Cautionary Notes:

The information contained in this presentation is provided solely for the reader's general knowledge. The information is not intended to be a comprehensive review of all matters and developments concerning Dajin Resources Corp. All information is offered on a "best intentions" basis. No securities commission or other regulatory authority in Canada or any other country or jurisdiction has in any way reviewed this information and no representation or warranty is made by Dajin Resources Corp. to that effect. Dajin Resources Corp. is not responsible for the content of sites that can be reached through links on this site. This presentation may include "forward looking statements". All statements, other than statements of historical fact, included herein, including without limitation, statements regarding exploration results, future plans and objectives of Dajin Resources Corp. are forward looking statements that involve risks and uncertainties. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements.

Dajin Resources Corp. does not make any representations, warranties or guarantees, express or implied, regarding the accuracy, completeness, timeliness, non-infringement, or merchantability or fitness for a particular purpose or use of any information contained in this presentation or of any information available on web sites that are accessible by links found on this site. Furthermore, the information in no way should be construed or interpreted as, or as a part of, an offering or solicitation of securities. Investors are advised to discuss all of their stock purchases with a registered securities broker or personal finance professional prior to investing. No obligation, responsibility or liability shall be incurred by Dajin Resources Corp. or any of its officers, directors, employees or agents for any loss or damage whatsoever, whether incidental, special, indirect, consequential, punitive, exemplary, or for lost profits in connection with, caused by or arising from any delays, inaccuracies, errors or omissions in or infringement by, or from any use of, or reliance on such information available in this presentation, the links to other sites contained in this presentation nor any information available on such sites.
WHO IS DAJIN?

1. Canadian Company based in Vancouver, British Columbia
2. President, Brian Findlay
3. President Dajin Argentina, Cosme Beccar-Varela (Buenos Aires)
4. Directors, Dr. Catherine Hickson and Ben Ainsworth.
5. Technical Panel: Dr. Mark King, Dick Benoit, and Dr. Beatriz Coira
6. Consultant: Dr. Mark Coolbaugh

WHY DAJIN?

1. Great properties for Lithium, Boron and Potash.
2. Focused on one *in demand* commodity – Lithium
3. Small focused team with minimal overhead
Dajin Resources Corp.

WHY DAJIN?

4. **Lithium**: High quality Lithium exploration targets and growing demand for this strategic mineral essential for a greener tomorrow.

5. **Properties**: Advantageously located within Nevada’s Lithium Hub and the South America’s Lithium Triangle.

6. **Brines**: Resource is brine based; mined at substantially lower costs than hard rock deposits.

7. **People**: Management with a strong track record and experience in Lithium brine exploration as well as major discoveries in other commodities and experience taking exploration projects to production.

8. **Public Relations**: Committed to getting our message out to the investment community.
Dajin Resources Corp.

DAJIN PROJECT SUMMARY

Teels Marsh, Nevada - Surface: 4,574 acres (1,851 hectares)

• Claims: 215 placer claims 100% owned by Dajin Resources (US) Corp.
• Surface and shallow subsurface sampling have provided promising results
• Gravity survey indicates the basin is very deep – possibly up to 9,000 feet (3,000 m)
• Favourable structural setting providing a deep subsiding basin over long period of time.
• Very large catchment basin (313 square miles) to hold and retain lithium rich volcanic ash deposits.
• Large volume of volcanic ash accumulation probable from Long Valley (Bishop Tuff), Mt. Mazama & Lassen Peak
• Geothermal system in the west end of the basin, may contribute Lithium and promote dissolution of Li in volcanic ash.
• Permitting underway for additional surface sampling, a 3D seismic survey and deep drilling
• 50 miles (80 km) northwest of Rockwood Lithium mine in Clayton Valley
• Good access and infrastructure
Alkali Lake, Nevada – Surface: 3,851 acres (1,558 hectares)

- Claims: 191 placer claims 100% owned by Dajin Resources (US) Corp.
- Surface sampling has provided promising results
- Gravity survey indicates the basin is deep – possibly up to 4,000 feet (1,200 m)
- Significant volume of volcanic ash accumulation probable from Long Valley (Bishop Tuff) and Mt. Mazama
- Geothermal system to the south of the basin, may contribute Lithium and promote dissolution of Li in volcanic ash.
- Good access and infrastructure
- 7 miles (12 km) northeast of Rockwood Lithium mine in Clayton Valley
- Earn in agreement with Nevada Energy Metals (formerly Southern Sun)
Dajin Resources Corp.

