once daily (higher doses of IDV are required).

Indinavir in combination with delavirdine (adults): 600 mg IDV three times daily + 400 mg DLV three times daily.

Dosing of IDV in patients with hepatic impairment: Decreased dosage should be used in patients with mild to moderate hepatic impairment (recommended dose for adults is 600 mg IDV every 8 hours). No dosing information is available for children with any degree of hepatic impairment or for adults with severe hepatic impairment.

*†§¶ See Endnotes page 20.
Major Toxicities

More common: Nausea, abdominal pain, headache, metallic taste, dizziness, asymptomatic hyperbilirubinemia (10%), and lipid abnormalities.

Less common (more severe): Nephrolithiasis (4%), in some cases resulting in renal insufficiency. Interstitial nephritis with IDV crystal deposits. Exacerbation of chronic liver disease. Fat redistribution.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, hemolytic anemia, and hepatitis (life-threatening in rare cases).

Drug Interactions

See: [Drug Interaction Matrices 2 – 4](#)

- **Metabolism:** Cytochrome P450 3A4 is responsible for metabolism. There is potential for multiple drug interactions. §
- **Before administration,** the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions

- **Administer on an empty stomach** 1 hour before or 2 hours after a meal (or can be administered with a light meal). When given in combination with RTV, meal restrictions are no longer necessary.
- **Adequate hydration** is required to minimize risk of nephrolithiasis (at least 48 oz of fluid daily in adult patients).
- **If coadministered with ddI,** give at least 1 hour apart on an empty stomach.
- **Capsules are sensitive to moisture** and should be stored in original container with desiccant.

Lopinavir/Ritonavir (LPV/RTV, ABT 378, KALETRA)

See also: [Supplement I: Pediatric Antiretroviral Drug Information](#)

Coformulation of lopinavir and ritonavir: RTV acts as a pharmacokinetic enhancer, not as an antiretroviral agent. It does this by inhibiting the metabolism of LPV and increasing LPV plasma concentrations.

Preparations: Tablets: 200 mg LPV/50 mg RTV. Pediatric oral solution (note: contains 42.4% alcohol by volume): 80 mg LPV/20 mg RTV per mL.

Dosing

Neonatal/Infant dose: Not approved for use in neonates/infants. Clinical trials are under way in infants aged < 6 months (investigational dose: 300 mg LPV per m² of body of surface area/75 mg RTV per m² of body of surface area twice daily).

For individuals not receiving concomitant NVP or EFV or APV:

Pediatric dose:

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Dose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 to < 15</td>
<td>12 mg per kg of body weight LPV/3 mg per kg of body weight RTV twice daily with food.</td>
<td></td>
</tr>
<tr>
<td>15 to 40</td>
<td>10 mg per kg of body weight LPV/2.5 mg per kg of body weight RTV twice daily with food.</td>
<td></td>
</tr>
<tr>
<td>> 40</td>
<td>400 mg LPV/100 mg RTV (2 tablets or 5 mL) twice daily with food (same as adult dose).</td>
<td></td>
</tr>
</tbody>
</table>

OR

230 mg LPV per m² of body surface area/57.5 mg RTV per m² of body surface area, twice daily with food (up to a maximum dose of 400 mg LPV/100 mg RTV). ¶

Adolescent (age > 12 years)/Adult dose: 400 mg LPV/100 mg RTV (2 tablets or 5 mL) twice daily with food.

Adult (age > 18 years) dose, treatment-naïve patients: 800 mg LPV/200 mg RTV (4 tablets or 10 mL) once daily with food; use once daily regimen only in treatment-naïve patients; do not use once daily dosing in children or adolescents.

For individuals receiving concomitant NVP or EFV or APV (these drugs induce LPV metabolism, reduce LPV plasma levels, and require increased LPV/RTV dosing) and/or treatment-experienced patients in whom reduced susceptibility to LPV is suspected (such as those with prior treatment with other PIs):

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Dose</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 40</td>
<td>400 mg LPV/100 mg RTV (2 tablets or 5 mL) twice daily with food (same as adult dose).</td>
<td></td>
</tr>
</tbody>
</table>

¶ Use of body surface area dosing in children is associated with AUC LPV levels similar to AUC achieved with standard doses in adults, but is associated with lower trough levels in children than in adults; therefore, some clinicians may choose to initiate therapy with a higher dose of LPV/RTV.

†††† See Endnotes page 20.
Appendix A: Characteristics of Available Antiretroviral Drugs

Pediatric dose:

<table>
<thead>
<tr>
<th>Pediatric dose:</th>
<th>6 months to 12 years of age (with NVP or EFV or APV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 to < 15 kg</td>
<td>13 mg per kg of body weight LPV/3.25 mg per kg of body weight RTV twice daily with food.</td>
</tr>
<tr>
<td>15 to 50 kg</td>
<td>11 mg per kg of body weight LPV/2.75 mg per kg of body weight RTV twice daily with food.</td>
</tr>
<tr>
<td>> 50 kg</td>
<td>600 mg LPV/150 mg RTV (3 tablets or 6.5 mL) twice daily with food (same as adult dose).</td>
</tr>
</tbody>
</table>

OR

300 mg LPV per m² of body surface area/75 mg RTV per m² of body surface area, twice daily with food (up to a maximum dose of 533 mg LPV/133 mg RTV).

Adolescent (age > 12 years)/Adult dose (if receiving concomitant NVP, EFV, APV, or NFV): 600 mg LPV/150 mg RTV (3 tablets or 6.5 mL) twice daily with food. Once daily dosing should not be used.

Lopinavir/ritonavir in combination with saquinavir hard gel capsules (INVIRASE) (adults): 1,000 mg SQV + 400 mg LPV/100 mg RTV, both given twice daily.

Dosing of LPV/RTV in patients with hepatic impairment: LPV/RTV is primarily metabolized by the liver. Caution should be used when administering this drug to patients with hepatic impairment. No dosing information is currently available for children or adults with hepatic insufficiency.

Major Toxicities

More common: Diarrhea, headache, asthenia, nausea and vomiting, and rash in patients receiving LPV/RTV with other antiretroviral drugs; lipid abnormalities.

Less common (more severe): Fat redistribution.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, hemolytic anemia, spontaneous bleeding in hemophiliacs, pancreatitis, elevation in serum transaminases, and hepatitis (life-threatening in rare cases).

Drug Interactions

See: Drug Interaction Matrices 2 – 4

- **Metabolism:** LPV/RTV is extensively metabolized by hepatic cytochrome P450. There is potential for multiple drug interactions.8

- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions

- LPV/RTV tablets can be administered without regard to food.

- LPV/RTV oral solution should be administered with food. A high fat meal increases absorption, especially of the liquid preparation.

- If coadministered with ddI, ddI should be given 1 hour before or 2 hours after LPV/RTV.

- LPV/RTV oral solution should be refrigerated. Can be kept at room temperature up to 77°F (25°C) if used within 2 months.

Nelfinavir (NFV, VIRACEPT)

See also: Supplement I: Pediatric Antiretroviral Drug Information

Preparations: Tablets: 250 mg and 625 mg. Powder for oral suspension: 50 mg per 1 level gram scoop full (200 mg per 1 level teaspoon) (oral powder contains 11.2 mg phenylalanine per gram of powder).

Dosing

Neonatal/Infant dose: Not approved for use in neonates/infants. High inter-patient variability in drug concentrations was seen with 40 mg NFV per kg of body weight twice daily in infants age birth to 6 weeks. NFV is best absorbed when administered with a high fat meal, creating difficulty in dosing of young infants. Higher doses are currently under investigation.

Pediatric dose (age 2 to 13 years): 45 – 55 mg per kg of body weight twice daily or 25 – 35 mg/kg three times daily.

Adolescent/Adult dose: 1,250 mg (5 of the 250 mg tablets or 2 of the 625 mg tablets) twice daily or 750 mg (3 of the 250 mg tablets) three times daily.

Use of body surface area dosing in children is associated with AUC LPV levels similar to AUC achieved with standard doses in adults, but is associated with lower trough levels in children than in adults; therefore, some clinicians may choose to initiate therapy with a higher dose of LPV/RTV, particularly in PI-experienced pediatric patients who may have reduced PI susceptibility.
Major Toxicities

More common: Diarrhea (most common). Asthenia, abdominal pain, rash, and lipid abnormalities.

Less common (more severe): Exacerbation of chronic liver disease. Fat redistribution.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, and elevation in serum transaminases.

Drug Interactions

See: Drug Interaction Matrices 2 – 4

- **Metabolism:** NFV is metabolized in part by cytochrome P450 3A4. There is potential for multiple drug interactions. ¹
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions

- Administer with meal or light snack.
- If coadministered with ddI, NFV should be administered 2 hours before or 1 hour after ddI.
- For powder for oral suspension: powder may be mixed with water, milk, pudding, ice cream, or formula; mixture is stable for up to 6 hours.
- Do not mix with any acidic food or juice because of resulting poor taste.
- Do not add water to bottles of oral powder; a special scoop is provided with oral powder for measuring purposes.
- Patients unable to swallow the tablets can dissolve the tablets in a small amount of water. Once dissolved, the patients should mix the cloudy mixture well and consume it immediately. The glass should be rinsed with water and the rinse swallowed to ensure that the entire dose is consumed. Tablets can also be crushed and administered with pudding.

Ritonavir (RTV, NORVIR)

See also: Supplement I: Pediatric Antiretroviral Drug Information

Preparations: Capsules: 100 mg. Oral solution (note: contains 43% alcohol by volume): 80 mg/mL.

Dosing

Neonatal/Infant dose: Not approved for use in neonates/infants under age 1 month. **Investigational**

Dose of 450 mg RTV per m² of body of surface area twice daily was associated with lower RTV concentrations than observed in adults receiving the standard adult dose.

Pediatric (age > 1 month) usual dose: 350 – 450 mg per m² of body surface area twice daily (not to exceed 600 mg per dose). To minimize nausea/vomiting, initiate therapy starting at 250 mg per m² of body surface area every 12 hours and increase at 2- to 3-day intervals by 50 mg per m² of body surface area twice daily to full dose as tolerated. If patients do not tolerate 400 mg per m² of body surface area twice daily due to adverse effects, the highest tolerated dose may be used for maintenance therapy in combination with other antiretroviral agents; however, an alternative PI should be considered.

Adolescent/Adult dose: 600 mg twice daily. To minimize nausea/vomiting, initiate therapy starting at 300 mg twice daily and increase stepwise to full dose over 5 days as tolerated.

Ritonavir as a pharmacokinetic enhancer: RTV is used at lower doses as a pharmacokinetic enhancer of other PIs. Doses most commonly used in adults are 100 mg twice daily or 200 mg once daily, but doses ranging from 100 mg to 400 mg twice daily have been used when combined with other PIs; see information for individual PIs.

