Oracle Database

Table of Contents

1. Restrict administrative privileges/roles granted to users
2. Set default_tablespace to non-SYSTEM tablespace for user accounts
3. Document database incident response and escalation procedure
4. Lock and expire default user accounts
5. Manage Oracle Software License Agreement
6. Control access to Oracle data dictionary objects
7. Limit OS level access to Oracle software account
8. Configure LogMiner to analyze and identify transactions
9. Harden init.ora configuration
10. Harden listener.ora configuration
11. Encrypt critical data
12. Implement change control management
13. Backup Database
14. Secure backup media
15. Restrict developer access to production databases
16. Implement data retention and archiving policy
17. New User Creation Policy and Procedure
18. Provide periodic security training to DBA users
19. Restrict access to system audit logs
20. Manage database links
21. Manage terminated or transferred employee's database user account
22. Enable idle_time parameter for user profiles
23. Manage shared or generic database user accounts
24. Implement strong password verify function is assigned to critical database accounts
25. Apply latest CPU patches provided by Oracle
26. Review log files periodically
27. Restrict permissions on run-time facilities
28. Maintain disaster recovery and standby database
29. Harden sqlnet.ora configuration
30. Control operating system access for Oracle directories and files
31. Revoke privileges and roles from the database server user group PUBLIC
32. Eliminate the practice of storing plaintext passwords
33. Audit privileged users activities in the database
34. Test backup and restore procedures regularly
35. Protect copy of sensitive production data in non-production environments
Membership of the Research Triangle Chapter is comprised of more than 400 IT Audit, Security and Governance professionals from the several industries.

1. Restrict administrative privileges/roles granted to users

Do not provide database users more privileges than necessary. Enable only those privileges actually required to perform necessary jobs efficiently:

1) Restrict the number of system and object privileges granted to database users.
2) Restrict the number of SYS-privileged connections to the database as much as possible. For example, there is generally no need to grant CREATE ANY TABLE to any non-DBA-privileged user.
3) Check for any user or role that has the ANY keyword and revoke this role where possible.
4) Prevent granting of privileges that have WITH ADMIN.
5) Prevent granting of privileges that have WITH GRANT

REFERENCE

LIST OF RESTRICTED_PRIVILEGES IN ORACLE

ADMINISTER DATABASE TRIGGER
ADMINISTER RESOURCE MANAGER
ADMINISTER SECURITY
ADVISOR
ALTER ANY CLUSTER
ALTER ANY DIMENSION
ALTER ANY INDEX
ALTER ANY INDEXTYPE
ALTER ANY LIBRARY
ALTER ANY MATERIALIZED VIEW
ALTER ANY OPERATOR
ALTER ANY PROCEDURE
ALTER ANY ROLE
ALTER ANY RULE
ALTER ANY RULE SET
ALTER ANY SECURITY PROFILE
ALTER ANY SEQUENCE
ALTER ANY SNAPSHOT
ALTER ANY TABLE
ALTER ANY TRIGGER
LOCK ANY TABLE
MANAGE TABLESPACE
RESTRICTED SESSION
SYSDBA
SYSOPER
UPDATE ANY TABLE
WRITEDOWN
WRITEUP

Review all %ANY% privilege assigned to users

LIST OF RESTRICTED ROLES IN ORACLE

DBA
EXP_FULL_DATABASE
IMP_FULL_DATABASE
OEM_ADVISOR
OEM_MONITOR
RESOURCE
SCHEDULER_ADMIN
TIMESERIES_DB
%_CATALOG_%

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g, 11g
Data Classification: Financial
Monitoring Frequency: Continuous
Control Type: Authentication, Access Control
Risk Level: High
Operating System: Linux, Unix, Windows, VMware

2. Set default_tablespace to non-SYSTEM tablespace for user accounts

System tablespace contains the data dictionary information that needs to maintain the Oracle database. Any user should not have SYSTEM tablespace as his/her default tablespace.
Change the value of default tablespace by following the steps below.
(a) Invoke SQL*Plus
(b) Run the query:
 - alter user USER_NAME default tablespace tablespace_name;

