Volume I – Planning and Configuration of Wastewater Treatment Plants

Chapter 1 – Introduction
 Purpose and Background
 Scope and Organization
 Historical Overview of Municipal Wastewater Treatment
 Nineteenth Century
 Twentieth Century
 Early 21st Century
 The Designer’s Role
 References

Chapter 2 – Overall Design Considerations
 Introduction
 Defining Overall Objectives
 Performance
 Staffing
 Risk Management
 Cost
 Controls
 Land area
 Community impacts
 Sustainability
 Defining Water Quality Objectives
 Overview of U.S. Compliance Standards for Receiving Waters
 Overview of European Standards
 Overview of Other International Standards
 Reuse
 Seasonal Permitting
 Flow-Based Permitting
 Contaminants of Potential Concern
 Design Standards
 Industry Standards & Guidelines
 State Standards
 Federal Standards
 Inter-state Standards
 Project Participants
Chapter 3 – Principles of Integrated Facility Design
Focus on Past Experiences
Empirical
Regional Preferences

Facility Design Requirements
 Present and Future Design Requirements
 Compatibility with Surroundings
 Sensitivity to Operations

Factors Critical to Process Design
 Loading Variability
 Dynamic Factors
 Performance Evaluation and Interpretation
 Range of Conditions

Process Options and Selection Considerations
 Mass Balances
 Simple Small Plant
 Complex Large Plant

References

Chapter 4 — Site Selection and Plant Layout
 Site-Selection Considerations
 Land Use
 Receiving Water Location and Requirements
 Area Requirements
 Centralized versus Decentralized
 Satellite Facilities
 Potential for Effluent Reuse
 Elevation and Topography
 Geology, Hydrogeology, and Soils
 Seismic Activity
 Transportation and Site Access
 Utility Services
 Noise Control
 Air Quality Control
 Other Environmental Considerations
 Evaluation Methodology
 Public Acceptance
 Political and Regulatory Acceptance
 Permit Requirements
 Case Study

 Plant Layout Considerations
 Treatment Facilities
 Administration, Staff, and Support Facilities
 Other Layout Considerations

References

Chapter 5 — Sustainability and Energy Management
 Introduction
Chapter 6 – Plant Hydraulics and Pumping
Hydraulic Considerations
- Hydraulic Profile
- Flow Rates
- Unit Process Liquid Levels
- Unit Process Redundancy
- Flow Distribution
- Plant Head Loss
- Minimum and Maximum Velocity

Unit Process Hydraulics and Other Hydraulic Elements
- Screens
- Grit Basins
- Primary Settling Tanks
- Aeration Basins
- Secondary Settling Basins
- Disinfection Basins
- Other Unit Processes
- Outfalls

Pumping
- Applications, pumping options, and current practice

Hydraulic (Physical) Modeling

Chapter 7 – Modeling

Use of modeling in process engineering - overview
- Empirical models
- Structured models

Models for wastewater treatment processes
- Influent fractionation
- Biological models
- Settling and phase separation models
- Other models used in process engineering

Use of models in practice - simulation
- Software
- Data required
- Initial conditions
- Steady-state simulations
- Dynamic simulations
Chapter 8 — Odor Control & Air Emissions

Odor Control Systems
Sources of Odor
Measurement of Odorous Gases
Analytical Methods
Odor Sensory Methods
Odor Regulation and Community Impact
Odor Nuisance Complaints
Odor Regulations/Ordinances
Approaches to Odor Control
Upstream Controls
Chemical Addition
Atmospheric Dispersion
Stability
Source Characteristics
Plume Behavior
Plume Types
Effects of Obstructions
Building Wake and Cavity Zones
Plume Rise
Meandering
Sampling Time
Regulatory Models
Industrial Source Complex
Odor Models
Högstrom
Fluctuating Plume
Trace Model
Odor Impact Model
Illinois Institute of Technology Research Institute Odor Model
Odorous Air Treatment
Adsorption Systems
Biological Systems
Combustion Systems
Ozonation
Wet Scrubbers
Foul Air Containment/Ventilation
Case History
Corrosion Considerations