DAJIN PROJECT SUMMARY

Jujuy Province, Argentina

- Claims: 93,000 hectares (230,000 acres) of claims 100% controlled by Dajin Resources Corp. (Argentina) in Salinas Grandes and Guayatoyoc salars
- Completed an exploration agreement with COOPERATIVA DE TRABAJO MINERO PRODUCCION DE BORATOS JUJEÑOS Ltda for the 4,400 hectare San Jose and Navidad concessions.
- Completed a cooperation agreement with the Aboriginal community of Inti Killa Tres Morros.
- Surface sampling by Orocobre in Salinas Grandes has provided promising results.
- First UGAMP meeting held with no major issues raised; 2nd meeting March 15th.
- Geothermal system to the south of the basin, may contribute Lithium and promote dissolution of Li in volcanic ash.
- Two operational Lithium brine plants 84 km (47 miles) to the west.
- Good access and infrastructure
Dajin Resources Corp.

Brian Findlay, President: Brian brings decades of senior management experience in various aspects of the industry. He learned the business from the ground up gaining broad experience ranging from corporate development and international mining, to mergers and acquisitions, exploration and development, corporate social responsibility to managing, financing and administration of public companies. His experience and managerial skills are now focused on the further development and growth of Dajin. Brian has participated in the raising of over $200 million in investment capital for a number of junior resource and technology companies. Brian is an expert at managing public companies with international interests. It is Mr. Findlay’s integrity, as an honest and dedicated CEO that builds trust and credibility with his shareholders. Brian is spearheading the company’s strategic explorations and expansions.

Cosme Beccar Varela, President Dajin Argentina: Cosme was born in New York City and graduated as a lawyer (University of Buenos Aires 1989). He practiced as a Foreign Associate in Winthrop, Stimson, Putnam & Roberts (New York 1990) and in Huygué de Mahenge, Bloxham et Michaud, (Paris 1995). An associate Professor of Contract Law, he taught at the University of Buenos Aires from his graduation until 2004. Cosme represented Placer Dome while they explored Argentina; signing contracts with the provincial authorities of Catamarca (Cerro Atajo) and Neuquén (Andacollo). He has represented Continental Illinois Bank, was a member of the Committee of Banking lawyers, was a member of the Board of American Express Argentina and of ABB Oil & Gas. His legal practice also includes insurance, trading and industrial companies. Cosme is fluent in English, French and Portuguese and has basic knowledge of Dutch.
Dr. Catherine Hickson PGeo, Director: Catherine is an exploration geologist and science manager with global experience. A volcanologist, regional mapper, geothermal geologist and community communication specialist she served with the Geological Survey of Canada as a research scientist and senior manager. During her distinguished 25 year career she managed large multidisciplinary global teams doing regional mapping, geophysical and geochemical surveys as well as hazard and risk assessments. Since 2008 she has been working in the field of geothermal resources and more recently Lithium brine exploration. She is a registered Professional Geoscientist (#20437), British Columbia Association of Professional Engineers and Geoscientists.

Ben Ainsworth MA (OXON), PEng: Director, a senior Geologist and mining consultant, Ben brings over 40 years of experience in the mining industry; serving with Placer Development Limited for more than 20 years and junior/senior mining company clients for over 20 years. In addition to porphyry projects, VMS and sediment hosted lead/zinc deposits in various sectors of South America he has also worked on projects that included borates, lithium clays and other industrial minerals. Ben and his son were jointly awarded AMEBC Colin Spence Award for Excellence in Global Mineral Exploration.
Dajin Resources Corp.