MAINOPTIONS

Product Version: 8i, 9i, 10g, 11g
Risk Level: Low
Operating System: Linux, Unix, Windows, VMware

3. Document database incident response and escalation procedure

Are you prepared to make the best decisions and responses to database security incidents in your business?
Prevention is always best, in other words: cheapest. Prevention is generally more economical, less stressful,
and incurs less downtime however it requires a very full understanding of the security landscape. But eventually, the inevitable happens and the cost of recovery is directly related to the amount of fore-planning applied. Following are the suggested approaches to handle database incidents:

Assessing the situation
Identifying the people to handle the incident
Forming a plan for resolution
Return to Operation
Preventing Reoccurrence
Review the Causes
Review Resolution
Create a Final Report
The key is to prevent re-occurrence.

REFERENCE

There are several well known sources for incident response management:
NIST SP800-61 Computer Security Incident Handling Guide Tim Grance, Karen Kent, Brian Kim
NIST SP800-83 Guide to Malware Incident Prevention and Handling
Peter Mell, Karen Kent, Joseph Nusbaum
NIST SP800-86 Guide to Network and Computer Data analysis: Applying Forensic Techniques to Incident Response
Tim Grance, Suzanne Chevalier, Karen Kent, Hung Dang
Best Practices for Security Incident Response, Kerry Thompson
Incident Response
Kenneth R. van Wyk, Richard Forno
http://www.oreilly.com/catalog/incidentres/index.html

MAINOPTIONS

Compliance: PCI-DSS
Product Version: 8i, 9i, 10g, 11g
Monitoring Frequency: Monthly
Risk Level: Medium
Operating System: Linux, Unix, Windows, VMware

4. Lock and expire default user accounts

Oracle database installs with a number of default database user accounts. Upon successful installation of the database, the Database Configuration Assistant automatically locks and expires most default database user accounts.

If you perform a manual (without using Database Configuration Assistant) installation of Oracle Database, then no default database users are locked upon successful installation of the database server. Or, if you have upgraded from a previous release of Oracle Database, you might have default accounts from earlier releases. Left open in their default states, these user accounts can be exploited, to gain unauthorized access to data or disrupt database operations.

You should lock and expire all default database user accounts. Oracle Database provides SQL statements to perform these operations.

REFERENCE
ALTER USER ANONYMOUS PASSWORD EXPIRE ACCOUNT LOCK;
http://download.oracle.com/docs/cd/B28359_01/server.111/b28337/tdpsg_user_accounts.htm

http://www.cirt.net/passwords?vendor=Oracle%3f

5. Manage Oracle Software License Agreement

It is a key business imperative to have robust and flexible procedures in place to monitor and control Oracle software assets. Failure to do so may lead to legal lawsuits impacting corporate governance. But, effective license agreement helps companies reduce cost and manage the environment better.

6. Control access to Oracle data dictionary objects

Check for any user accounts that have access to the following objects and revoke where possible:

All_% views
ALL_USERS view
DBA_%
7. Limit OS level access to Oracle software account

Oracle software comes with several powerful OS utilities like export, import and trace. Restrict administrative access to OS account that owns Oracle software. In addition, review the membership of the DBA group on the host to ensure that only authorized OS accounts are included.

8. Configure LogMiner to analyze and identify transactions

All changes made to user data or to the database dictionary are recorded in the Oracle redo log files so that database recovery operations can be performed. Redo log files contain information about the history of activity on a database. Oracle LogMiner, which is part of Oracle Database, enables you to query online and archived redo log files through a SQL interface. LogMiner is a powerful audit tool for Oracle databases, allowing administrators to easily locate changes in the database, enabling sophisticated data analyses, and providing undo capabilities to rollback logical data corruptions, user errors or undo damage.