References
Chapter 9 – Occupational Health and Safety

Introduction
Laws, Regulations, and Guidance
 Occupational Safety and Health Act and Federal Regulations
 State Requirements
 Local Codes
 National Fire Protection Association Recommendations
 Americans with Disabilities Act Requirements
Causes of Accidents and Injuries
 Causes of Accidents
 Project Phases
 Occupational Health and Safety Surveys
 Liability
Occupational Health
Safety Responsibilities
 Owner’s Roles
 Designer’s Roles
Designing a Safe Facility
 General Procedures for Enhancing Safety
 Designing Practices for Safety
Plant Hazards and Safety Provisions
 Occupational Exposures
 Chemical Handling
 Confined Spaces
 Control of Hazardous Energy
 Odor Control Systems
 Process Safety Management
Designing for Construction Safety
 Federal Regulations
 Prebid Specifications
 Preconstruction Meetings
 Project Safety Monitoring
References

Chapter 10 – Support Systems

Introduction
Reliability Criteria
Electrical Systems
 Electrical Power Distribution
 Lighting Systems
 Standby Power Considerations
 Other Considerations
Instrumentation and Control Systems
 Design Criteria
 Project Scope Development
Types of Diagrams
Selection and Specification of Field Instruments
Field Bus
Control Panels
Supervisory Control and Data Acquisition Systems
Digital Control Systems
Distributed Control System Approaches
Process Control Strategies
Earthquake Precautions for Instrumentation and Control

Heating, Ventilation, and Air Conditioning
Design Criteria
Heating, Ventilating, and Air Conditioning Systems
Energy Conservation
Hazardous Areas

Chemical Systems
Chemical Selection
Application Points
Equipment Selection
Storage (Delivery), Handling, Feed Systems, and Mixing
Considerations for Solids Management

Other Support Systems
Fire Protection
Site Security
Plumbing
Fuel
Compressed Air
Communication

References

Chapter 11 – Construction Materials Selection
Approach to Materials Selection
Plant Exposures

Exposure Conditions
Submerged and Immersion Conditions
Submergence in Raw or Unaerated Wastewater
Submergence in Aerated or Chlorinated Wastewater
Splash Zone Continuous or Intermittent Submerged Exposure
Chemical Environments
Moist Atmosphere
Outside Atmosphere
Inside Dry Atmosphere
Hydrogen Sulfide
Carbon Dioxide
Marine
Coastal
Anoxic
Anaerobic
Soil
Miscellaneous Exposures

Economic Impact of Corrosion
Life-Cycle Cost Analysis
Safety
Maintenance
Economic Life-Cycle Examples
Group I
Group II
Group III

Design Considerations
Deterioration Control
Alteration of Corrosive Environment
Selection of Materials
New Materials Considerations
Geometric Considerations
Fire Protection Regulations and Toxic and Hazardous
Chemicals
Electrical Safety
Cathodic Protection
Protective Coatings
Useful Life of Plant Facilities

Materials Selection for Design of Unit Processes
Preliminary Treatment
Suspended-Growth Biological Treatment
Attached-Growth Biological Treatment
Natural Systems
Disinfection and Dechlorination
Advanced Wastewater Treatment Processes
Solids Handling and Treatment
Solids Storage
Solids Processing
Solids Conditioning
Solids Pumping
Solids Conveyance
Solids Thickening
Solids Dewatering
Solids Stabilization
Gas Collection, Storage, and Distribution
Thermal Processing
Thermal Destruction
Effluent Discharge

Materials Selection for Design of Plant Support Systems
Structural Systems
Volume II – Liquid Treatment Processes

Chapter 12 - Preliminary Treatment

Screening
 Screening Requirements
 Bar Screens
 Comminutors and Grinders
Chapter 13 - Primary Treatment
Sedimentation
Types of Sedimentation Tanks
Design Considerations
Enhanced Sedimentation
Preaeration
Chemical Coagulation
High-Rate Clarification
Cothickening of Waste Activated Sludge
Wet-weather considerations
Primary Sludge
Collection
Quantities and Properties
Thickening
Transport and Handling
Fine Screens
Design Considerations
Handling, Transport and Disposal of Screenings
Plant Information
Scum Management
Collection
Quantities and Chemical Composition
Transport and Handling
Concentration, Treatment, and Disposal
Corrosion Control
References

Chapter 14 – Fixed-Film Biological Treatment
Processes
Trickling Filters
Rotating Biological Contactors
Chapter 15 - Suspended-Growth Biological Treatment