Dr. Mark Coolbaugh CPG, Director: Mark is a renowned metals and geothermal geologist with 30 years of project, research, and management experience in North and South America, Asia, and Europe. He currently holds senior positions with several exploration companies. His experience includes management of corporate and country-wide exploration programs, research and development of geothermal exploration tools and predictive models, assessment of geothermal and mineral projects, and construction of quantitative ore reserve models. He played an instrumental role in a number of green-fields geothermal and precious metal discoveries including discovery of the blind geothermal systems in Teels, Rhodes, and Columbus Marshes in southwestern Nevada.

Technical Advisory Board

Dr. Mark King PhD, P.Geo, FGC

Dick Benoit, MSc

Dr. Beatriz Coira

16/03/2016
What is Lithium?

Lithium (chemical symbol: Li) does not occur as a pure element in nature. Lithium is contained within mineral deposits or salts, including mineral rich waters trapped in closed basins (referred to as salars in South America or playas in the USA) and seawater.

Lithium is the lightest metal and is also very reactive. You have technology already using Lithium, such as your cell phone and laptop.

Lithium is now considered a key, strategic energy metal in the clean technology economy that is being fueled by advances in electric vehicles, energy storage and electronics. The U.S. Department of Energy has identified Lithium as a critical material whose demand is forecast to grow dramatically in the medium term, with rechargeable Lithium batteries leading the way. Demand for Lithium carbonate is forecasted to exceed global supply by 2025 unless capacity is tripled beginning in 2015.

Why Lithium?

“Lithium is a true heavyweight in the field of energy storage and battery design.” Wealth Daily

“Consumption of Lithium continues to follow a strong growth pattern, despite the global economic downturn, the European sovereign debt crisis and weakening Chinese domestic output since 2008. Rechargeable Lithium batteries continue to support this above average growth, due both to rising output of portable electronics as well as increased capacity (and therefore Lithium requirements) per battery.

The most obvious is that electric cars are now universal. Electric vehicles are seen as the solution, or silver bullet, for the transportation sector of the climate debate. Without a doubt it is the way of the future along with other electrical devices we cannot live without that rely on Lithium batteries.

The Lithium battery is a power source for a wide range of electric vehicles (EV’s) including:

- passenger electric vehicles
- electric bikes
- scooters
- buses
- taxies

The three main categories of electric passenger vehicles:

- Hybrid Electric Vehicles,
- Plug-In Hybrid Vehicles
- Electric Vehicles
The electrification of vehicles is strongly supported by governments around the world due to increasing political and consumer focus on climate change and energy security. The introduction of mass produced passenger electric vehicles has the potential to significantly increase the future consumption of Lithium.

The fastest growing and largest market for Lithium globally is for use in batteries.

- Lithium battery has more power and energy than any other battery for its mass.
- The Lithium battery lasts longer than other batteries for the same mass and volume.

With the growing concern for global climate change electric vehicle production is forecast to continue to increase.

Currently the most important use of Lithium is in rechargeable batteries for mobile phones, laptops, digital cameras and electric vehicles. Lithium is also used in some non-rechargeable batteries for things like heart pacemakers, remote controls, and toys.
Why Lithium?

Lithium metal is made into alloys with aluminum and magnesium, improving their strength and making them lighter. Every 1% by weight of lithium added to aluminum reduces the density of the resulting alloy by 3% and increases the stiffness by 5%. This light ridged metal is now being used in a variety of applications but primarily are of interest to the aerospace industry due to the weight advantage they provide.

These alloys are currently used in a few commercial jetliner airframes, the fuel and oxidizer tanks in the SpaceX Falcon 9 launch vehicle, and the AgustaWestland EH101 helicopter. Cars and trucks are the next major use focus.

A magnesium-lithium alloy is used for armour plating. Aluminum-Lithium alloys are used in aircraft, bicycle frames and high-speed trains.
Dajin Resources Corp.