Dosing of RTV in patients with hepatic impairment: RTV is primarily metabolized by the liver. No dosage adjustment is necessary in patients with mild hepatic impairment. There are no data for dosing adult or pediatric patients with moderate to severe hepatic impairment; caution should be used when administering this drug to those patients.

Major Toxicities

More common: Nausea, vomiting, diarrhea, headache, abdominal pain, anorexia, circumoral paresthesias, lipid abnormalities.

Less common (more severe): Exacerbation of chronic liver disease, fat redistribution.

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, pancreatitis, and hepatitis (life-threatening in rare cases). Allergic reactions, including bronchospasm, urticaria, and angioedema.

*** See Endnotes page 20.
Drug Interactions

See: Drug Interaction Matrices 2 – 4
- Metabolism: RTV is extensively metabolized by hepatic cytochrome P450 3A. There is potential for multiple drug interactions.
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions
- Administration with food increases absorption and helps decrease gastrointestinal side effects.
- If RTV is prescribed with ddI, there should be 2 hours between taking each of the drugs.
- It is recommended that the soft gelatin capsules be stored in the refrigerator at 36 – 46°F (2 – 8°C) until dispensed. Refrigeration of the capsules by the patient is recommended, but not required if capsules are used within 30 days and stored below 77°F (25°C).
- Recommended storage of the oral solution is at room temperature, 68 – 77°F (20 – 25°C). Do not refrigerate. Shake well before use.
- Oral solution has limited shelf-life (6 months); use by product expiration date.
- To minimize nausea, therapy should be initiated at a low dose and increased to full dose as tolerated.
- Techniques to increase tolerance in children:
 - mix oral solution with milk, chocolate milk, or vanilla or chocolate pudding or ice cream;
 - dull the taste buds before administration by chewing ice, giving popsicles or spoonfuls of partially frozen orange or grape juice concentrates;
 - coat the mouth by giving peanut butter to eat before the dose; or
 - administer strong-tasting foods such as maple syrup, cheese, or strong-flavored chewing gum immediately after dose.

Saquinavir (SQV, INVIRASE hard gel capsule or film-coated tablets)
See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1

Preparations: Hard gel capsules (HGC): 200 mg Film-coated tablets: 500 mg.

Dosing
- Pediatric dose: Not approved for use in children. Clinical trials in children demonstrated that doses of 50 mg SQV per kg of body weight every 8 hours were inadequate to achieve therapeutic serum SQV concentrations. Clinical trials are under way in children to evaluate administration of SQV in combination with a second PI, such as RTV, NFV, or LPV/RTV. SQV should not be used as a sole PI in children.

 Adolescent (age > 16 years)/Adult dose:
 Saquinavir in combination with ritonavir (adults): 1,000 mg SQV + 100 mg RTV, both given twice daily. Should be taken within 2 hours of a meal. Note: SQV should only be used in combination with RTV or LPV/RTV (never unboosted).

 Saquinavir in combination with lopinavir/ritonavir (adults): 1,000 mg SQV + 400 mg LPV/100 mg RTV, both given twice daily.

Major Toxicities
- More common: Diarrhea, abdominal discomfort, headache, nausea, paresthesias, skin rash, and lipid abnormalities.
- Less common (more severe): Exacerbation of chronic liver disease, fat redistribution.
- Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs, pancreatitis, and elevation in serum transaminases.

Drug Interactions
See: Drug Interaction Matrices 2 – 4
- Metabolism: SQV is metabolized by the cytochrome P450 3A4 system in the liver. There is potential for numerous drug interactions.
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions
- Administer within 2 hours of a full meal to increase absorption.
- Sun exposure can cause photosensitivity reactions; therefore, sunscreen or protective clothing is recommended.
- SQV should only be used in combination with RTV or LPV/RTV (never unboosted).
Tipranavir (TPV, APTIVUS)
See also: Supplement I: Pediatric Antiretroviral Drug Information
See: Drug Interaction Matrix 1
Preparations: Capsules: 250 mg.

Dosing

Pediatric dose: Not approved for use in children. Clinical trials are under way in children, but there are insufficient data to recommend a pediatric dose.

Adult dose: 500 mg (two 250 mg capsules) coadministered with 200 mg of ritonavir, twice daily.

Dosing of TPV in patients with hepatic impairment: No dosing adjustment is required in patients with mild hepatic impairment. TPV is contraindicated in patients with moderate or severe hepatic insufficiency.

Major Toxicities
More common: Diarrhea, nausea, fatigue, headache, rash, and vomiting. Laboratory abnormalities are elevated liver enzymes, cholesterol, and triglycerides.

Less common (more severe): Fat redistribution. Clinical hepatitis and hepatic decompensation, including some fatalities. Patients with chronic hepatitis B or C coinfection or elevations in transaminases are at increased risk for developing further transaminase elevations or hepatic decompensation (approximately 2.5-fold risk).

Rare: New onset diabetes mellitus, hyperglycemia, ketoacidosis, exacerbation of pre-existing diabetes mellitus, spontaneous bleeding in hemophiliacs. Possible association with increased risk of intracranial hemorrhage.

Drug Interactions
See: Drug Interaction Matrices 2 – 4

- Metabolism: TPV is metabolized in part by cytochrome P450 3A4. There is potential for multiple drug interactions.
- Before administration, the patient’s medication profile should be carefully reviewed for potential drug interactions.

Special Instructions
- Administer with a meal or light snack. Bioavailability is increased with a high fat meal.
- TPV is indicated only in adult patients who are highly treatment experienced or have HIV-1 strains resistant to multiple PIs, and who have evidence of viral replication.

- TPV contains a sulfonamide component. The potential for cross-sensitivity between TPV and other drugs in the sulfonamide class is unknown. TPV should be used with caution in patients with sulfonamide allergy.
- Capsules should be refrigerated. Can be kept at room temperature up to 77°F (25°C) if used within 2 months.
- Because TPV can cause serious liver toxicity, liver function tests should be performed at initiation of therapy and monitored frequently.

Fusion Inhibitors

Enfuvirtide (T-20, FUZEON)
See also: Supplement I: Pediatric Antiretroviral Drug Information
Preparations: Injection: lyophilized powder for injection, 108 mg of enfuvirtide. Reconstitution with 1.1 mL sterile water will deliver 90 mg/mL.

Convenience Kit: 60 single use vials of Fuzeon (90 mg strength), 60 vials of sterile water for injection, 60 reconstitution syringes (3 mL), 60 administration syringes (1 mL), alcohol wipes.

Dosing

Pediatric/adolescent dose (age 6 to 16 years): Not approved for use in children aged < 6 years. For children aged ≥ 6 years: 2 mg per kg of body weight (maximum dose, 90 mg [1mL]) given twice daily, injected subcutaneously into the upper arm, anterior thigh, or abdomen.

Adolescent (age > 16 years)/Adult dose: 90 mg (1mL) twice daily, injected subcutaneously into the upper arm, anterior thigh, or abdomen.

Major Toxicities
Most common: Almost all patients (98%) experience local injection site reactions, including pain and discomfort, induration, erythema, nodules and cysts, pruritus, and ecchymosis. Usually mild to moderate in severity, but can be more severe. Average duration of local injection site reaction is 3 to 7 days, but was more than 7 days in 24% of patients.

Less common: Increased rate of bacterial pneumonia (unclear association).
Rare: Hypersensitivity reactions (<1%), including fever, nausea and vomiting, chills, rigors, hypotension, and elevated liver transaminases. Immune-mediated reactions, including primary immune complex reaction, respiratory distress, glomerulonephritis, and Guillain-Barre syndrome. Patients experiencing hypersensitivity reactions should seek immediate medical attention. Therapy should not be restarted in patients with signs and symptoms consistent with hypersensitivity reactions.

Drug Interactions
See: Drug Interactions Matrices 2 – 4
- There are no known significant drug interactions.

Special Instructions
- Patients or caregivers should be carefully instructed in proper technique for drug reconstitution and administration of subcutaneous injections. T-20 injection instructions are provided with convenience kits.
- Reconstituted vial should be allowed to stand until the powder goes completely into solution, which could take up to 45 minutes. Do not shake.
- Once reconstituted, T-20 should be injected immediately or kept refrigerated in the original vial until use. Reconstituted T-20 must be used within 24 hours.
- Must be given subcutaneously; severity of reactions increased if given intramuscularly.
- Each injection should be given at a site different from the preceding injection site and should not be injected into moles, scar tissue, bruises, or the navel.
- Careful monitoring for signs and symptoms of local infection or cellulitis should be done by both the patient/caregiver and health care provider.
- Tips to minimize local reactions: Apply ice or heat after injection or gently massage injection site to better disperse the dose.
- Patients/caregivers should be advised of the possibility of a hypersensitivity reaction and should discontinue treatment and seek immediate medical attention if the patient develops signs and symptoms consistent with a hypersensitivity reaction.

ENDNOTES
* Information in this appendix is not all-inclusive. Complete and detailed prescribing and toxicity information for these drugs is available from the drug companies and should be reviewed by the health care provider before prescribing these drugs.
† Adolescents in early puberty (Tanner Stage I – II) should be dosed using pediatric schedules, whereas those in late puberty (Tanner Stage IV) should be dosed using adult schedules. Youth who are in the midst of a growth spurt (Tanner III females and Tanner IV males) should be closely monitored for medication efficacy and toxicity when choosing adult or pediatric dosing guidelines.
§ Drugs metabolized by the hepatic cytochrome P450 enzyme system have the potential for significant interactions with multiple drugs. Some of these may be life-threatening. These interactions are outlined in detail in prescribing information available from the drug companies. These interactions will not be reiterated in this document, and the health care provider should review the prescribing information for detailed information. Before therapy with these drugs is initiated, the patient’s medication profile should be carefully reviewed for potential drug interactions.
¶ PI dosing data in children are limited, and doses may change as more information is obtained about the pharmacokinetics of these drugs in children.
Drug Interaction Matrix 1: Adverse Drug Reactions and Related “Black Box Warnings” in Product Labeling for Antiretroviral Agents

This matrix is based on Table 19 in the Adult Guidelines. The Food and Drug Administration can require that warnings regarding special problems associated with a prescription drug, including those that might lead to death or serious injury, be placed in a prominently displayed box, commonly known as a “black box.” Please note that other serious toxicities associated with antiretroviral agents are not listed in this table.