REFERENCE

http://download-west.oracle.com/docs/cd/A87860_01/doc/server.817/a76956/arch redo.htm#12680

9. Harden init.ora configuration

The init.ora file stores the initialization parameters of Oracle. The values that are currently in effect can be viewed through v$parameter.
10. Harden listener.ora configuration

Listener configuration, stored in the listener.ora file, consists of the following elements:
2) Protocol addresses that the listener is accepting connection requests on
3) Dynamic service registrationControl parameters

11. Encrypt critical data

Critical data must be encrypted to prevent the DBAs and other users who have access to production system from accessing it. Alternately, You can audit key tables. This does not prevent the DBA from viewing the data, but would create a record of the activity. Management of the encryption key must be done carefully as exposure of the key will render the encryption moot.

12. Implement change control management

The objective of Change management is to ensure that standardized methods and procedures are used for efficient and prompt handling of all changes to controlled database infrastructure, in order to minimize the number and impact of any related incidents upon service. Changes in the database infrastructure may arise reactively in response to problems or externally imposed requirements, e.g. legislative changes, or proactively from seeking imposed efficiency and effectiveness or to enable or reflect business initiatives, or from programs, projects or service improvement initiatives. Change Management can ensure standardized methods, processes and procedures are used for all changes, facilitate efficient and prompt handling of all changes, and maintain the proper balance between the need for change and the potential detrimental impact
of changes. Some of the common functions included in change control management include:

> Code Review for common vulnerabilities

13. Backup Database

Backup and recovery of your Oracle database is important to protecting data from corruptions, hardware failures, and data failures. While Oracle provides many features to protect your data, nothing can replace a backup.

REFERENCE

http://sahaa.net/wp/Database_Backup_Sample_Policy.pdf

14. Secure backup media

Backup data on secondary systems is at a much greater risk than primary data, which is protected by stringent data center policies and procedures. There are several incidents of data theft because the backup media was not protected well.

REFERENCE

http://www.zmanda.com/backup-security.html
15. **Restrict developer access to production databases**

Developers and testers must not have direct access to production databases.

MAINOPTIONS

Compliance: S-OX, PCI-DSS
Product Version: 8i, 9i, 10g
Data Classification: Financial
Control Type: Access Control
Risk Level: High
Operating System: Linux, Unix, Windows, VMware
Area of work: Administration (DBA)

16. **Implement data retention and archiving policy**

Data retention practice is truly protecting corporate data for long periods of time in order to meet regulatory requirements. For example, HIPAA requires that medical records be retained up to two years after a person’s death. Sarbanes-Oxley requires audit data be kept for seven years after the conclusion of the audit and CFR (Life Sciences) requires that pharmaceutical companies retain clinical trial data for 35 years. Requirements are extremely stringent for companies that must retain data for legal purposes, and most are not prepared to hold data for such long time frames, let alone guarantee it hasn’t been altered in any way.

Also, good data retention practices help companies achieve maximum performance of applications through a reduced amount of data to process. In addition, day-to-day operations such as backups, recoveries and reorganizations will execute more efficiently. In most cases, the data is not deleted regularly even though the new transactions continue to occur within the application.

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g, 11g
Control Type: Purging and Archiving
Risk Level: Medium
Operating System: Linux, Unix, Windows, VMware

17. **New User Creation Policy and Procedure**

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g, 11g
Control Type: Access Control
18. Provide periodic security training to DBA users

DBAs have escalated privileges to the system data. DBA users need to receive additional security training specific to their duties and role.

19. Restrict access to system audit logs

Given the central role of audit logs in performing auditing of interactions with the data (modification, exposure) as well as of the base data itself, it is critical that audit logs be correct and inalterable. The integrity of the audit log itself must also be guaranteed.

There are several ways to protect audit logs in an Oracle system:
1) Protect the permission for the audit directory and files from Oracle OS account
2) The alternative is to put audit trail in the operating system. Following the principle of separation of duties, DBAs should not be able to view the audit trail.