Why Lithium?

Alcoa Opens World’s Largest Aluminum-Lithium Aerospace Plant in Indiana

Expansion to Capture Rapid Aluminum-Lithium Demand Growth

- $90 million advanced manufacturing facility is largest of Alcoa’s three aluminum-lithium expansions
- $100 million in revenues for 2017 already contracted
- Growing demand for advanced aluminum-lithium alloys for lighter, more fuel-efficient, lower-cost aircraft
- Alcoa holds the number one market position in aluminum-lithium extrusions and offers the broadest portfolio of aluminum-lithium products;
 Supplies aircraft such as A380, A350, 787 and G650
- 75 new jobs in Indiana where Alcoa employs more people than in any other state

Aluminum-Lithium Alloy Aircraft Body

http://www.aero-ag.com/features/37/201210/1596/
Alcoa Signs Multiyear Supply Contract with Boeing Valued at More Than $1 Billion

Alcoa Rolled Products content now on every Boeing platform

Largest contract ever between the two companies

Companies will work together on developing new, innovative aerospace alloys

NEW YORK & DAVENPORT, Iowa--(BUSINESS WIRE)--Leading aerospace manufacturer Alcoa (NYSE:AA) has signed a long-term contract to supply aluminum sheet and plate products to Boeing, the world’s largest aerospace company and leading manufacturer of commercial jetliners and defense, space and security systems. The multiyear contract, valued at more than $1 billion, is the largest ever between the two companies.

“This historic agreement not only continues the 35-year Alcoa-Boeing partnership, it will take our collaboration on next-generation metallic technologies even further,” said Klaus Kleinfeld, Alcoa Chairman and Chief Executive Officer. “We are proud that Alcoa’s lightweight structural solutions will continue to fly on Boeing’s most advanced aircraft today, and that our metallic science leadership will contribute to the Boeing aircraft of tomorrow.”

Notably, the agreement makes Alcoa sole supplier to Boeing for wing skins on all of its metallic structure airplanes. Alcoa plate products, used in applications such as wing ribs, wing skins or other structural parts of the aircraft, will also be on every Boeing platform, including the 787 Dreamliner.

Finally, the agreement establishes a foundation for continued collaboration on new, high-strength and corrosion-resistant alloys, including aluminum-lithium that could be used for complex structural applications.

http://www.aero-ag.com/features/37/201210/1596/
Ford is using Alcoa’s Micromill® Li Aluminum material in multiple components on the 2016 F-150 – becoming the first automaker to use the advanced automotive aluminum commercially. Ford and Alcoa have entered into a joint development agreement to collaborate on next-generation aluminum alloys for automotive parts using the Micromill™ technology.

“Light-weighting enables us to design vehicles with great customer attributes – like the F-150, which can tow more, haul more, accelerate quicker and stop faster than the previous F-150, and is more fuel-efficient than ever,” said Raj Nair, Ford group vice president and chief technical officer, Global Product Development. “This collaboration supports our continued drive for innovation, as we research automotive applications for even greater light-weighting.”

“Thanks to its innovative, high-strength, military-grade, aluminum-alloy body coupled with the high-strength steel frame, the all-new F-150 is nearly 700 pounds lighter, resulting in increased towing and hauling capability and even better efficiency”

Lithium’s Powerful Future:

Growing demand and rising prices

- Although supply appears marginally adequate – Tier 3 brine and spodumene are high cost
 - Spodumene and Tier 3 brine costs are more than double World Class brine
 - Significant opportunity exists for lost cost carbonate and hydroxide producer
Lithium’s Powerful Future: Current situation

- Chinese buying control (e.g. CITIC); sees Li as a “vital raw material” (have an interest in an electric car company)
- World wide trade in Lithium is ~$1Billion
- Small (~5%) but vital component of batteries.
- Market is currently concentrated with few players – car manufacturers are buying into projects to secure supply.
- Backup power for locations with poor power supply (power walls) (charge when power is available for use later)
- Buffer for other renewables such as wind and solar; as above concept is to store power when available for later usage)
- Future projection is for homes to be “off grid” generating and storing their own power.
- Hybridizing the power grid to deal with “peak demand” 1GW station being built in California
Lithium’s Powerful Future: Demand (1/3)