<table>
<thead>
<tr>
<th>Antiretroviral Drug</th>
<th>Pertinent Black Box Warning Information</th>
</tr>
</thead>
</table>
| **Abacavir** (Ziagen®, or as combination products in Epzicom®, and Trizivir®) | • Serious and sometimes fatal hypersensitivity reactions have been associated with abacavir:
 - This is a multi-organ clinical syndrome, characterized by two or more groups of the following signs or symptoms including (1) fever, (2) rash, (3) gastrointestinal (e.g., nausea, vomiting, diarrhea, or abdominal pain), (4) constitutional (including generalized malaise, fatigue, or achiness), and (5) respiratory symptoms (including dyspnea, cough, or pharyngitis).
 - Abacavir should be discontinued as soon as hypersensitivity reaction is suspected.
 - Any product containing abacavir should be permanently discontinued if hypersensitivity cannot be ruled out, even when other diagnoses are possible—because more severe symptoms can occur within hours after restarting abacavir and may include life-threatening hypotension and death.
 • Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination. |
| **Amprenavir** (Agenerase®) Oral Solution | • Because of the potential risk of toxicity from substantial amounts of the excipient propylene glycol in Agenerase Oral Solution, it is contraindicated for the following patient populations: children age <4 years; pregnant women; patients with renal or hepatic failure; patients treated with disulfiram or metronidazole
 • Oral solution should be used only when other protease inhibitors cannot be used. |
| **Atazanavir** (Reyataz®) | No box warning. |
| **Delavirdine** (Rescriptor®) | No box warning. |
| **Didanosine** (Videx-EC®) | • Fatal and nonfatal pancreatitis have occurred with didanosine alone or in combination with other antiretroviral agents.
 - Didanosine should be withheld if pancreatitis is suspected.
 - Didanosine should be discontinued if pancreatitis is confirmed.
 • Fatal lactic acidosis has been reported among pregnant women who received a combination of didanosine and stavudine with other antiretroviral combinations.
 - Didanosine and stavudine combination should only be used during pregnancy if the potential benefit clearly outweighs the potential risks.
 • Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination. |
| **Efavirenz** (Sustiva®); or in combination product with tenofovir DF and emtricitabine (Atripla®) | No box warning. |
| **Emtricitabine** (Emtriva®); or in combination product with tenofovir DF and emtricitabine (Atripla®) | • Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues alone or in combination with other antiretrovirals.
 • Emtricitabine is not indicated for the treatment of hepatitis B infection (HBV), the safety and efficacy have not been established in patients with HIV/HBV co-infection.
 • Severe acute exacerbations of hepatitis B have been reported in patients who discontinued emtricitabine—hepatic function should be monitored closely with both clinical and laboratory follow-up for at least several months after discontinuation of tenofovir in HIV/HBV co-infected patients.
 • If appropriate, initiation of anti-HBV therapy may be warranted after discontinuation of tenofovir. |
| **Enfuvirtide** (Fuzeon) | No box warning. |
| **Fosamprenavir** (Lexiva®) | No box warning. |
| **Indinavir** (Crixivan®) | No box warning. |
| **Lamivudine** (Epivir®), or in combination products (Combivir®, Epzicom®, and Trizivir®) | • Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination.
 • Epivir tablets and oral solution (used to treat HIV infection) contain a higher dose of lamivudine than Epivir-HBV tablets and oral solution (used to treat chronic hepatitis B). **Patients with HIV infection should receive only dosage and formulations appropriate for treatment of HIV.**
 • Severe acute exacerbations of hepatitis B infection have been reported in HBV/HIV co-infected patients upon discontinuation of lamivudine-containing products. Hepatic function should be monitored closely with both clinical and laboratory follow-up for at least several months after discontinuation of lamivudine in patients with HIV/HBV co-infection.
 • If appropriate, initiation of anti-hepatitis B therapy may be warranted. |
Drug Interaction Matrix 1: Adverse Drug Reactions and Related “Black Box Warnings” in Product Labeling for Antiretroviral Agents. This matrix is based on Table 19 in the Adult Guidelines.

<table>
<thead>
<tr>
<th>Antiretroviral Drug</th>
<th>Pertinent Black Box Warning Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopinavir/ritonavir (Kaletra<sup>®</sup>)</td>
<td>No box warning.</td>
</tr>
<tr>
<td>Nelfinavir (Viracept<sup>®</sup>)</td>
<td>No box warning.</td>
</tr>
</tbody>
</table>
| Nevirapine (Viramune[®]) | - Severe, life-threatening, and in some cases fatal hepatotoxicity, including fulminant and cholestatic hepatitis, hepatic necrosis, and hepatic failure, has been reported. Patients may present with non-specific prodromes of hepatitis and progress to hepatic failure.
- Women with CD4 counts > 250 cells/mm³, including pregnant women receiving chronic treatment for HIV infection are at considerably higher risk of hepatotoxicities.
- Severe, life-threatening, and even fatal skin reactions, including Stevens-Johnson syndrome, toxic epidermal necrolysis, and hypersensitivity reactions characterized by rash, constitutional findings, and organ dysfunction have occurred with nevirapine treatment.
- Patients should be monitored intensively during the first 18 weeks of nevirapine therapy to detect potentially life-threatening hepatotoxicity or skin reactions.
- A 14-day lead-in period with nevirapine 200mg daily must be followed strictly.
- Nevirapine should not be restarted after severe hepatic, skin, or hypersensitivity reactions. |
| Ritonavir (Norvir[®]) | - Coadministration of ritonavir with certain non-sedating antihistamines, sedative hypnotics, antiarrhythmics, or ergot alkaloids may result in potentially serious or life-threatening adverse events because of possible effects of ritonavir on hepatic metabolism of certain drugs. |
| Saquinavir (Invirase[®]) | - INVIRASE may be used only if it is combined with ritonavir, which significantly inhibits saquinavir's metabolism to provide acceptable plasma saquinavir levels. |
| Stavudine (Zerit[®]) | - Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination.
- Fatal lactic acidosis has been reported among pregnant women who received combination of stavudine and didanosine with other antiretroviral combinations.
- Stavudine and didanosine combination should only be used during pregnancy if the potential benefit clearly outweighs the potential risks.
- Fatal and non-fatal pancreatitis have occurred when stavudine was part of a combination regimen with didanosine with or without hydroxyurea. |
| Tenofovir (Viread[®]), or in combination product with emtricitabine (Truvada™) or with efavirenz and emtricitabine (Atripla™) | - Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues alone or in combination with other antiretrovirals.
- Tenofovir is not indicated for the treatment of chronic hepatitis B (HBV) infection, safety and efficacy in patients with HIV/HBV co-infection have not been established.
- Severe acute exacerbations of hepatitis B have been reported in patients who discontinued tenofovir – hepatic function should be monitored closely with both clinical and laboratory follow-up for at least several months after discontinuation of tenofovir in HIV/HBV co-infected patients.
- If appropriate, initiation of anti-HBV therapy may be warranted after discontinuation of tenofovir. |
| Tipranavir (Aptivus[®]) | - Tipranavir co-administered with ritonavir 200mg twice daily has been associated with reports of both fatal and non-fatal intracranial hemorrhage.
- Tipranavir co-administered with ritonavir 200mg twice daily has been associated with reports of clinical hepatitis and hepatic decompensation including some fatalities. Extra vigilance is warranted in patients with chronic hepatitis B or hepatitis C co-infection, as these patients have an increased risk of hepatotoxicity. |
| Zalcitabine (Hivid[®]) | - Zalcitabine can cause severe peripheral neuropathy, use with caution among patients with pre-existing neuropathy.
- In rare cases, zalcitabine can cause pancreatitis, therapy should be withheld until pancreatitis is excluded.
- Rare cases of hepatic failure and death have been reported among patients with underlying hepatitis B infection.
- Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination. |
| Zidovudine (Retrovir[®]), or in combination products Combivir[®] and Trizivir[®]) | - Zidovudine can be associated with hematologic toxicities, including granulocytopenia and severe anemia, including among advanced HIV patients.
- Prolonged zidovudine use has been associated with symptomatic myopathy.
- Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of antiretroviral nucleoside analogues alone or in combination. |
Drug Interaction Matrix 2: Drugs That Should Not Be Used With PI or NNRTI Antiretrovirals

This matrix is based on Table 20 in the Adult Guidelines. *Dosing recommendations are for adults only.*

<table>
<thead>
<tr>
<th>Drug Category</th>
<th>Calcium channel blocker</th>
<th>Cardiac Lipid Lowering Agents</th>
<th>Anti-Mycobacterial</th>
<th>Anti-HIV1</th>
<th>Gastrointestinal drugs</th>
<th>Neuroleptic</th>
<th>Psychotropic</th>
<th>Ergot Alkaloids (vasoconstrictor)</th>
<th>Herbs</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protease Inhibitors</td>
<td></td>
</tr>
<tr>
<td>Amprenavir* and Fosamprenavir</td>
<td>bepindil</td>
<td>(none)</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>bepindil</td>
<td>(none)</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Darunavir</td>
<td>(none)</td>
<td>(none)</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Indinavir</td>
<td>(none)</td>
<td>amidarone</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Lopinavir + Ritonavir</td>
<td>(none)</td>
<td>flexeril</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>(none)</td>
<td>(none)</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>bepindil</td>
<td>amidarone</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>(none)</td>
<td>(none)</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Tipranavir</td>
<td>bepindil</td>
<td>amidarone</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
</tbody>
</table>

Non-nucleoside Reverse Transcriptase Inhibitors

<table>
<thead>
<tr>
<th>Drug Category</th>
<th>Calcium channel blocker</th>
<th>Cardiac Lipid Lowering Agents</th>
<th>Anti-Mycobacterial</th>
<th>Anti-HIV1</th>
<th>Gastrointestinal drugs</th>
<th>Neuroleptic</th>
<th>Psychotropic</th>
<th>Ergot Alkaloids (vasoconstrictor)</th>
<th>Herbs</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delavirdine</td>
<td>(none)</td>
<td>(none)</td>
<td>simvastatin</td>
<td>lovastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>simvastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>(none)</td>
<td>(none)</td>
<td>(none)</td>
<td>simvastatin</td>
<td>rifampin</td>
<td>rifabutin</td>
<td>terfenadine</td>
<td>astemizole</td>
<td>terfenadine</td>
<td>cisopride</td>
</tr>
</tbody>
</table>

Certain listed drugs are contraindicated based on theoretical considerations. Thus, drugs with narrow therapeutic indices and suspected metabolic involvement with P450–3A, 2D6, or unknown pathways are included in this table. Actual interactions may or may not occur among patients.

† Rifabutin may be used with saquinavir only if it is combined with ritonavir.

‡ In one small study, higher doses of RTV (additional 300mg BID) or a double dose of LPV/RTV offset rifampin-inducing activity of LPV. Of note, 28% of subjects discontinued because of increases in LFTs. The safety of this combination is still under evaluation. Further studies are needed.