Introduction
 Process Description
 Basic System Components
 Effects of Influent Loads and Character
 Historical Overview

Biological Treatment Fundamentals
 The Activated-Sludge Environment
 Biological Growth and Substrate Oxidation

Process Design for Carbon Oxidation
 Process Design for Nitrification
 Process Design for Nutrient Control
 Phosphorus Removal Processes
 Nitrogen Removal Processes
 Phosphorus and Nitrogen Removal Processes
 Addition of External Carbon and Production of VFAs
Design Considerations
Anaerobic Treatment of Wastewater
Membrane Bioreactors
Process Configurations and Types
 Basin Shape
 Loading Rates
 Feeding and Aeration Patterns
 Other Variations
Wet-Weather Considerations
Oxygen-Transfer Systems
 Diffused Aeration
 Mechanical Surface Aerators
 Submerged Turbine Aerators
 Air Supply System
 Mixing Requirements
 Aerator Design and Testing
 Process Water Testing
 Volatile Organic Compound Emissions
Secondary Clarification
 General Design Considerations
 Process Design Considerations and Parameters
 Control Strategy
Performance History of Treatment Configurations
Summary of Design Procedures and Examples
References

Chapter 16 – Integrated Biological Treatment
Alternatives
 Activated Biofilter
 Trickling Filter/Solids Contact
 Roughing Filter/Activated Sludge
 Biofilter/Activated Sludge
 Trickling Filter/Activated Sludge
 Integrated Fixed-Film Activated Sludge
For Each Technology
 Process Description
 Process Design
References

Chapter 17 – Physical and Chemical Processes for Advanced Wastewater Treatment
Process Selection Considerations
Granular Media Filtration
 Process Description
 Process Design
Automatic Backwashing Filters
Moving Bed Filters
Pulsed Bed Filters
Biflow Filters
Disk Filters
Activated Carbon Adsorption
 Process Description
 Application
 Design Considerations
Chemical Treatment
 Phosphorus Precipitation
 pH Adjustment
 Rapid Mixing
 Chemical Feed Systems
Membrane Processes
 Process Description
 Differences from Other Activated Sludge Systems
 Pretreatment
 Membrane Systems
 Membrane Module Configuration
 Reject/Brine Disposal Requirements
Air Stripping for Ammonia Removal
 Process Description
 Design Considerations
Ammonia Removal by Breakpoint Chlorination
 Process Theory
 Design Considerations
Effluent Reoxygenation
 Cascade Reoxygenation
 Mechanical/Diffused Air Reoxygenation
 Relationship to Other Unit Processes
 Reference and Design Procedures
Advanced Oxidation Processes
References

Chapter 18 – Sidestream Treatment
 Introduction and Definition of Sidestream Treatment
 Current Approaches/Technologies
 Evolving Technologies
 References

Chapter 19 - Natural Systems
 Soil Adsorption Systems
 Typical Adsorption Systems
 Alternative Systems
 Lagoon Systems
 Facultative Lagoons
Chapter 20 – Disinfection

Wastewater Disinfection Technologies
 Types of Disinfection Technologies
 Disinfection Technologies and Mechanisms of Microbial Inactivation
 Disinfection Kinetics

Reactor Design Considerations
 Dispersion and Mixing
 Baffles
 Configuration
 Surrounding Conditions

Chlorination
 Chemistry and Reactions
 Chlorine Toxicity and Effects on Higher Organisms
 Safety and Health
 Shipment and Handling Safety
 Analytical Determination of Chlorine Residuals
 Process Design Requirements
 Design and Selection of Equipment
 Feed Control Strategies
Dechlorination
Chemistry and Reactions
Chlorine Toxicity and Effects on Higher Organisms
Dechlorination Reactions
Safety and Health
Shipment and Handling Safety
Analytical Determination of Chlorine Residuals
Process Design Requirements
Design and Selection of Equipment
Feed Control Strategies
Ultraviolet Disinfection
General Description of Ultraviolet Disinfection
Photoreactivation and Dark Repair
Ultraviolet Inactivation Kinetics
Other Kinetic Models
Effect of Intensity on Inactivation Behavior
Intensity
Ultraviolet Dose
Longitudinal Dispersion
Factors Affecting Lamp Output
Mathematical Models
Fouling
General Considerations in Ultraviolet System Design

