Higher Efficiency - 99.5% @100% Output (will not decrease over time)
Zero Products of Combustion
No Air Permits Required (Frees Up Current Permits)
Full Modulation (0% to 100%) Output
Lower Installed Capital Cost (up to 75%)
Better Steam Quality - 99.9%+ Pure
Lower Maintenance Cost
Lower Insurance Cost
Less Chemical Usage
Higher Reliability
More Forgiving to Operator Error
No Possible Damage from Low Water
No Chance of “Catastrophic” Failure (i.e. Fireside Explosion)
No Cold Water Shock
Few Proprietary Spare Parts

STANDARD FEATURES AND ACCESSORIES
- ASME National Board Registered Pressure Vessel
- Boiler Circulation Pump w/VFD & Mech. Seal
- Heavy Duty Steel Vessel Housing
- Four Inch Fiberglass Insulation
- Control Manifold with Pressure Transmitter, Pressure Gauge, Pressure Limits (AR and MR)
- Low and High Water Alarms
- Control Cabinet Disconnect (w/Lockout)
- Blowdown Valves
- ASME Safety Valves (2)
- Conductivity Control with Low/High Setpoints
- Siemens PLC Control with Touchscreen HMI and Modbus RTU BMS Interface Standard.
- Ammeters, Voltmeter, Level Transmitter etc.
- Water Level Sight Glass
- Standby Electric Immersion Heater
- J-box on Boiler for Single Point Wiring
- By-pass Feeded (for Quick Chemical Addition)
- Standard Trim Ready for Operation
- Arc Reduction System
- Enhanced Controls with Auto Startup / Shutdown
- Startup and Commissioning Services
- HOT WATER - SYSTEM AVAILABLE
 The Precision Electrode Boiler can easily be used to produce hot water for heating or domestic use. Combined with a heat exchanger and deaerator this system can provide almost instantaneous hot water for any purpose. Contact Precision Boilers to get details on this zero emissions way to produce hot water.
1 - Blowdown Valves
2 - Pump Removal Clearance
3 - Circulation Pump w/VFD
4 - Check Valve
 (for multiple pumps only)
5 - Conductivity Cell
6 - Sheet Metal Enclosure
7 - Insulation
8 - Safety Valves (2)
9 - Electrode Terminal Enclosure
10 - Conduit Entrance Panel
11 - Header Removal Clearance
12 - Conductor Rod
13 - High Voltage Insulators
14 - Back Pressure Regulator
15 - Steam Outlet
16 - Non-Return Valve
17 - Insulator Shields
18 - Electrode/Strike Plate Assembly
19 - Nozzle Header Assembly
20 - Counter Electrode
21 - Pressure Manifold & Gage
22 - Water Column & Gage
23 - Surface Blowoff
24 - Standby Heater
25 - Feedwater Valve w/Bypass
26 - Manhole
HIGH VOLTAGE JET (HVJ) ELECTRODE STEAM BOILERS
High Capacity, Compact, Vertical Design, With 800-50,000 kW