Σ Midazolam can be used with caution as a single dose and given in a monitored situation for procedural sedation.

†† This is likely a class effect.

∆ Astemizole and terfenadine are not marketed in the U.S. The manufacturer of cisapride has a limited-access protocol for patients meeting specific clinical eligibility criteria.

* Each ml of amprenavir oral solution contains 46 IU vitamin E. Patients should be cautioned to avoid supplemental doses of vitamin E. Multivitamin products containing minimal amounts of vitamin E are acceptable.

⊙ Concomitant use of fluticasone and ritonavir results in significantly reduced serum cortisol concentrations. Coadministration of fluticasone and ritonavir or any ritonavir-boosted PI regimen is not recommended unless potential benefit outweighs risk of systemic corticosteroid side effects. Fluticasone should be used with caution and alternatives considered if given with an unboosted PI regimen.

Suggested Alternatives:

- **Cerivastatin (no longer marketed in the United States)**, simvastatin, lovastatin: Pravastatin and fluvastatin have the least potential for drug-drug interactions (except for pravastatin with darunavir/ritonavir, see Matrix A). Atorvastatin should be used with caution, using the lowest possible starting dose and monitor closely; no pharmacokinetic data or safety data are available for coadministration of rosuvastatin with the antiretroviral agents.

- Rifabutin: clarithromycin, azithromycin (MAI prophylaxis); clarithromycin, azithromycin, ethambutol (MAI treatment)

- Astemizole, terfenadine (no longer marketed in the United States): desloratadine, loratadine, fexofenadine, cetirizine

- Midazolam, triazolam: temepesem, lorazepam

Appendix A: Characteristics of Available Antiretroviral Drugs

October 26, 2006

Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection
Drug Interaction Matrix 3: Drug Interactions Between Antiretrovirals and Other Drugs: PIs

This matrix is based on Table 21a in the Adult Guidelines. Dosing recommendations are for adults only.

<table>
<thead>
<tr>
<th>Drugs Affected</th>
<th>Atazanavir (ATV)</th>
<th>Fosamprenavir (fAPV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>No data, but potential for bi-directional inhibition between itraconazole and PIs, monitor for toxicities.</td>
<td>No data, but potential for bi-directional inhibition between itraconazole and PIs, monitor for toxicities.</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>Unboosted: No dosage adjustment necessary. RTV boosted: See RTV recommendations.</td>
<td>No data, but presumably similar interaction as seen with APV with an increase in both APV and ketoconazole levels (APV ↑ 31%; ketoconazole ↑ 44%). Dose: Consider ketoconazole dose reduction if dose is > 400mg/day. If fAPV/RTV: Use with caution; do not exceed 200mg ketoconazole daily.</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>RTV boosted: No data, but potential for bi-directional inhibition between voriconazole and PIs exists; monitor for toxicities. See RTV recommendations if boosted with RTV.</td>
<td>No data, but potential for bi-directional inhibition between voriconazole and PIs; monitor for toxicities. See RTV recommendations if boosted with RTV.</td>
</tr>
<tr>
<td>ANTI-MYCOBACTERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Levels: clarithromycin AUC ↑ 94% and may cause Qtc prolongation. Clarithromycin active metabolite concentrations are significantly reduced. Dose: clarithromycin dose by 50%, Consider alternative therapy.</td>
<td>Presumably similar interaction and recommendation as APV. Levels: APV AUC ↑ 185%, No change in clarithromycin AUC. No dosage adjustment.</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>Levels: Rifabutin AUC ↑ 2-5 fold Dose: rifabutin dose to 150mg QOD or 3x/week.</td>
<td>Rifabutin 150mg QOD + fAPV 700/100mg BID, rifabutin unchanged. No data on fAPV level. Dose: No change in fAPV dose; decrease rifabutin to 150mg QD or 300mg 3x/week. If RTV-boosted fAPV, reduce rifabutin dose to 150mg QOD or 3x/week.</td>
</tr>
<tr>
<td>Rifampin</td>
<td>Should not be coadministered.</td>
<td>A substantial decrease in APV AUC (≈ 82%) is expected based on the interaction with APV. Should not be co-administered.</td>
</tr>
<tr>
<td>HORMONAL CONTRACEPTIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPID-LOWERING AGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Atorvastatin levels have potential for large increase. Use lowest possible starting dose of atorvastatin with careful monitoring.</td>
<td>Atorvastatin AUC ↑ 150% - use lowest possible starting dose of atorvastatin with careful monitoring.</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>No data.</td>
<td>No data.</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use.</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use</td>
</tr>
<tr>
<td>Lovastatin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTICONVULSANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Unknown, but may decrease ATV levels substantially. Monitor anticonvulsant level and virologic response. Consider using alternative anticonvulsant or monitoring ATV level and boosting with RTV if necessary.</td>
<td>Unknown, but may decrease APV levels substantially. Monitor anticonvulsant levels and virologic response, or consider alternative anticonvulsant. Consider monitoring APV levels and boosting with RTV if necessary.</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenytoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHADONE</td>
<td>No change in methadone or ATV levels.</td>
<td>With APV, R-methadone levels ↓ 13%, and APV Cmin ↓ 25%. The interaction with fAPV is presumed to be similar. Monitor and titrate methadone if needed.</td>
</tr>
<tr>
<td>ERECTILE DYSFUNCTION AGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sildenafil</td>
<td>Sildenafil levels have potential for increase. Start with reduced dose of 25 mg every 48 hours and monitor for adverse effects.</td>
<td>Sildenafil AUC ↑ 2-11 fold with ATV. Use cautiously. Start with reduced dose of 25 mg every 48 hours and monitor for adverse effects.</td>
</tr>
<tr>
<td>Tadalafil</td>
<td>Concomitant administration will result in substantial increase in tadalafil AUC and half-life (normal=17.5h). Start with a 5 mg dose, and do not exceed a single dose of 10mg every 72 hours.</td>
<td>No data, but concomitant administration will result in substantial increase in tadalafil AUC and half-life (normal=17.5h). Start with a 5 mg dose, and do not exceed a single dose of 10mg every 72 hours.</td>
</tr>
<tr>
<td>Vardenafil</td>
<td>No data, but vardenafil AUC may be substantially increased. Start with a 2.5 mg dose and do not exceed a single 2.5 mg dose in 24 hours. Do not exceed 2.5 mg in 72 hours if administered with RTV.</td>
<td>No data, but vardenafil AUC may be substantially increased. Start with a 2.5 mg dose and do not exceed a single 2.5 mg dose in 24 hours. Do not exceed 2.5 mg in 72 hours if administered with RTV.</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diltiazem AUC</td>
<td>H2 Blockers: Coadministration of ranitidine with fAPV decreases (4%) APV AUC 30%, Cmin unchanged. Separate administration if coadministration is necessary. Monitor closely for desired virologic response. Consider boosting with RTV. Proton-Pump Inhibitors: No effect of omeprazole 20mg on APV AUC, Cmax, or Cmin regardless of whether fAPV was given with or without ritonavir.</td>
<td></td>
</tr>
<tr>
<td>Other calcium channel blockers: caution is warranted; dose titration should be considered; ECG monitoring is recommended.</td>
<td>Proton-Pump Inhibitors: No effect of esomeprazole 20mg on APV AUC, Cmax, or Cmin, regardless of whether fAPV was given with or without ritonavir.</td>
<td></td>
</tr>
</tbody>
</table>

* Rifabutin: At least 3x/week is recommended if CD4 cell count is <100/mm³
Drug Interactions Matrix 3: Drug Interactions Between Antiretrovirals and Other Drugs: PIs

This matrix is based on Table 21a in the Adult Guidelines. **Dosing recommendations are for adults only.**