20. Manage database links

Protecting production data is vital to any company. Database (DB) links, which allows users to connect from one database to another, pose a risk to production data that needed to be addressed. Following factors need to be considered when managing database links:
1) A database link owned by PUBLIC can be used by any user in the database. Unless it's really required stay away from creating public database links.
2) Oracle keeps clear-text passwords for created database links in the SYS.LINK$ table in some earlier Oracle versions. Apply Oracle patch or recreate link$ to hide password column.
3) Prevent unauthorized database links from being created between production schemas and non-production schemas.
4) Data is transferred in clear text format using DB link unless proprietary network encryption solution is implemented. So, do not use DB links to access sensitive data via unsecured network.
21. Manage terminated or transferred employee's database user account

To mitigate the risk of unauthorized access of information, establish control in place for managing terminated or transferred employees' Oracle user accounts and rules for access. When a user is transferred or terminated, the user's access to database must be terminated to minimize risk. Following best practices are recommended for managing the access:

* Direct supervisor or manager to contact the database administrator immediately when the user is transferred or terminated.

22. Enable idle_time parameter for user profiles

Typically, malicious users target the inactive sessions to gain access into the database. By reducing the period of time an inactive session stays connected, the probability of that session being a victim of abuse is reduced. Also, setting up idle_time helps to reduce problems of having too many INACTIVE sessions. Oracle has several ways to disconnect idle connections, both from within SQL*Plus via resources profiles (connect_time, idle_time), and with the SQL*net expire time parameter. However, it's much easier to manage connection timeout using idle_time attached with user profiles.

23. Manage shared or generic database user accounts

Shared database accounts with high-level access rights can pose significant risks to organizations. Also, the use of a generic account represents a security risk in terms of both access control and auditing. From an
access control perspective, anyone who knows the generic accounts password can execute privileged commands on databases. From an auditing perspective, it is impossible to directly associate a specific SQL statement with a specific user. So, care should be given when managing shared database accounts.

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g, 11g
Data Classification: Financial
Monitoring Frequency: Weekly
Control Type: Authentication, Access Control, User Audit
Risk Level: High
Operating System: Linux, Unix, Windows, VMware

24. **Implement strong password verify function is assigned to critical database accounts**

Establishing and enforcing limitations on password complexity, expiration, lockout, and reuse will reduce the risk that threat agents may gain access by exploiting a weakness in these settings. Create a strong password verify function and attach the function to default or custom profile which will be assigned to all user accounts created in the database. Following values are recommended for the password profile options:

- failed_login_attempts=10
- password_life_time=90
- password_reuse_max=20
- password_reuse_time=365
- password_lock_time=1
- password_grace_time=3

REFERENCE

http://www.cqure.net/wp/test/

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g, 11g
Monitoring Frequency: Daily, Weekly
Control Type: Authentication, Access Control
Operating System: Linux, Unix, Windows, VMware
Area of work: Administration(DBA)

25. **Apply latest CPU patches provided by Oracle**

Oracle issues a Cumulative Patch Update (CPU) or Patch Set Update (PSU) every quarter that fixes number of security vulnerabilities. It is imperative to keep the Oracle database instance at the latest patch level. While creating a new Oracle database instance make sure you install the latest security patch. Oracle database security patches are cumulative, so you need to install only the latest patch update. Check critical patch update advisory link at http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
Notes: Oracle CPU may have dependencies on other patches or features/components. Analyze the documentation before applying the patch.
Any critical vulnerability that exposes the installed module needs to be patched immediately.

REFERENCE

Subscribe to the following RSS feeds:
http://www.red-database-security.com/advisory/published_alerts.xml

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 9i, 10g, 11g
Data Classification: Financial
Monitoring Frequency: Continuous
Control Type: Patch Management
Risk Level: High
Operating System: Linux, Unix, Windows, VMware
Area of work: Administration(DBA)

26. **Review log files periodically**

Oracle generates several log files and many of them can provide useful information to assist in auditing and securing the database. Automated or manual review of these log files on a daily/weekly basis should be one of the key responsibilities of a database administrator.