- Rising demand; supply not keeping up with demand
- Small (~5%) but vital component of batteries.
- Goldman Sachs called it “the new gasoline”
- Economist January 18, 2016 “An Increasingly Precious Metal” Lithium is a “tiny element of a little battery cell – but one that may embody the future of the world's energy supplies.”
- Brines cheaper to produce than “hard rock” (e.g. Spodumen, Lipidolite and other forms)
- Clay forms such as Hectorite and Jadorite not yet proven to be economically extractable.
- But brine environment is still a challenging environments for extraction – climate, altitude and chemistry
- Not all brines are easy to purify.
- New technologies have not come on-stream as fast as anticipated.
In September of 2014 new research by the UK Energy Research Centre and the Energy Research Partnership looking at materials availability for green technologies finds critical metals used to manufacture low-carbon energy technologies "is rising rapidly and requires serious attention from industry and policymakers."

The study zoomed in on Lithium and neodymium, critical components for electric vehicles, which are also not easily substituted by other materials. The report notes "there is currently no efficient substitute for Lithium-based EV batteries given the unparalleled energy density delivered by this chemistry".
Dajin Resources Corp.

Lithium’s Powerful Future: Demand (3/3)

The International Energy Agency (IEA) is an autonomous organisation which works to ensure reliable, affordable and clean energy for its 29 member countries and beyond. The IEA forecasts over 40 million battery electric vehicle sales per year by 2050, from current annual battery electric vehicle sales of only around 150,000 today. (ABI Research 2013).

Economist January 18, 2016 “An Increasingly Precious Metal” summarizes growing demand and emphasized increased importance of “power walls” and use of large scales batteries in peaking stations to take advantage of power storage when rates are lower and energy is available.
Dajin Resources Corp.

Lithium’s Powerful Future: Brines - low cost production (1/4)

Dajin Resources S.A. has a considerable land position in northwestern Argentina, part of an area known as the “Lithium Triangle” where 80% of the world’s supply of lithium is found.

Dajin USA has two very prospective areas in Nevada’s “Lithium Hub”.

In these regions Lithium is found in salt lake basins, also known as “salars” or “playas.” Lithium brines are formed in the basins from water which has leached the lithium from the surrounding rocks.
The process of extracting the lithium from the brines involves pumping the brine into a series of evaporation ponds to crystallize other salts, leaving a lithium-rich brine solution. This brine solution is further processed to remove impurities before conversion to either lithium carbonate or lithium chloride for further upgrading to lithium hydroxide.
Extraction of Lithium from brine has been done successfully for several decades, but has some drawbacks. The time period to concentrate the brine can be from 12 – 24 months. Recently several companies have announced new, more efficient and faster ways to extract the Lithium. Dajin will investigate these new technologies as to their applicability to Dajin’s projects.

POSCO (KRX:005490, NYSE:PKX) a South Korean Steel maker has developed a chemically based technology that they say will significantly increase extraction efficiency from brines; they report that extraction times are reduced to less than eight hours. While the natural evaporation method has a recovery rate of 50 percent or less, POSCO’s technology has shown recoveries above 80 percent at 99.99-percent purity.

Tenova Bateman LiSX™ has developed a technique based on solvent extraction combined with membrane technology for the pre-treatment of the initial brine.

Simbol Materials uses a reverse osmosis technique, but so far has not shown economic viability in their Salton Sea test plant.
In addition to POSCO (KRX:005490, NYSE:PKX), Tenova Bateman LiSX™ and Simbol Materials, Pure Energy has received Department of Energy (DOE) grants in a partnership arrangement with SRI International to develop Lithium Extraction Techniques. SRI International (SRI), is a nonprofit research center that works with government and industry to develop innovative, price-competitive methods for lithium extraction from the brine produced by geothermal plants. A U.S. owned subsidiary of a Japanese corporation, called Nitto Innovations Inc. (NII) is also collaborating. The partners are working to refine, test, and commercialize a brand new generation of highly selective ion exchange resins to separate metals like lithium from geothermal fluids more efficiently than is currently possible.