References

Volume III – Solids Processing and Disposal

Chapter 21 – Introduction to Solids Management

Introduction
Organization of Volume III
Residuals: Sludge and Biosolids
Regulations
The 40 CFR Part 503 Regulations
Background
Ocean Disposal
General Provisions of U.S. Regulations
Land Application
Surface Disposal
Pathogens and Vector-Attraction Reduction
Incineration

Solids Quantities
Estimating Solids Quantities
Primary Solids Production
Secondary Solids Production
Combined Solids Production
Chemical Solids Production
Chapter 22 – Solids Storage and Transport

Introduction

Liquid Sludge Storage

Liquid Sludge Transport
- Flow and Head Loss Characteristics
- Design Approach
- Kinetic Pumps
- Positive-Displacement Pumps
- Other Pumps

Dewatered Cake Storage

Dewatered Cake Transport
- Pumps
- Conveyors

Dried Solids Transport
- Belt Conveyors
- Screw Conveyors
- Drag Conveyors
- Bucket Elevators Conveyors
- Pneumatic Conveyors

References

Chapter 23 – Conditioning

Introduction

Factors Affecting Conditioning
- Characteristics
- Handling and Processing Conditions
- Coagulation and Flocculation
- Conditioning Methods

Types of Chemical Conditioning
- Inorganic Chemicals
- Organic Chemicals—Polymers
- Filter Aids

Feed Equipment
- Inorganic Chemicals
- Organic Chemicals—Polymers
Dosage Optimization
Cost Effectiveness of Chemical Conditioner and Dosage
Cost of Conditioning
Process Design Considerations for Thickening and Dewatering
Tests for Conditioner Selection
Bench- & Pilot-Scale Tests for Specific Dewatering Unit Processes

References

Chapter 24 – Thickening
Introduction
Gravity Thickening
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Considerations and Criteria
 Ancillary Equipment/Controls
Dissolved Air Flotation Thickening
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Considerations and Criteria
 Mechanical Features
 Ancillary Equipment and Controls
Centrifugal Thickening
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Conditions and Criteria
 Mechanical Features
 Ancillary Equipment and Controls
Gravity Belt Thickening
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Considerations and Criteria
 Mechanical Features
 Ancillary Equipment/Controls
Rotary Drum Thickening
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Conditions and Criteria
 Mechanical Features
 Ancillary Equipment and Controls
Other Thickening Methods
 Combined Primary Clarification and Waste-Activated-Sludge
Chapter 25 – Dewatering

Introduction
 Impact of Sludge Characteristics on Dewatering
Centrifugal Dewatering
 Introduction
 Process Criteria
 Process Design Conditions and Criteria
 Ancillary Equipment and Controls
Belt Filter Press Dewatering
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Conditions and Criteria
 Mechanical Features
 Ancillary Equipment and Controls
Pressure Filter Press Dewatering
 Introduction
 Theory
 Evaluation and Scale-Up Procedures
 Process Design Conditions and Criteria
 Mechanical Features
 Ancillary Equipment and Controls
Drying Beds
 Sand Drying Beds
 Other Types of Drying Beds
 Reed Beds
Other Dewatering Methods
References

Chapter 26 – Stabilization

Introduction
Comparison of Processes
Anaerobic Digestion
 Basic Theory
 Solids and Hydraulic Retention Times
 Design Considerations
 Description of Physical Facilities
 Anaerobic Digestion Gas Handling
 Process Variations
Aerobic Digestion
 Process Applications
 Process Theory
Design Considerations
Waste Heat Recovery
Biogasification
 Process Description
 Design Considerations
Emissions Control
 Odors
 Combustion Emissions
 Emission Regulations
 Pollution Control Technology
References

Chapter 28 – Use and Disposal of Biosolids

Land Application
 Regulatory Considerations
 Site Suitability
 Design and Implementation
 Case Studies
Landfilling
 Regulatory Considerations
 Planning
 Landfill Design
 Monitoring Requirements - Groundwater
 Landfill Gas
 Landfill Closure
Dedicated Land Disposal
 Regulatory Considerations
 Application Rates
 Methods of Application
 Groundwater Protection
 Dedicated Land Disposal Classification
 Environmental and Operational Factors
 Design and Implementation
Distribution and Marketing
 Regulatory Considerations
 Product End-Use Considerations
 Identifying and Developing Markets
 Case Studies
References

Glossary