- alert. log - Chronologically records messages and errors arising from the daily database operation. Also, there are pointers to trace files and dump files. Monitor alert log periodically for ORA-type errors. This log file is stored under background_dump_dest specified in init.ora or spfile.
- listener. log - The logfile shows a timestamp, command issued, and result code. If an Oracle error is returned, it will include the error message. The default directory is $ORACLE_HOME/network/admin

REFERENCE

http://www.sawmill.net/formats/Oracle_Listener.html

MAINOPTIONS

Product Version: 8i, 9i, 10g, 11g
Monitoring Frequency: Weekly
Risk Level: Medium
Operating System: Linux, Unix, Windows, VMware
Area of work: Administration(DBA)

VENDOR DETAILS

- MySQL - www.mysql.com
- Oracle - www.oracle.com
27. Restrict permissions on run-time facilities

REFERENCE

Here is an example of a vulnerable run-time call, which individual files are specified:
call dbms_java.grant_permission('wsmith', 'SYS:java.io.FilePermission','<<ALL FILES>>','read');
Here is an example of a better (more secure) run-time call, which specifies a directory path instead:
call dbms_java.grant_permission('wsmith', 'SYS:java.io.FilePermission','<<actual directory path>>','read');

MAINOPTIONS

Compliance: S-OX, PCI-DSS
Product Version: 9i, 10g, 11g
Monitoring Frequency: Weekly
Control Type: Configuration
Risk Level: Medium
Operating System: Linux, Unix, Windows, VMware

28. Maintain disaster recovery and standby database

Oracle Data Guard: It enables you to use either a physical standby database (Redo Apply) or a logical standby database (SQL Apply), or both, depending on the business requirements. A physical standby database provides a physically identical copy of the primary database, with on-disk database structures that are identical to the primary database on a block-for-block basis. The database schema, including indexes, is the same. A physical standby database is kept synchronized with the primary database by applying the redo data received from the primary database through media recovery.

REFERENCE

http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA, GLBA
Product Version: 8i, 9i, 10g, 11g
Monitoring Frequency: On-Demand
Control Type: Business Continuity
Risk Level: Medium
Operating System: Linux, Unix, Windows, VMware

29. Harden sqlnet.ora configuration

The sqlnet.ora contains the configuration files for the communication between the user and the server including the level of required encryption.

MAINOPTIONS

Compliance: PCI-DSS
Product Version: 8i, 9i, 10g, 11g
30. **Control operating system access for Oracle directories and files**

In addition to the security Oracle maintains on tables and other database objects, the operating system controls access to Oracle files. Access to these files should be restricted on a need only basis and preferable restricted to the operating system account that owns the Oracle installation.

Windows

Remove the Everyone Group from the installation drive or partition and give System and local Administrators Full Control.

Remove permissions for the Users group from the [OS drive]:\Program Files\Oracle folder. The Oracle program installation folder must allow only limited access.

Tighten the permission on tools (*.exe) in the WINNT and System32 folders, e.g., only Administrators should have permissions on these files; however, deny access to the Oracle service account. The Oracle service account is an administrator account, but also must be denied access to executables.

The everyone group must not be able review registry settings.

Give Full Control over the HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE key to the account that will run the Oracle services and remove the local Users group if its not required. Give read permissions to those users that require it. Access to the Oracle registry key must be limited to those users that require it.

Unix

All files in the $ORACLE_HOME/bin must be owned by the Oracle software account.

All files in the $ORACLE_HOME/bin directory must have permissions set to 0755 or less.

All files in $ORACLE_HOME directories (except for $ORACLE_HOME/bin) must have permission set to 0750 or less.

Ensure the umask value is 022 for the owner of the Oracle software before installing Oracle.

Regardless of where the umask is set, umask must be set to 022 before installing Oracle.

File permissions must be restricted to the owner of the Oracle software and the dba group. (init, spfile, database files, ifile, listener.ora, sqlnet.ora etc.)

The Oracle 10g installer application could potentially create files in a temporary directory with public privileges. It would be possible for any local user to delete, overwrite or corrupt these files during the installation process. Try to ensure that no other users are connected while installing Oracle 10g. Also set the $TMP and $TMPDIR environment variables to a protected directory with access given only to the Oracle software owner and the ORA_INSTALL group.