<table>
<thead>
<tr>
<th>Drugs Affected</th>
<th>Darunavir + Ritonavir (DRV/RTV)†</th>
<th>Indinavir (IDV)</th>
<th>Lopinavir + Ritonavir (LPV/r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>Level: No data</td>
<td></td>
<td>Levels: Itraconazole 1/2 when administered with LPV/r. Dose: Itraconazole – consider not exceeding 200mg/day, or monitor level and toxicity.</td>
</tr>
<tr>
<td></td>
<td>Doze: Use with caution; do not exceed 200mg itraconazole daily.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>Levels: DRV AUC ↑42%, Amlodipine AUC ↑3-fold. Doze: Use with caution; do not exceed 200mg ketoconazole daily.</td>
<td>Levels: IDV 600mg Q8H given with itraconazole 200mg bid; AUC similar to IDV 800mg Q8H. Dose: IDV 600mg Q8H; Itraconazole: Do not exceed 200mg bid.</td>
<td>Levels: LPV AUC ↑13%, Amlodipine ↑3-fold. Dose: Use with caution; do not exceed 200mg ketoconazole daily.</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>Levels: No data with DRVs. Voriconazole AUC ▼39% with RTV 100mg Bid; co-administration not recommended unless benefit outweighs risk.</td>
<td>Levels: No significant changes in AUC of azole or IDV (healthy subjects). See RTV recommendations if boosted with RTV. Dose: Standard.</td>
<td>Voriconazole AUC ▼39% with RTV 100mg BID; Co-administration is not recommended unless the benefit outweighs the risk.</td>
</tr>
<tr>
<td>ANTI-MYCObACTERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Levels: Clarithromycin AUC ▼57%: DRV/No significant effect. Dose: Adjust clarithromycin dose for moderate & severe renal impairment.</td>
<td>Levels: Clarithromycin ↑53%. No dose adjustment.</td>
<td>Levels: Clarithromycin AUC 75%. Dose: Adjust clarithromycin dose for moderate and severe renal impairment.</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>Levels: No data. Doze: Decrease rifabutin to 150mg QOD.</td>
<td>Levels: IDV ▼32%. Rifabutin ▼2X. Dose: rif to 150mg/d or 300mg 3x/wk; IDV 1,000mg Q8H,RTV boosted, rif 150mg QOD or 3x/wk; current dose of boosted IDV.</td>
<td>Levels: Rifabutin AUC 3-fold. 33%-40% decrease in DRV concentrations. Avoid co-administration.</td>
</tr>
<tr>
<td>Rifampin</td>
<td>Levels: No data, but a significant decrease in DRV totes is expected. Should not be coadministered.</td>
<td>Levels: IDV (unboosted) ▼89%; IDV (boosted) ▼47%. Should not be coadministered.</td>
<td>Levels: LPV AUC ▼75%. Should not be coadministered.</td>
</tr>
<tr>
<td>HORMONAL CONTRACEPTIVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels: Potential for ethinyl estradiol from RTV. Use alternative or additional method with DRV/IDV</td>
<td>Levels: Norethindrone ↑26%. Ethinylestradiol ↑24%. No dose adjustment.</td>
<td>Levels: ethinyl estradiol 1/2. Use alternative or additional method.</td>
</tr>
<tr>
<td>LIPID-LOWERING AGENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Statin exposure from 10mg qd with DRV/IDV vs similar exposure to 40mg qd alone. Use lowest possible statin starting dose w/careful monitoring.</td>
<td>Levels: Potential for increase in atorvastatin levels. Use lowest possible starting dose of atorvastatin with careful monitoring.</td>
<td>Atorvastatin AUC 5.8-fold. Use lowest possible starting dose of atorvastatin with careful monitoring.</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>Levels: Mean ↑ in statin AUC was 81% with DRV/IDV. However, statin AUC increased by up to 5-fold in some subjects. Start at lowest dose and titrate up, monitor for toxicities</td>
<td>No Data.</td>
<td>Pravastatin AUC ↑33%; no dosage adjustment necessary.</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use.</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use.</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use.</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>Levels: No data with DRV/IDV. However, RTV is a known inducer of methadone metabolism. Monitor closely; increase methadone as clinically indicated.</td>
<td>No change in methadone levels.</td>
<td>Methadone AUC 33%. Opiate withdrawal may occur. Monitor and titrate dose if needed. May require ↑methadone dose.</td>
</tr>
<tr>
<td>ANTICONVULSANTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Co-administration is expected to result in significant decrease in DRV concentrations. Avoid concomitant use.</td>
<td>Carbamazepine markedly ↑IDV AUC. Consider alternative anticonvulsant, RTV boosting, and/or monitoring IDV level.</td>
<td>Many possible interactions: carbamazepine ↑levels when co-administered with RTV. Use with caution. Monitor anticonvulsant levels. Phenytoin: ↑levels of LPV, RTV, and of phenytoin when given together. Avoid concomitant use or monitor LPV level.</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>Levels: No data with DRV/IDV. However, RTV is a known inducer of methadone metabolism. Monitor closely; increase methadone as clinically indicated.</td>
<td>No data.</td>
<td></td>
</tr>
<tr>
<td>Phenytoin</td>
<td>Levels: No data with DRV/IDV. However, RTV is a known inducer of methadone metabolism. Monitor closely; increase methadone as clinically indicated.</td>
<td>No change in methadone levels.</td>
<td></td>
</tr>
<tr>
<td>ERYCILE DYSFUNCTION AGENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silidenafil</td>
<td>Silidenafil AUC from a 25 mg single dose given w/DRV/IDV was similar to 100mg given alone. Do not exceed 25 mg q48h, monitor for adverse affects.</td>
<td>Silidenafil AUC 1-3 fold. Use cautiously. Start with reduced dose of 25 mg every 48 hours and monitor for adverse effects.</td>
<td>Silidenafil AUC 11-fold in combination with RTV. Do not exceed 25 mg every 48 hours.</td>
</tr>
<tr>
<td>Tadalafil</td>
<td>No data, but concomitant administration is expected to result in substantial increase in tadalafil AUC & half life (normal = 17.5h). Do not exceed a single dose of 10mg q72h.</td>
<td>Concomitant administration will result in substantial increase in tadalafil AUC & half life (normal=17.5h). Start with 5 mg dose; do not exceed a single dose of 10mg q72h.</td>
<td>Tadalafil AUC 124% when co-administered with RTV. Do not exceed a single dose of 10mg every 72 hours.</td>
</tr>
<tr>
<td>Vardenafil</td>
<td>No data, but a substantial increase in vardenafil AUC is expected. Do not exceed a single dose of 2.5 mg in 72 hour.</td>
<td>Vardenafil AUC 16-fold. Vardenafil (unboosted) AUC ▼30%. Dose: Consider vardenafil instead of sildenafil if IDV unboosted. Do not exceed vardenafil 2.5 mg in 72h if administered w/RTV.</td>
<td>No data, but vardenafil AUC may be substantially increased. Do not exceed a single 2.5 mg dose in 72 hours.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Pansentin and Sertraline AUC’s ▼59% and 49%, respectively. Patients initiated on DRV/IDV should be monitored closely for antidepressant response.</td>
<td>Grapefruit juice ↑IDV levels by 26%. Vitamin C ▼2 gr/day ↑IDV AUC by 14% and Cmin by 52%. Amiodarone: Amlodipine AUC ▼90% when co-administered with IDV/RTV. No change in IDV/RTV levels. Monitor closely.</td>
<td>LPV/IDV levels unchanged when tablets are given with omega-3 or ramipril.</td>
</tr>
</tbody>
</table>

1 Darunavir interaction studies were conducted with RTV 100mg bid and mostly with darunavir doses of 300-400mg BID instead of the FDA approved dose of DRV 600mg BID
2 Rifabutin: At least 3x/week is recommended if CD4 cell count is <100/mm³.
3 In one small study, higher doses of RTV (an additional 300mg BID) or a double dose of LPV/RTV offset rifampin-inducing activity of LPV. Of note, 28% of subjects discontinued treatment because of increases in LFTs. The safety of this combination is still under evaluation. Further studies are needed.
Drug Interactions Matrix 3: Drug Interactions Between Antiretrovirals and Other Drugs: PIs

This matrix is based on Table 21a in the Adult Guidelines. *Dosing recommendations are for adults only.*

<table>
<thead>
<tr>
<th>Drugs Affected</th>
<th>Nelfinavir (NFV)</th>
<th>Ritonavir (RTV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>No data, but potential for bi-directional inhibition between itraconazole and PIs; monitor for toxicities.</td>
<td>No data, but potential for bi-directional inhibition between itraconazole and RTV; monitor for toxicities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dose: Dose adjustment for patients receiving ≥ 400mg itraconazole may be needed, or consider monitoring itraconazole level.</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>No dose adjustment necessary.</td>
<td>Levels: ketoconazole ↑ 3X.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dose: Use with caution; do not exceed 200mg ketoconazole daily.</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>No data, but potential for bi-directional inhibition between voriconazole and PIs exists; monitor for toxicities.</td>
<td>Levels: voriconazole AUC ↑ 82% when co-administered with 400mg BID of RTV, and concomitant therapy of voriconazole with RTV 400mg BID or higher is contraindicated. Voriconazole AUC ↑ 39% with RTV 100mg BID; administration of voriconazole and RTV 100mg is not recommended unless benefit outweighs risk.</td>
</tr>
<tr>
<td>ANTI-MYCOBACTERIALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Levels: NFV ↑ 32% if 750mg Q8H dose given; no change if 1,250mg Q12H dose used. Rifabutin ↑ 2X. Dose: rifabutin to 150mg QD or 300mg 3x/wk.4 NFV 1,250mg BID.</td>
<td>Levels: Clarithromycin ↑ 77%.</td>
</tr>
<tr>
<td></td>
<td>Levels: Rifabutin ↑ 3X. Dose: rifabutin to 150mg QOD or dose 3x/week.6 RTV: Maintain current dose.</td>
<td>Use with caution. Monitor anticonvulsant levels.</td>
</tr>
<tr>
<td>Rifampin</td>
<td>Levels: NFV ↓ 82%. Should not be coadministered.</td>
<td>Levels: NFV ↓ 35%. Increased liver toxicity possible. Coadministration may lead to loss of virologic response if RTV sole PI. Alternative antimycobacterial agents, such as rifabutin, should be considered. Should not be coadministered.</td>
</tr>
<tr>
<td>HORMONAL CONTRACEPTIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norethindrone</td>
<td>Levels: Norethindrone ↑ 18%. Ethinyl estradiol ↓ 47%. Use alternative or additional method.</td>
<td>Levels: Ethinyl estradiol ↓ 40%. Use alternative or additional method.</td>
</tr>
<tr>
<td>Ethinyl estradiol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPID–LOWERING AGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Atorvastatin AUC ↑ 74%. Use lowest possible starting dose of atorvastatin with careful monitoring.</td>
<td>Levels: 450% ↑ when administered with SQV/RTV combination. Use lowest possible starting dose of atorvastatin with careful monitoring.</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>No data.</td>
<td>Levels: 50% ↓ when administered with SQV/RTV combination. Dose: Pravastatin dosage adjustment based on lipid response.</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>Simvastatin AUC ↑ 505%. Potential for large increase in lovastatin AUC. Avoid concomitant use.</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use.</td>
</tr>
<tr>
<td>ANTICONVULSANTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Unknown, but may decrease NFV levels substantially. Monitor anticonvulsant levels and virologic response. Consider alternative anticonvulsant or NFV levels.</td>
<td>Carbamazepine: ↑ serum levels when co-administered with RTV. Use with caution. Monitor anticonvulsant levels.</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenytoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHADONE</td>
<td>NFV may decrease methadone levels, but opiate withdrawal rarely occurs. Monitor and titrate dose if needed. May require ↑ methadone dose.</td>
<td>Methadone ↑ 37%. Monitor and titrate dose if needed. May require ↑ methadone dose.</td>
</tr>
<tr>
<td>ERECTILE DYSFUNCTION AGENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sildenafil</td>
<td>Sildenafil AUC ↑ 2- to 11-fold. Use cautiously. Start with reduced dose of 25 mg every 48 hours; monitor for adverse effects.</td>
<td>Sildenafil AUC ↑ 11-fold. Use cautiously. Start with reduced dose of 25 mg every 48 hours and monitor for adverse effects.</td>
</tr>
<tr>
<td>Tadalafil</td>
<td>Concomitant administration will result in substantial increase in tadalafil AUC and half-life (normal = 17.5 h). Start with a 5 mg dose, and do not exceed a single dose of 10mg every 72 hours.</td>
<td>Tadalafil AUC ↑ 124%. Start with a 5 mg dose, and do not exceed a single dose of 10mg every 72 hours.</td>
</tr>
<tr>
<td>Vardenafil</td>
<td>No data, but vardenafil AUC may be substantially increased. Start with a 2.5 mg dose and do not exceed a single 2.5 mg dose in 24 hours. Do not exceed 2.5 mg in 72 hours if administered with RTV.</td>
<td>Vardenafil AUC ↑ 49 fold. RTV AUC ↓ 20%. Dose: Vardenafil: Start with a 2.5 mg dose and do not exceed a single 2.5 mg dose in 72 hours. RTV: Maintain current dose.</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Many possible interactions.</td>
<td>Desipramine ↑ 145%; reduce dose.</td>
<td></td>
</tr>
<tr>
<td>Trazodone AUC ↑ 2.4-fold when given with RTV 200mg BID. Use lowest dose of trazodone and monitor for CNS and CV adverse effects.</td>
<td>Tramadol AUC ↑ 47%; monitor tramadol levels.</td>
<td></td>
</tr>
<tr>
<td>Theophylline</td>
<td>↑ 47%; monitor theophylline levels.</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Characteristics of Available Antiretroviral Drugs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Drugs for which plasma concentrations may be decreased by coadministration with ritonavir: anticoagulants (warfarin), anticonvulsants (phenytoin, divalproex, lamotrigine), antiparasitics (atovaquone).
* Rifabutin: At least 3x/week is recommended if CD4 cell count is <100/mm³.
Drug Interaction Matrix 3: Drug Interactions Between Antiretrovirals and Other Drugs: PIs

This matrix is based on Table 21a in the Adult Guidelines. Dosing recommendations are for adults only.