TECHNICAL DATA

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Normal Rating (kW)**</th>
<th>Normal Rating PPH***</th>
<th>Dimensions (inches) @ 13.2 kV</th>
<th>Weight (lbs)***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4160V 6.9KV 13.2KV</td>
<td>4160V 6.9KV 13.2KV</td>
<td>Dia. OAL H H1 H2 P</td>
<td>Ship Operate</td>
</tr>
<tr>
<td>HVJ-114*</td>
<td>800 1680 3000</td>
<td>2700 5600 10000</td>
<td>60 136 166 6 6 30</td>
<td>10000 13800</td>
</tr>
<tr>
<td>HVJ-120*</td>
<td>1200 2400 4200</td>
<td>4000 8000 14000</td>
<td>60 146 176 6 14 30</td>
<td>10500 14900</td>
</tr>
<tr>
<td>HVJ-128*</td>
<td>1700 3400 6000</td>
<td>5700 11300 20000</td>
<td>60 156 186 6 24 30</td>
<td>11000 15600</td>
</tr>
<tr>
<td>HVJ-132*</td>
<td>1900 3800 6800</td>
<td>6300 12700 22600</td>
<td>60 166 196 6 29 36</td>
<td>11800 16400</td>
</tr>
<tr>
<td>HVJ-138*</td>
<td>2300 4600 8200</td>
<td>7700 15300 27300</td>
<td>60 176 206 6 36 36</td>
<td>13000 17800</td>
</tr>
<tr>
<td>HVJ-228</td>
<td>3400 6700 12000</td>
<td>11300 23200 40000</td>
<td>72 190 221 7 24 32</td>
<td>16000 23200</td>
</tr>
<tr>
<td>HVJ-232</td>
<td>3800 7600 13600</td>
<td>12700 25300 45300</td>
<td>72 200 231 7 28 32</td>
<td>16800 24500</td>
</tr>
<tr>
<td>HVJ-238</td>
<td>4600 9200 16400</td>
<td>15300 30600 54600</td>
<td>72 215 246 7 36 32</td>
<td>18000 27100</td>
</tr>
<tr>
<td>HVJ-328</td>
<td>5100 10100 18000</td>
<td>17000 33600 60000</td>
<td>84 200 233 7 22 32</td>
<td>23000 38000</td>
</tr>
<tr>
<td>HVJ-332</td>
<td>5700 11200 20000</td>
<td>19000 37300 67000</td>
<td>84 210 243 7 27 32</td>
<td>24000 39500</td>
</tr>
<tr>
<td>HVJ-338</td>
<td>7100 7100 23600</td>
<td>23600 46600 83000</td>
<td>84 210 243 7 32 32</td>
<td>27000 40000</td>
</tr>
<tr>
<td>HVJ-428</td>
<td>8800 14000 24000</td>
<td>22600 46600 80000</td>
<td>96 198 231 7 38 32</td>
<td>30000 47000</td>
</tr>
<tr>
<td>HVJ-432</td>
<td>7600 13400 27000</td>
<td>25300 50300 90000</td>
<td>96 209 242 7 43 32</td>
<td>31000 49000</td>
</tr>
<tr>
<td>HVJ-438</td>
<td>9300 15100 33000</td>
<td>31000 61600 110000</td>
<td>102 229 262 7 51 32</td>
<td>34000 57000</td>
</tr>
<tr>
<td>HVJ-538</td>
<td>11900 23500 42000</td>
<td>39600 78300 140000</td>
<td>100 234 267 7 51 32</td>
<td>40000 70000</td>
</tr>
<tr>
<td>HVJ-638</td>
<td>14200 28000 50000</td>
<td>47300 83200 167000</td>
<td>120 234 267 7 51 32</td>
<td>52000 82000</td>
</tr>
</tbody>
</table>

RATINGS AND DIMENSIONS

<table>
<thead>
<tr>
<th>HVJ Model</th>
<th>114</th>
<th>120</th>
<th>128</th>
<th>132</th>
<th>138</th>
<th>228</th>
<th>232</th>
<th>238</th>
<th>328</th>
<th>332</th>
<th>338</th>
<th>428</th>
<th>432</th>
<th>438</th>
<th>538</th>
<th>638</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>3</td>
<td>6</td>
<td>6.8</td>
<td>8.2</td>
<td></td>
<td>12</td>
<td>13.6</td>
<td>16.4</td>
<td>18</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>33</td>
<td>42</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>PPH Steam</td>
<td>10,000</td>
<td>14,000</td>
<td>20,000</td>
<td>22,600</td>
<td>27,300</td>
<td>40,000</td>
<td>45,300</td>
<td>54,500</td>
<td>60,000</td>
<td>67,000</td>
<td>83,000</td>
<td>80,000</td>
<td>90,000</td>
<td>110,000</td>
<td>140,000</td>
<td>167,000</td>
</tr>
</tbody>
</table>