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g
Data Classification: Financial
Control Type: Access Control
Risk Level: Medium
Operating System: Linux, Unix
31. **Revoke privileges and roles from the database server user group PUBLIC**

If unnecessary privileges and roles are not revoked from PUBLIC, this default role, granted to every user in an Oracle database, enables unrestricted use of its privileges, such as EXECUTE on various PL/SQL packages.

REFERENCE

To revoke a privilege, connect as SYS and do the following:

```
REVOKE EXECUTE ON UTL_SMTP FROM PUBLIC;
REVOKE EXECUTE ON UTL_TCP FROM PUBLIC;
REVOKE EXECUTE ON UTL_HTTP FROM PUBLIC;
REVOKE EXECUTE ON UTL_FILE FROM PUBLIC;
REVOKE EXECUTE ON DBMS_RANDOM FROM PUBLIC;
```

MAINOPTIONS

Product Version: 8i, 9i, 10g, 11g
Control Type: Access Control, Configuration
Risk Level: Medium
Operating System: Linux, Unix, Windows, VMware

32. **Eliminate the practice of storing plaintext passwords**

Compromise of a database user password is one of the most difficult intrusions to detect. The best strategy is to eliminate storing of plaintext passwords in the first place. This can be done in several ways:

1) Do not store database user passwords in a plaintext file or in the database
2) Salt and hash every password that's stored
3) Scan operating system files and cron jobs to check if the database user passwords are stored in plaintext format
4) Change database user passwords regularly

MAINOPTIONS

Product Version: 8i, 9i, 10g, 11g
Monitoring Frequency: Continuous
Risk Level: High
Operating System: Linux, Unix, Windows, VMware

33. **Audit privileged users activities in the database**

Full access credentials accorded to DBAs and system administrators creates a significant vulnerability for an enterprises data simply because these privileged users have access to all or a significant fraction of data. Auditing of the users authenticated as the SYSDBA or the SYSOPER provides an oversight of the most privileged of users. Ensure this by setting the `AUDIT_SYS_OPERATIONS` to TRUE.

In addition, enable audit for the following key system tables:

```
AUDIT DATABASE LINK; -- Audit create or drop database links  
AUDIT PUBLIC DATABASE LINK; -- Audit create or drop public database links  
AUDIT SYSTEM AUDIT; -- Audit statements themselves  
AUDIT ALTER ANY ROLE by ACCESS; -- Audit alter any role statements
```
AUDIT ALTER DATABASE by ACCESS; -- Audit alter database statements
AUDIT ALTER SYSTEM by ACCESS; -- Audit alter system statements
AUDIT CREATE ROLE by ACCESS; -- Audit create role statements
AUDIT DROP ANY ROLE by ACCESS; -- Audit drop any role statements
AUDIT PROFILE by ACCESS; -- Audit changes to profiles
AUDIT PUBLIC SYNONYM by ACCESS; -- Audit public synonyms statements
AUDIT SYSDBA by ACCESS; -- Audit SYSDBA privileges
AUDIT SYSOPER by ACCESS; -- Audit SYSOPER privileges
AUDIT SYSTEM GRANT by ACCESS; -- Audit System grant privileges

Note: It is important that the database user should not have access to the system directories where the audits will be recorded.

REFERENCE

http://sahaa.net/wp/db_activity_monitoring_wp_sahaa.pdf

MAINOPTIONS

Compliance: S-OX, PCI-DSS, HIPAA
Product Version: 8i, 9i, 10g
Data Classification: Intellectual Property, Financial
Control Type: Access Control
Operating System: Linux, Unix, Windows

34. Test backup and restore procedures regularly

Backups should be verified by performing recoveries to ensure backups function properly. Failure to ensure this could cause inability to recover data, leading to data loss.

REFERENCE

Following eight-step process validates whether an Oracle database could be properly recovered from the backup copy:

SQL #1: select count(*) from v$recover_file; The v$recover_file view displays the status of files needing media recovery. The SQL should return one row of value 0. If the result is anything other than 0, it means that the database backup was not consistent. The database backup has to be taken again.