<table>
<thead>
<tr>
<th>Drugs Affected</th>
<th>Saquinavir* (SQV)</th>
<th>Tipranavir + Ritonavir (TPV/RTV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itraconazole</td>
<td>Bi-directional interaction between itraconazole & SQV has been observed.</td>
<td>No data. Use with caution; do not exceed 200mg itraconazole daily.</td>
</tr>
<tr>
<td>Dose: Not established, but decreased itraconazole dosage may be warranted. Consider therapeutic drug monitoring for both SQV (if unboosted) and itraconazole.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Ketoconazole | Levels: SQV ↑3X.
 Dose: No dosage adjustment necessary. | No data. Use with caution; do not exceed 200mg ketoconazole daily. |
| Voriconazole | No data, but potential for bi-directional inhibition between voriconazole and PIs, monitor for toxicities. | Potential for bi-directional inhibition between voriconazole and PIs exists. Voriconazole AUC ↑39% with RTV 100mg BID; interaction between TPV and voriconazole unknown. Coadministration is not recommended unless the benefit outweighs the risk. |
| **ANTI-MYCOBACTERIALS** | | |
| Clarithromycin | Levels: Clarithromycin ↑45%. SQV ↑177%.
 Dose: No dosage adjustment. | Levels: TPV ↑66%, Clarithromycin ↑19%, 14-hydroxy-clarithromycin metabolite ↑97%.
 Dose: No adjustment for patients with normal renal function; reduce clarithromycin dose by 50% for CrCl 30-60 mL/min; reduce clarithromycin dose by 75% for CrCl <30 mL/min. |
| Rifabutin | Levels: SQV ↓84%.
 Marked elevation of transaminases was seen in a pharmacokinetic study, where healthy volunteers received a combination of rifampin 600mg QD + RTV/SOV 100/100mg BID. This combination should not be used. | No data; should not be coadministered. |
| Rifabutin | Levels: SQV ↓46%.
 Contraindicated unless SQV/RTV.
 Dose: Rifabutin 150mg qod or 3x/week. | Levels: Rifabutin AUC ↑2.9-fold. 25-O-desacetyl metabolite ↑20.7-fold.
 Dose: Decrease rifabutin dose to 150mg QOD or 3x/week. Single-dose study, thus the effect of multiple doses of rifabutin on TPV/r PK was not assessed. |
| **HORMONAL CONTRACEPTIVES** | | |
| | No data. | Levels: Ethinyl estradiol Cmax and AUC ↓50%.* Use alternative or additional method. Women on estrogen may have increased risk of non-serious rash. Used as hormone replacement therapy, monitor clinically for signs of estrogen deficiency. |
| **LIPID-LOWERING AGENTS** | | |
| Atorvastatin | Levels: 45%↑ when administered with SQV/RTV combination. Use lowest possible starting dose of atorvastatin with careful monitoring. | Levels: atorvastatin AUC ↑9-fold.
 Dose: Use lowest possible starting dose of atorvastatin with careful monitoring. |
| Pravastatin | Levels: 50%↓ when administered with SQV/RTV combination. No dose adjustment needed.
 Dose: Pravastatin dosage adjustment based on lipid response. | No data. |
| Simvastatin | Levels: Potential for large increase in statin levels. Avoid concomitant use. | Potential for large increase in statin levels. Avoid concomitant use. |
| Lovastatin | | |
| **ANTICONVULSANTS** | | |
| Carbamazepine | Unknown, but may markedly ↓ SQV levels. Consider alternative anticonvulsant. Monitor anticonvulsant levels and consider monitoring SQV level. | No data. Consider alternative anticonvulsant. Monitor anticonvulsant levels and consider obtaining TPV level. |
| Phenobarbital | | |
| Phenytoin | | |
| **METHADONE** | | |
| Methadone | Methadone AUC ↓20% when co-administered with SQV/RTV 400/400mg BID.
 Dose: No adjustment for this PI regimen, but monitor and titrate to methadone response as necessary. | No data. Dosage of methadone may need to be increased when co-administered with TPV/r. |
| **ERECTILE DYSFUNCTION AGENTS** | | |
| Sildenafil | Sildenafil AUC ↑3-fold. Use a 25 mg starting dose of sildenafil. | No data. Starting dose should not exceed 25 mg sildenafil within 48 hours. |
| Tadalafil | Concomitant administration will result in substantial increase in tadalafil AUC and half-life (normal = 17.5 h). Start with a 5 mg dose, and do not exceed a single dose of 10mg every 72 hours. | No data. Starting dose should not exceed 10mg tadalafil every 72 hours. |
| Vardenafil | No data, but vardenafil AUC may be substantially increased. Start with a 2.5 mg dose and do not exceed a single 2.5 mg dose in 24 hours. Do not exceed a single 2.5 mg dose in 72 hours if administered with RTV. | No data. Starting dose should not exceed 2.5 mg vardenafil every 72 hours. |
| **MISCELLANEOUS** | | |
| Grapefruit juice | ↑ SQV levels. | |
| Dexamethasone | ↑ SQV levels. | |

* Study conducted with TPV/r doses(s) other than FDA-approved dose of 500/200mg BID.

† Some drug interaction studies were conducted with Invirase soft gel capsule. May not necessarily apply to use with Fortovase.
Drug Interaction Matrix 3: Drug Interactions Between Antiretrovirals and Other Drugs: NNRTIs

This matrix is based on Table 21b in the Adult Guidelines. Dosing recommendations are for adults only.

<table>
<thead>
<tr>
<th>Drugs Affected</th>
<th>Delavirdine (DLV)</th>
<th>Efavirenz (EFV)</th>
<th>Nevirapine (NVP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTIFUNGALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>No clinically significant changes in DLV or fluconazole concentrations.</td>
<td>No clinically significant changes in EFV or fluconazole concentrations.</td>
<td>Levels: NVP Cmax, AUC, and Cmin ↑ 100%. Fluconazole: No change. Risk of hepatotoxicity may ↑ with this combination. If co-administered, monitor NVP toxicity.</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>Metabolism of voriconazole may be inhibited by DLV. Voriconazole may inhibit NNRTI metabolism. Frequently monitor for NNRTI toxicity and antifungal outcome.</td>
<td>Levels: EFV ↑ 44%. Voriconazole ↓ 77%. This combination is not recommended.</td>
<td>Metabolism of voriconazole may be induced by NVP. Voriconazole may inhibit NNRTI metabolism. Carefully monitor for NNRTI toxicity and antifungal outcome.</td>
</tr>
<tr>
<td>ANTI-MYCOBACTERIALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Levels: Clarithromycin ↑ 100%. DLV ↑ 44%. Adjust dosage for renal failure.</td>
<td>Levels: Clarithromycin ↓ 39%. Monitor for efficacy or use alternative agent.</td>
<td>Levels: NVP ↑ 26%. Clarithromycin ↓ 30%. Monitor for efficacy or use alternative agent.</td>
</tr>
<tr>
<td>Rifabutin</td>
<td>Levels: DLV ↓ 80%. Rifabutin ↑ 100%. Not recommended.</td>
<td>Levels: EFV unchanged. Rif↓ 15%. Dose: Rifabutin dose to 450-600mg QD or 600mg 3x/week. EFV: Standard.</td>
<td>Levels: NVP ↓ 16%. No dose adjustment.*</td>
</tr>
<tr>
<td>Rifampin</td>
<td>Levels: DLV ↓ 96%. Contraindicated.</td>
<td>Levels: EFV ↓ 25%. Dose: Maintain EFV dose at 600mg QD in patients weighing <50 kg or consider ↑ EFV to 800mg QD.</td>
<td>Levels: NVP ↓ 20%-58%. Virologic consequences are uncertain; the potential for additive hepatic toxicity exists. Combination is not recommended; if used, coadministration should be done with careful monitoring.</td>
</tr>
<tr>
<td>HORMONAL CONTRACEPTIVES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levels of ethinyl estradiol may increase. Clinical significance is unknown.</td>
<td>Levels: Ethinyl estradiol ↓ 37%. No data on other component. Use alternative or additional methods.</td>
<td>Levels: Ethinyl estradiol ↓ approx 20%. Use alternative or additional methods.</td>
</tr>
<tr>
<td>LIPID-LOWERING AGENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>Potential for inhibition of atorvastatin metabolism. Use lowest possible dose and monitor for toxicity.</td>
<td>Levels: Atorvastatin AUC ↓ 43%; EFV unchanged. Dose: Adjust atorvastatin dose according to lipid responses, not to exceed the maximum recommended dose.</td>
<td>No data.</td>
</tr>
<tr>
<td>Pravastatin</td>
<td>No data.</td>
<td>No data.</td>
<td>No data.</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>Levels: Potential for large increase in statin levels. Avoid concomitant use.</td>
<td>Levels: Simvastatin AUC by 58%; EFV unchanged. Dose: Adjust simvastatin dose according to lipid responses, not to exceed the maximum recommended dose.</td>
<td>No data.</td>
</tr>
<tr>
<td>Lovastatin</td>
<td>No data.</td>
<td>No data.</td>
<td>No data.</td>
</tr>
<tr>
<td>ANTICONVULSANTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Levels: DLV Cmin ↓ 90% when co-administered with phenytoin, phenobarbital, or carbamazepine. Contraindicated.</td>
<td>Use with caution. CBZ and EFV AUCs ↓ 27% and 36%, respectively, when combined. One case report showed low EFV concom with phenytoin. Monitor anticonvulsant and EFV levels. If possible, use alternative anticonvulsant.</td>
<td>Levels: NVP unchanged. Methadone ↓ significantly. Opiate withdrawal common when this combination is used; increased methadone dose often necessary. Titrate methadone dose to effect.</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenytoin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHADONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methadone</td>
<td>Levels: Methadone ↓ 60%. Opiate withdrawal common; increased methadone dose often necessary. Titrate methadone dose to effect.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May increase levels of dapsone, warfarin, and quinidine. Silodenafil: Potential for increased concentrations and adverse effects. Use cautiously. Start with reduced dose of 25 mg every 48 hours and monitor for adverse effects. Vardenafil: No data, but vardenafil AUC may be substantially increased. Start with a 2.5 mg dose and do not exceed a single 2.5 mg dose in 24 hours. Tadalafil: No data, but concomitant administration will likely result in substantial increase in tadalafil AUC and half-life (normal = 17.5 h). Start with a 5 mg dose and do not exceed a single dose of 10mg every 72 hours.</td>
<td>Monitor warfarin when used concomitantly.</td>
<td>No data.</td>
<td></td>
</tr>
</tbody>
</table>