Another contender in the lithium extraction business is Ucore's green chemistry-MRT (molecular recognition technology) SuperLig® resin with a pre-designed selective recognition of a host ligand species by a guest metal species. Separations become possible when the host ligand is bound chemically to a solid support, such as silica gel particles. http://mrt.ucore.com/

Orocobre operations; Olaroz salar, Jujuy, Argentina
DAJIN PROPERTIES

DAJIN RESOURCES CORP.
An Energy Metals Company
WHY DAJIN?

• Focused on one *in demand commodity* – Lithium

• High quality Lithium exploration targets and growing demand for this strategic mineral essential for a greener tomorrow.

• **Properties**: Advantageously located within Nevada’s Lithium Hub and the South America’s Lithium Triangle.

• **Brines**: Resource is brine based; mined at substantially lower costs than hard rock deposits.
Dajin Resources Corp.

Nevada’s Lithium Hub

South America’s Lithium Triangle

Our Properties
Dajin controls a 100% interest in mineral concessions in Jujuy province of Argentina

South America

Our Properties
Dajin controls 100% interest in mineral claims in Teels Marsh, Mineral County, Nevada, USA

Our Properties
Dajin controls 100% interest in mineral claims in Atkall Lake, Esmeralda County, Nevada, USA

Our Properties
Dajin controls a 100% interest in mineral claims in Teels Marsh, Mineral County, Nevada, USA
Dajin Resources Corp.

Teels Marsh and Alkali Lake, Nevada

Nevada’s Lithium Hub
South America’s Lithium Triangle

Dajin Resources Corp.

Our Properties
Dajin controls a 100% interest in mineral concessions in Jujuy province of Argentina
Teels Marsh – birthplace of 20 Mule Team Borax
Dajin Resources Corp. has been carrying out exploration at Teels Marsh since late 2014. The initial work in the marsh was surface sampling to confirm the presence of Lithium bearing minerals reported from surveys in the 1970s. Following the successful surface exploration, Dajin carried out a gravity survey. The company then completed a 9 hole Geoprobe survey of the north-eastern section of the marsh. A structural analysis has been completed and permitting for wells and a seismic survey to be carried out in 2016 is underway.
Teels Marsh, Nevada

PROJECT SUMMARY

Teels Marsh, Nevada - Surface: 4,574 acres (1,851 hectares)

- Claims: 215 placer claims 100% owned by Dajin Resources (US) Corp.
- Surface and shallow subsurface sampling have provided promising results
- Gravity survey indicates the basin is very deep – possibly up to 9,000 feet (3,000 m)
- Favourable structural setting providing a deep subsiding basin over long period of time.
- Very large catchment basin (313 square miles) to hold and retain lithium rich volcanic ash deposits.
- Large volume of volcanic ash accumulation probable from Long Valley (Bishop Tuff), Mt. Mazama & Lassen Peak
- Geothermal system in the west end of the basin, may contribute Lithium and promote dissolution of Li in volcanic ash.
- Permitting underway for additional surface sampling, a 3D seismic survey and deep drilling
- 50 miles (80 km) northwest of Rockwood Lithium mine in Clayton Valley
- Good access and infrastructure
Teels Marsh, Nevada

Land Position:
- Surface: 4,574 acres (1,851 hectares)
- Claims: 215 placer claims 100% owned by Dajin Resources (US) Corp.

Location: Mineral County, West Central Nevada, west of Highway 95 and northwest of Highway 360.
Teels Marsh, Nevada

Closed-basin or playa (also known as a salar in South America), located approximately 50 miles (80 km) northwest of the Rockwood Lithium mine in Clayton Valley; the location of North America’s only Lithium “brine based deposit.” The mine has been producing since 1967.