SQL #2: select count(*) from v$recovery_log; The v$recovery_log view lists information about archived logs that are needed to complete media recovery. The SQL should return one row of value 0. If the result is anything other than 0, it means that the database backup was not consistent. The database backup has to be taken again.

SQL #3: select count(*) from v$recovery_status; The v$recovery_status view contains statistics of the current recovery process. The SQL should return one row of value 0. If the result is anything other than 0, it means that the database backup was not consistent. The database backup has to be taken again.

SQL #4: select count(*) from v$recovery_file_status; The v$recovery_file_status view contains one row for each data file for each RECOVER statement. The SQL should return one row of value 0. If the result is anything other than 0, it means that the database backup was not consistent. The database backup has to be taken again.

SQL #5: select name, status from v$datafile where (name like '%MISS%' or status not in ('ONLINE', 'SYSTEM')); The v$datafile view contains datafile information from the control file. The SQL should return two rows of values SYSTEM and ONLINE. If the query returns any other result it means that the database
backup was not consistent. The database backup has to be taken again. SQL #6: Select distinct checkpoint_change# from v$datafile; The $datafile view contains datafile information from the control file. The checkpoint_change# is written to each of the datafile at the time of closing the database. The SQL should return only one row. If more than one row is returned it means that the database backup was not consistent. The database backup has to be taken again. SQL #7: Select distinct to_char(CHECKPOINT_TIME,'DD-MON-YYYY HH24:MI:SS') from v$datafile_header; The $datafile view contains datafile information from the control file. The checkpoint_time is written to each of the datafile at the time of closing the database. The SQL should return only one row. If more than one row is returned it means that the database backup was not consistent. The database backup has to be taken again. SQL #8: Select distinct fhsta from x$kcvfh; x$ tables are the sql interface to viewing oracle's memory. The SQL query should return one distinct number. Otherwise, the database backup is inconsistent and has to be taken again.

MAINOPTIONS

Compliance: S-OX, PCI-DSS
Product Version: 8i, 9i, 10g
Data Classification: Financial
Operating System: Linux, Unix

35. Protect copy of sensitive production data in non-production environments

Data which is sensitive in nature, which is protected in the Production Environment, is less protected and is at risk of exposure when it is cloned for use in non-production environments such as Development, Test and Training instances. This practice puts businesses at unacceptable risk for loss of customer trust, damage to brand, expensive notification, remediation efforts, and in violation of various regulatory and statutory requirements with resulting fines and penalties. Based on several California legislations and other worldwide data privacy regulations (See References for a listing of legislation and regulations), business needs to mask and restrict unauthorized use of data deemed confidential or restricted in test and development systems. Data masking is a process by which production data would be disguised in the supporting instances to production. Organizations routinely share production data, for example, database administrators copy production data into testing environments for realistic and accurate testing. This requires most organizations to mask sensitive parts of its production data. One of the easiest ways to both efficiently provide test and development data while protecting employee and customer identities is to mask data elements used to establish a person's identity. Data Masking is needed solution for data protection from both internal and external security threats. Data masking is also referred to as data obfuscation, data de-identification, data de-personalization, data scrubbing, data scrambling, etc.

REFERENCE

Legislation and Data Privacy Regulations
1. California legislation SB-1386: Any agency, person or business that conducts business in California and owns or licenses computerized 'personal information are required to disclose any breach of security (to any resident whose unencrypted data is believed to have been disclosed).
2. Gramm-Leach-Bliley: The Financial Modernization Act of 1999, also known as the "Gramm-Leach-Bliley Act" or GLB Act, includes provisions to protect consumers' personal financial information held by financial institutions. There are three principal parts to the privacy requirements: the Financial Privacy Rule, Safeguards Rule and pretexting provisions.
3. Health Insurance Portability and Accountability Act (HIPAA): The U.S. Department of Health and Human Services (HHS) issued the Privacy Rule to implement the requirement of the Health Insurance Portability and Accountability Act of 1996 (HIPAA). The Privacy Rule standards address the use and disclosure of individuals health information called protected health information by organizations subject to the Privacy Rule called covered entities, as well as standards for individuals' privacy rights to understand and control how their health information is used.
4.
5.
6.
7.
8.
EU Regulation (27 Member State) - Personal Data Protection Directive: The EU Directive on Data Protection (DDP) of 1998 is a framework that stipulates the minimum data protection legislation EU member countries must have in place. The legislation is intended to protect the rights of EU citizens regarding the processing of their personal data. Any organization doing business in one or more EU countries must comply with the national data privacy legislation of each member country in which it operates.