* These recommendations apply to regimens that do not include PIs, which can substantially increase rifabutin levels.
Appendix A: Characteristics of Available Antiretroviral Drugs

Drug Interaction Matrix 3: Drug Interactions Between Antiretrovirals and Other Drugs: NRTIs

This matrix is based on Table 21c in the Adult Guidelines. **Dosing recommendations are for adults only.**

<table>
<thead>
<tr>
<th>Drugs Affected</th>
<th>Didanosine (ddI)</th>
<th>Stavudine (d4T)</th>
<th>Tenofovir (TDF)</th>
<th>Zidovudine (ZDV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atazanavir (ATV)</td>
<td>Levels: Simultaneous EC ddI + ATV (with food): ATV AUC of ddI 34%; ATV no change. Administer separately; ATV should be taken with food and ddI-EC on an empty stomach.</td>
<td>No data.</td>
<td>ATV 400mg + TDF 300mg - Levels: ATV AUC ↓ 25% and Cmin ↑ 40%; TDF AUC ↑ 2%. Avoid concomitant use without RTV. ATV + RTV 300/100mg QD + TDF 300mg QD - Levels: ATV AUC ↓ 25% and Cmin ↓ 23%; ATV Cmin higher with RTV than without. TDF AUC ↑ 30%; monitor for toxicities. Dose: ATV + RTV 300/100mg QD co-administered with TDF 300mg QD.</td>
<td>ZDV: No change in AUC but 30%↑ in Cmin. Significance unknown.</td>
</tr>
<tr>
<td>Cidofovir, Ganciclovir, Valganciclovir</td>
<td>Buffed ddI + ganciclovir (GCV): ddI AUC ↑ 50%-111%; GCV AUC ↑ 21% when ddI administered 2 hours prior to oral GCV; no change in IV GCV concentrations. Appropriate doses for the combination of ddI and GCV have not been established.</td>
<td>No data.</td>
<td>Serum concentration of these drugs and/or tenofovir may be increased. Monitor for dose-related toxicities.</td>
<td>Ganciclovir + ZDV: No significant changes in levels for either drug. Potential increase in hematologic toxicities.</td>
</tr>
<tr>
<td>Darunavir (DRV)</td>
<td>No data</td>
<td>No data</td>
<td>Levels: Tenofovir AUC ↑ 22%, Cmax ↑ 24% and Cmin ↑ 37%; Clinical significance unknown; monitor for tenofovir toxicity.</td>
<td>No data.</td>
</tr>
<tr>
<td>Didanosine</td>
<td>Peripheral neuropathy, lactic acidosis, and pancreatitis seen with this combination; should be avoided unless potential benefit far outweighs potential risks.</td>
<td>No significant PK interaction.</td>
<td>Levels: ddl EC AUC ↑ by 48-60%, Cmax ↑ by 48-64%. For patients >60 kg, 250mg/day of ddl EC is recommended; for patients <60 kg, 200mg EC ddl is recommended; the ddl doses apply to patients with creatinine clearance >60 mL/min. Monitor for ddl-associated toxicities.</td>
<td>No significant interactions.</td>
</tr>
<tr>
<td>Indinavir (IDV)</td>
<td>EC ddl can be taken together with IDV.</td>
<td>No significant PK interaction.</td>
<td>Levels: IDV Cmax ↑ 14%. Dose: Standard.</td>
<td>No significant PK interaction.</td>
</tr>
<tr>
<td>Lopinavir/ritonavir (LPV/r)</td>
<td>No data.</td>
<td>No data.</td>
<td>LPV/r 400/100mg AUC ↑ 15%; TDF AUC ↑ 34%; clinical significance of interaction is unknown; monitor for tenofovir toxicities.</td>
<td>No data.</td>
</tr>
<tr>
<td>Methadone</td>
<td>Levels: EC ddl unchanged. Dose: No change EC ddl.</td>
<td>No change in methadone or TDF levels.</td>
<td>No data.</td>
<td>ZDV AUC ↑ 43%. Monitor for ZDV-related adverse effects.</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>Coadministration not recommended. Ribavirin increases the intracellular levels of the active metabolite of ddl and may cause serious toxicities.</td>
<td>No data.</td>
<td>Level: Ribavirin unchanged; no data on TDF level.</td>
<td>Ribavirin inhibits phosphorylation of ZDV; this combination should be avoided if possible, or closely monitor virologic response.</td>
</tr>
<tr>
<td>Tipranavir/ritonavir</td>
<td>Levels: EC ddl ↓ 10%.* TPV Cmin ↓ 34% with EC ddl.* Dose: EC ddl and TPV/r should be separated by at least 2 hours.</td>
<td>No significant PK interaction.</td>
<td>TPV AUC and Cmin ↓ 9%-18% and 12%-21%, respectively; clinical significance is unknown.</td>
<td>Levels: ZDV AUC and Cmax ↓ 31%-42% and 46%-51%, respectively.* Appropriate doses for the combination of ZDV and TPV/r have not been established.</td>
</tr>
</tbody>
</table>

* Study conducted with TPV/r dose(s) other than FDA-approved dose of 500/200mg BID.
Drug Interaction Matrix 4: Drug Effects on Concentration of PIs

This matrix is based on Table 22a in the Adult Guidelines. Dosing recommendations are for adults only.

<table>
<thead>
<tr>
<th>Drug Affected</th>
<th>Fosamprenavir</th>
<th>Atazanavir</th>
<th>Lopinavir/Ritonavir</th>
<th>Nelfinavir</th>
<th>Ritonavir</th>
<th>Saquinavir*</th>
<th>Tipranavir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protease Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darunavir (DRV)</td>
<td>No data</td>
<td></td>
<td>Levels: DRV concentrations from ATV 300mg qd when administered with DRV/r were similar to ATV/r 300/100mg qd. DRV was unchanged. Dose: Administer ATV 300mg qd with DRV/r for exposure similar to ATV/r 300/100mg qd.</td>
<td>Levels: DRV AUC and Cmin ↑ 53% and 65%, respectively. LVPAV and Cmin ↑ 72%, respectively. Dose: Should not be co-administered, as doses are not established.</td>
<td>No data</td>
<td>Levels: DRV AUC and Cmin ↑ 26% and 42%, respectively. DRV exposure similar to when administered with RTV 100/100mg bid. Dose: Should not be co-administered, as doses are not established.</td>
<td>No data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fosamprenavir (fAPV)</td>
<td>* Levels: With fAPV/ATV 1,400/400 OD, ATV AUC & Cmin ↑ 33% and 57%, resp. fAPV AUC and Cmin ↑ 78% and 283%, respectively. With fAPV/r 700/100mg BID + ATV 300mg OD, ATV AUC and Cmax ↓ 22% and 24%, resp. fAPV unchanged. Dose: Insufficient data for dose recommendation.</td>
<td>Levels: With coadministration of fAPV 700mg BID and LPV/r capsules 400/100mg BID, fAPV Cmin ↑64% and LPV Cmin ↑53%. An increased rate of adverse events was seen with coadministration. Dose: Should not be co-administered, as doses are not established.</td>
<td>Levels: IDV AUC and Cmin↑ 100% and 400%, respectively, with 200mg RTV. Dose: fAPV 1,400mg + RTV 200mg QD, or fAPV 700mg + RTV 100mg BID.</td>
<td>Levels: APV AUC ↑32%. Dose: Insufficient data for dose recommendation.</td>
<td>Levels: APV AUC and Cmin ↑44% and 55%, respectively. No data when given as APV/r 600/100 BID with TPV/r. No data with fAPV, but a ↓ in AUC is expected. Dose: Should not be co-administered, as doses are not established.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indinavir (IDV)</td>
<td>Levels: APV AUC ↑53%. Dose: Not established.</td>
<td>Co-administration of these agents is not recommended because of potential for additive hyperbilirubinemia.</td>
<td>Levels: IDV AUC and Cmin↑. Dose: IDV 600mg BID.</td>
<td>Levels: IDV ↑2-5 times. Dose: IDV/RTV 400/400mg, 800/100mg, or 800/200mg BID. Caution: Renal events may ↑ with ↑ IDV concentrations.</td>
<td>Levels: IDV-No effect. SQV ↑4-7 times.† Dose: Insufficient data.</td>
<td>No data. Dose: Should not be co-administered, as doses are not established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopinavir/ Ritonavir (LPV/r)</td>
<td>* Levels: With ATV 300 QD + LPV/r 400/100 BID, ATV Cmin ↑45%, ATV AUC and Cmax were unchanged. LPV PK similar to historic data.</td>
<td>Levels: With ATV 300 QD + LPV/r 400/100 BID, ATV Cmin ↑45%. ATV AUC and Cmax were unchanged. LPV PK similar to historic data.</td>
<td>Levels: With LPV capsules, LPV ↑27%, NFV ↑ 25%. Dose: No data with LPV/r tablets. No dosing recommendation.</td>
<td>Levels: Additional ritonavir is generally not recommended.</td>
<td>Levels: LPV AUC ↑55% & 70% respectively. Dose: Should not be co-administered, as doses are not established.</td>
<td>No data. Dose: Should not be co-administered, as doses are not established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nelfinavir (NFV)</td>
<td>Levels: APV AUC ↑1.5-fold. Dose: Insufficient data.</td>
<td>Levels: With NFV 800mg TID, NFV ↑ 80%, and Cmin ↑ 40%. Dose: No data with NFV. NFV standard.</td>
<td>Levels: LTIV - No effect. NFV ↑ 1.5 times. Dose: Not established.</td>
<td>Levels: Ritonavir no effect SQV ↑ 20 times.† Dose: 1,000/100mg SQV hgc/RTV BID or 400/400mg BID.</td>
<td>Levels: TPV AUC ↑11-fold.</td>
<td>No data. Dose: Should not be co-administered, as doses are not established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritonavir (RTV)</td>
<td>* Levels: ATV AUC ↑238%. Dose: ATV 300mg QD + RTV 100mg QD.</td>
<td>Levels: ATV AUC ↑45% when administered with ritonavir as Kaletra®. Additional ritonavir is generally not recommended.</td>
<td>Levels: ATV AUC ↑760% with SQV/ATV/RTV 1,600/300/100 QD, compared with SQV/ RTV 1,600/100 QD. Dose: No dose recommendations can be made.</td>
<td>Levels: SQV↑ AUC and Cmin↑ 3-5 times. NFV ↑ 20%.* Dose: NFV standard. Fortovase 800mg TID or 1,200mg BID.</td>
<td>Levels: SQV AUC and Cmin ↑76% and 82%, respectively. No data with SQV/r 600/100 BID with TPV/r. Dose: Should not be co-administered, as doses are not established.</td>
<td>No data. Dose: Should not be co-administered, as doses are not established.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saquinavir (SQV)</td>
<td>Levels: APV AUC ↑32%. Dose: Insufficient data.</td>
<td>Levels: SQV AUC ↑69% with SQV/ATV/RTV 1,600/300/100 OD, compared with SQV/RTV 1,600/100 OD. Dose: No dose recommendations can be made.</td>
<td>Levels: SQV↑ AUC and Cmin↑ 3-5 times. NFV ↑ 20%.* Dose: NFV standard; Fortovase 800mg TID or 1,200mg BID.</td>
<td>Levels: SQV AUC and Cmin ↑76% and 82%, respectively. No data with SQV/r 600/100 BID with TPV/r. Dose: Should not be co-administered, as doses are not established.</td>
<td>Levels: SQV AUC and Cmin ↑76% and 82%, respectively. No data with SQV/r 600/100 BID with TPV/r. Dose: Should not be co-administered, as doses are not established.</td>
<td>No data. Dose: Should not be co-administered, as doses are not established.</td>
<td></td>
</tr>
</tbody>
</table>