Orthophoto of western Nevada, rugged mountains appear as dark areas surrounding the white coloured sediments that fill the closed basins. (Rockwood Lithium is shown in green and Pure Energy land in pink)
The eruption of Long Valley Caldera covered much of the western United States under a thick layer of ash (tephra or tuff, shown in blue on the diagram). This ash is a source of Lithium as well as a potential aquifer. These ash layers have proven to be the most productive brine sources in Clayton Valley, where the only North American lithium brine deposit is being mined by Rockwood Lithium Inc.

map is modified from the report of Zampirro, D., (2004) Hydrogeology of Clayton Valley Brine Deposits, Esmeralda County, Nevada, Nevada Bureau of Mines Special Publication 33, p. 271-280, (his Figure 11).
Teels Marsh, Nevada

Teels Marsh has a large catchment basin 313 mi² (812 km²) in area. Thick accumulations of ash deposits known as “Bishop Tuff” are likely to occur beneath the marsh because the marsh is located east of nearby Mono Lake and the Long Valley Caldera (source of the Bishop Tuff), as well as other ash producing volcanic centres. These ash layers have proven to be the most productive brine sources in Clayton Valley, where the only North American lithium brine deposit is being mined by Rockwood Lithium Inc.
Teels Marsh, Nevada
Exploration Program

1. Data compilation and review
2. Auger surface sampling
3. Gravity Survey
4. Reprocessing regional magnetic data
5. Updating of maps and creation of GIS database.
6. Geoprobe study including brine and sediment analysis as well as XRD studies of shallow (25 ft.) core samples.
7. Structural study completed
8. Seismic and deep holes targeted.
10. Follow-up surface sampling - pending.

Pediment Gold LLC crew working with the Geoprobe to secure fluid and sediments samples from Teels Marsh. (photo taken by Dick Benoit)
Teels Marsh, Nevada Regional Setting

Teels Marsh (red circle) lies within the Walker Lane, a zone of active dextral strike-slip faults between the Sierra Nevada Mountains on the west and the Basin and Range province on the east. Strike-slip faulting in the Walker Lane is driven by the relative motions of the Pacific and North American plates; it is estimated that 20-25% of that motion is accommodated by faults in the Walker Lane instead of by the San Andreas fault system (Bennet et al., 1998).

Quaternary faults and geothermal systems in the Mina Deflection, taken from Coolbaugh et al. (2005) and originally adapted from Wesnousky (2005). The physical extent of the Mina Deflection encompasses the geothermal areas: 1 = Sodaville, 2 = Rhodes Marsh, 3 & 4 = North & south Teels Marsh, 5 = Redlich, 6 = SW Columbus Marsh; and thermal wells 7, 8, and 9 at Whiskey Flat, Huntoon Valley, and NE of Queen Valley, respectively. RSM = Rhodes Salt Marsh, TM = Teels Marsh, CSM = Columbus Salt Marsh, GF = Garfield Flat, HV = Huntoon Valley, RF = Rattlesnake Flat, MLB = Mono Lake Basin, LV = Long Valley caldera, AV = Adobe Valley, QV = Queen Valley, GV = Gabbs Valley, EX = Excelsior Mountain fault, GM = Gumdrop Hills fault, CL = Coaldale fault, BS = Benton Springs fault. Blue circles are geothermal systems outside the Mina Deflection with measured or estimated temperatures >70°C.
Teels Marsh, Nevada
Gravity Survey

The figure represents the three dimensional shape of the basin if all the sediments were removed. The colour bands characterize depth with the bottom of the basin modeled as deep as 8,900 feet (2,700 meters)

The gravity survey was carried out by Magee Geophysics Services LLC of Reno, Nevada. The gravity, magnetic and geological data indicate that the basin is fault bounded with the strongest structural control along the basin’s southern margin. Along this boundary faulting on an east-northeast trending fault has created a basin of significant depth. Additional work has is underway by Dr. Mark Coolbaugh to define the basin structurally. An initial report was released in January 2016.
Teels Marsh, Nevada
Surface Sampling Results