5. Canadian Regulation - Personal Information Protection and Electronic Documents Act: Canada’s Personal Information Protection and Electronic Documents Act (PIPEDA) ensures the protection of personal information. The PIPEDA applies to any work undertaking or business that is under the legislative authority of Parliament. Organizations must protect personal information regardless of the format by:
 - Developing and implementing a security policy.
 - Using appropriate security safeguards, including physical measures, technological tools (passwords, encryption, firewalls and anonymizing software) and organizational controls.
 - Removing or masking any personal information that has no relevance when providing copies of information.

6. UK Regulation - Data Protection Act: The Data Protection Act (DPA) of 1998 applies to UK residents and UK-based organizations. It requires that all personal information, even data not stored in computerized systems, be protected from abuse and secured from unauthorized access. The DPA requires that data controllers take appropriate technical and organization measures to prevent unauthorized or unlawful processing or disclosure of personal data. Data must be protected during storage, transport, transition and update.

7. Australia Regulation - Privacy Amendment Act of 2000The Privacy Amendment (Private Sector) Act 2000, which amended the Privacy Act 1988, came into effect on 21 December 2001, establishing a national scheme to regulate private sector organizations' handling of personal information. The legislation, as amended, was designed to bring Australia into line with international standards on personal information and to instill confidence in how Australian businesses handle personal information. The Government also aimed to address concerns about the development and take up of online business and eCommerce.

8. Japan Regulation - The Personal Information Protection Act

Japan enacted the Personal Information Protection Act (JPIPA) in 2003 to protect individual’s rights and personal information while preserving the usefulness of information technology and personal information for legitimate purposes. The law establishes responsibilities for businesses that handle personal information for citizens of Japan and outlines potential fines and punishments for organizations that do not comply. The act requires businesses to communicate their purpose in collecting and using personal information. They must also take reasonable steps to protect personal information from disclosure, unauthorized use or destruction.

9. Hong Kong Regulation - The Personal Data (Privacy) Ordinance

The Personal Data (Privacy) Ordinance ('Privacy Ordinance') sets out a number of strict obligations and restrictions for dealing with an individual's personal data. 'Personal data', which is covered by the Privacy Ordinance includes any information about a living individual, so long as that information includes some data which would allow the individual to be identified. Personal data must include data from which it is reasonably practicable to ascertain the identity of the person. It includes paper documents, microfilm, audio tapes, video tapes, and computer files.

10. Argentinian Regulation - Law for the Protection of Personal Data

The purpose of this Act is the full protection of personal information recorded in data files, registers, banks or other technical means of data-treatment, either public or private for purposes of providing reports, in order to guarantee the honor and intimacy of persons, as well as the access to the information that may be recorded about such persons.

The PCI DSS a set of comprehensive requirements for enhancing payment account data security, was developed by the founding payment brands of the PCI Security Standards Council, including American Express, Discover, JCB, MasterCard and Visa International, to help facilitate the broad adoption of consistent data security measures on a global basis. The PCI DSS is a multifaceted security standard that includes requirements for security management, policies, procedures, network architecture, software design and other critical protective measures. This comprehensive standard is intended to help organizations proactively protect customer account data.

Main Options

Compliance: S-OX, PCI-DSS, HIPAA
Membership of the Research Triangle Chapter is comprised of more than 400 IT Audit, Security and Governance professionals from the several industries.