* Several drug interaction studies have been completed with saquinavir given as Invirase or Fortovase. Results from studies conducted with Invirase may not be applicable to Fortovase.
† Study conducted with Fortovase.
‡ Study conducted with Invirase.

Appendix A: Characteristics of Available Antiretroviral Drugs
Drug Interaction Matrix 4: Drug Effects on Concentration of NNRTIs

This matrix is based on Table 22b in theAdult Guidelines. Dosing recommendations are for adults only.

<table>
<thead>
<tr>
<th>Drug Affected</th>
<th>Delavirdine</th>
<th>Efavirenz</th>
<th>Nevirapine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosamprenavir (APV)</td>
<td>Levels: Presumably, similar PK effects as APV; APV AUC ‡ 130%, and DLV AUC ↓ 61%. Dose: Coadministration not recommended.</td>
<td>Levels: fAPV Cmin ↓ 36% (when dosed at 1,400mg QD with 200mg RTV). Dose: fAPV 1,400mg + RTV 300mg QD, or fAPV 700mg + RTV 100mg BID.</td>
<td>No data.</td>
</tr>
<tr>
<td>Atazanavir (ATV)</td>
<td>No data.</td>
<td>Levels: With unboosted ATV, ATV AUC ↓ 74%. EFV no change. Dose: ATV 300 + RTV 100mg QD with food - ATV concentrations similar to unboosted ATV; if desired ATV concentrations not achieved with ATV/r 300/100mg, may need to increase the dose of ATV/r - insufficient information for specific recommendation. EFV dose - standard.</td>
<td>No data. A decrease in ATV levels is expected. Coadministration is not recommended. Effect of NVP on ritonavir-boosted ATV combination unknown; if used, consider monitoring ATV level.</td>
</tr>
<tr>
<td>Darunavir (DRV)</td>
<td>No data.</td>
<td>Levels: DRV AUC and Cmin ↓ 13% and 31%, respectively. EFV AUC and Cmin ↓ 21% and 17%, respectively. Dose: Clinical significance unknown. Use standard doses and monitor closely. Consider monitoring levels.</td>
<td>Levels: NVP AUC and Cmin ↓ 27% and 47%, respectively. DRV unchanged.† Dose: Standard.</td>
</tr>
<tr>
<td>Indinavir (IDV)</td>
<td>Levels: IDV ↓ >40%; DLV-No effect. Dose: IDV 600mg q8h. DLV standard.</td>
<td>Levels: IDV ↓ 31%. Dose: IDV 1,000mg q8h; consider IDV/RTV, EFV standard.</td>
<td>Levels: IDV ↓ 28%; NVP no effect. Dose: IDV 1,000mg q8h, or consider IDV/RTV, NVP standard.</td>
</tr>
<tr>
<td>Lopinavir/ Ritonavir (LPV/r)</td>
<td>Levels: LPV levels expected to increase. Dose: Insufficient data.</td>
<td>Levels: With LPV/r tablets 600/150mg BID + EFV 600mg QD, LPV Cmin and AUC ↑ 35% and 36%, respectively. No formal study of LPV/r tablets 400/100mg BID + EFV. EFV no change. Dose: LPV/r tablets 600/150mg BID, when used in with EFV in tx-experienced patients. EFV dose - standard.</td>
<td>Levels: With LPV/r capsules, LPV Cmin dec. 55%. Dose: LPV/r tablets 600/150mg BID, when used in combination with NVP in tx-experienced patients. NVP standard.</td>
</tr>
<tr>
<td>Nevirapine (NVP)</td>
<td>No data.</td>
<td>Levels: NVP-no effect. EFV AUC ↓ 22%. Dose: Standard.</td>
<td>*</td>
</tr>
<tr>
<td>Saquinavir (SQV)</td>
<td>Levels: SQV‡ ↓ 5 times; DLV no effect. Dose: Fortovase 800mg TID. DLV standard; monitor transaminase levels.</td>
<td>Levels: SQV‡ ↓ 62%. EFV ↓ 12%. SQV is not recommended as sole PI when EFV is used. Dose: Consider SQV/RTV 400/400mg BID.</td>
<td>Levels: SQV ‡ 25%. NVP no effect. Dose: Consider SQV-sgc/RTV 400/400mg or 1,000/100mg BID or SQV- hgc/RTV 1,000/100mg BID.</td>
</tr>
<tr>
<td>Tipranavir</td>
<td>No data.</td>
<td>Levels: With TPV/r 500/100mg BID, TPV AUC and Cmin ↓ 31% and 42%, respectively. EFV unchanged. With TPV/r 750/200mg BID, TPV PK unchanged. Dose: No dose adjustments necessary.</td>
<td>Levels: No data on the effect of NVP on TPV/r PK. NVP PK unchanged.†</td>
</tr>
</tbody>
</table>

‡ Study conducted with Invirase.

† Based on between-study comparison.

* Study conducted with TPV/r dose(s) other than FDA-approved dose of 500/200mg BID.
APPENDIX B
Pediatric Antiretroviral Guidelines Working Group
Conflict of Interest Disclosure – 2005

<table>
<thead>
<tr>
<th>Name</th>
<th>Panel Status</th>
<th>Company</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaine Abrams</td>
<td>M</td>
<td>Johnson & Johnson</td>
<td>• Stockholder</td>
</tr>
<tr>
<td>Michael Brady</td>
<td>M</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Carolyn Burr</td>
<td>S</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Edmund Capparelli</td>
<td>M</td>
<td>Pfizer Inc.</td>
<td>• Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pfizer Inc.</td>
<td>• Data and Safety Monitoring Board (DSMB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abbott Laboratories</td>
<td>• Research support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inhibitex, Inc.</td>
<td>• Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boehringer Ingelheim</td>
<td>• Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GlaxoSmithKline</td>
<td>• Consultant</td>
</tr>
<tr>
<td>Diana Clarke</td>
<td>M</td>
<td>GlaxoSmithKline</td>
<td>• Research support</td>
</tr>
<tr>
<td>Kenneth Dominguez</td>
<td>GR</td>
<td>Antiretroviral Pregnancy Registry</td>
<td>• CDC representative to Steering Committee</td>
</tr>
<tr>
<td>Pat Flynn</td>
<td>M</td>
<td>MedImmune, Inc. Merck & Co., Inc.</td>
<td>• Research support</td>
</tr>
<tr>
<td>Peter Havens</td>
<td>C</td>
<td>Abbott Laboratories</td>
<td>• Grant support, honoraria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bristol-Myers Squibb</td>
<td>• Grant support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monogram Biosciences</td>
<td>• Grant support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pfizer Inc.</td>
<td>• Program support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gilead Sciences</td>
<td>• Grant support</td>
</tr>
<tr>
<td>Nancy Hutton</td>
<td>M</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>George Johnson</td>
<td>M</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Linda Lewis</td>
<td>GR</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Kathleen McGann</td>
<td>M</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Mark Mirochnick</td>
<td>M</td>
<td>GlaxoSmithKline</td>
<td>• Research support</td>
</tr>
<tr>
<td>Lynne Mofenson</td>
<td>GR</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>James Oleske</td>
<td>C</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Mary Paul</td>
<td>M</td>
<td>The Southwest Allergy Forum</td>
<td>• Speaker with honoraria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Texas Allergy, Asthma and Immunology Society</td>
<td>• Speaker with honoraria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R&R Healthcare Communications, Inc.</td>
<td>• (Ad hoc) Consultant</td>
</tr>
<tr>
<td>Linda Podhurst</td>
<td>S</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Leslie Serchuck</td>
<td>GR</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Gwen Scott</td>
<td>C</td>
<td>Abbott Laboratories</td>
<td>• Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Novartis Pharmaceuticals</td>
<td>• Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abbott Laboratories</td>
<td>• Educational program support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boehringer Ingelheim</td>
<td>• Educational program support</td>
</tr>
<tr>
<td>Deborah Storm</td>
<td>S</td>
<td>NONE</td>
<td>N/A</td>
</tr>
<tr>
<td>Russell Van Dyke</td>
<td>M</td>
<td>MedImmune, Inc. GlaxoSmithKline</td>
<td>• Research support</td>
</tr>
<tr>
<td>Geoffrey Weinberg</td>
<td>M</td>
<td>New York State Department of Health AIDS Institute</td>
<td>• Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Astellas Pharma Inc.</td>
<td>• (Ad hoc) Consultant</td>
</tr>
<tr>
<td>Andrew Wiznia</td>
<td>M</td>
<td>Tibotec Pharmaceuticals Limited</td>
<td>• Advisory board-HIV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gilead Sciences</td>
<td>• (Ad hoc) Consultant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GlaxoSmithKline</td>
<td>• Research support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoffman-La Roche Inc.</td>
<td>• Research support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharmasset Pharmaceuticals</td>
<td>• Research support</td>
</tr>
</tbody>
</table>

* C = Co-Chair; M = member; GR = government representative; S = staff; N/A = not applicable