Check local codes for compliance with minimum clearances. Dimensions shown on drawings and in tables are for reference only. Precision Boiler reserves the right to change dimensions without notice due to product improvements and/or product/trim options ordered. Due to the nature of welded construction, Precision Boilers, Inc. is not responsible for rough-in work that does not allow for adjustments during final installation of the product. Rough-Final pipe runs to and from the boiler and flange connections should be made after the boiler is in place.
1. General
The boiler shall be built to ASME Code Section I, Part PEB, and shall consist of a pressure vessel having a central column (header) from which water flows through nozzles toward the electrodes which surround the header. Regulation of the boiler output shall be accomplished by controlling the water level in the nozzle header so that a greater or smaller number of nozzles are supplied with water, and thus, a greater amount of water comes into contact with the boiler electrodes. The boiler electrodes shall be located entirely in the boiler steam space so that stopping of the boiler circulation pump will automatically effect boiler shutdown.

2. Boiler Circulating Pump(s)
The boiler circulating pump(s), located inside the pressure vessel for all vessels larger than 60” diameter, shall be mixed-flow centrifugal type rated for continuous duty at the boiler operating pressure and temperature, and shall be designed for compatibility with low NPSH.

3. Electrodes
Boiler electrodes shall be of mild steel construction, with replaceable electrode strike plates, and shall be supported by insulators of high grade porcelain with protective surface coatings to extend the life over standard porcelain insulators. The electrodes shall incorporate dielectric barriers on splash guard surfaces to eliminate spray-induced arcing and increase reliability for long term operation. The insulators on the steam side shall be protected from flowing steam by shields. Critical discharge surfaces of the porcelain shall be conductive, and shorting clips shall be used to bridge all air gaps. Steam leakage paths shall be provided to indicate the condition of the insulator sealing gaskets.

4. Pressure and Load Controls
The boiler control system shall incorporate both pressure control and current load control in the primary control system in a manner which will permit the boiler to maintain the desired steam pressure so long as the steam demand does not exceed a set maximum KW limit; Conductivity of the boiler water shall be monitored continuously and the sensor shall have isolation capability so normal cell maintenance can be performed with the boiler in operation. A PLC controlled air vent will automatically operate based on KWH calculations for the exhaust of non-condensable gasses that may enter the boiler during operation. The controls will bear an “Industrial Control Cabinet” UL label.

Unless otherwise specified, the control system shall be via PLC with a Touchscreen HMI. The PLC may include a modem and shall also be able to communicate with several standard protocols (such as MODBUS RTU or MODBUS TCP/IP). Check with factory for compatibility with the Customer’s DCS/BAS system. System shall be Siemens, or Allen Bradley (AB) at a premium cost.

5. Standard Boiler Accessories
The boiler shall be supplied with the following necessary equipment: water column with drain valve, safety valves, back pressure regulating valve, standby heater, steam stop and check valves, feed-water control valve with 3 valve bypass, sample cooler, circulation pump seal cooling automatic valves, flow switches and flow indicator, manual and auto air vents, blow-down and surface blow-down valves, safety cage with locking mechanism for the high voltage connections.

6. Feedwater Treatment
Feedwater treatment equipment, if needed, is to be furnished by others. Feedwater hardness limits shall be based on a feedwater analysis and the percent of makeup water required. Conductivity required for the water in the boiler to enable full load operation will be in the 1400 to 2500 micromho/cm range. Feedwater conductivity, however, is recommended at less than 100 micromho/cm for efficient boiler operation, unless blowdown losses can be economically recovered via heat exchangers.

7. Manufacturing Expertise
Boiler supplier must be ISO 9001 certified and ASME accredited with National Board Authorization for ASME Section I and Section VIII Division 1. Boiler shall be supplied by a manufacturer that has field installed at least 50 electrode boilers within the last 10 years. A copy of the certificate for ASME and National Board must be provided as well as an electrode boiler reference list with contact information indentified in such a manner as to facilitate verification by the client.