In February, 2015 Dajin confirmed the Lithium potential of Teels Marsh. The results of the initial surface auger exploration program confirmed the presence of near surface Lithium in sediments. A total of 74 sample locations were tested, at approximately 1,000 feet (300 meters) intervals along east-west lines 1,600 feet (487 meters) apart. The highest Lithium assay value was 460 ppm. There were 28 assays that returned values greater than 150 ppm, 23 assays were greater than 100 ppm and only 5 assays were lower than 100 ppm.
Teels Marsh, Nevada
Surface Sampling Results

As part of the auger program which penetrated to 9 ft. (3 m), water samples were taken. The maximum concentration encountered in these near surface brines was 70 ppm.

Western Geoscience Inc. crew taking water samples.

Western Geoscience Inc. crew creating auger holes (photo by Tom Evans)
Teels Marsh, Nevada
Direct Push (Geoprobe) Sampling Results

This surface sampling was followed up in September, 2015, with a Geoprobe survey. The Geoprobe is designed to penetrate up to 200 feet (61 meters) depending on local conditions. The intent of this work was to assess the marsh surface for the deep drilling program planned in the future. There had been a recent flooding event at Teels Marsh due to thunderstorms just prior to the start of the survey so this limited access to the northern and marginal areas of the marsh. Nine sites were sampled with a maximum depth achieved of 195 feet. In addition three 25 foot (7.5 meters) core samples were obtained.
Teels Marsh, Nevada

Fluid horizons

The results identified two discrete aquifers in the upper 150 feet (45 meters) of the northern section of Teels Marsh. These shallow aquifers had differing chemistry and appeared to be isolated from each other. The implications for deep drilling emphasize the importance of the ability to sample multiple aquifers.
Teels Marsh, Nevada Direct Push (Geoprobe) Sampling Results

Fluid horizons

- Lithified Horizon (aquiclud or aquatard)
- Lithium & Boron Brine horizon
- Diluted brine horizon
- Artesian flow along margins
- Inferred eastern edge of fresh water inflow
- Inferred edge of 65-95 ft. brine layer
Teels Marsh, Nevada
Direct Push (Geoprobe) Sampling Results

Boron vs Lithium in core samples (whole rock sediment samples)
Teels Marsh, Nevada
Direct Push (Geoprobe) Sampling Results

XRD RESULTS COMBINED WITH
WHOLE ROCK CHEMISTRY FROM
CORE SAMPLES.
Teels Marsh, Nevada
Surface Sampling Results

MAP OF COMBINED SURFACE AND GEOPROBE WHOLE ROCK GEOCHEMISTRY
Teels Marsh, Nevada
Surface Sampling Results

MAP OF COMBINED SURFACE AND GEOPROBE WHOLE ROCK GEOCHEMISTRY
Teels Marsh, Nevada
Structural studies

The structural model features a fault-bounded, northeast-trending graben 4.0 mi (6.5-km)-long and 0.6 to 1.5 mi (1 to 2.4-km)-wide with an estimated maximum depth (to consolidated bedrock) of greater than 6,500 ft. (2000 m) near the center of the basin beneath the playa. This graben is part of a structural pull-apart block in a subsiding extensional basin near the western end of the active Excelsior Mountain sinistral/normal fault zone.

Structural studies of Teels Marsh superimposed on Google Earth with the bottom-of-basin elevation model. Excelsior Mountain fault system of Wesnousky (2005) shown in red (known) and orange (concealed). Faults inferred from the gravity-derived basin depth model of Wright (2015) shown in black (SE-dipping) and blue (NW dipping). Thin black lines are elevation contours on the modeled elevation of the unconsolidated sediment-basement contact (prior to modeling of fault locations). Transparent shading from yellow through green and lavender represents progressively lower elevations of the unconsolidated sediment-basement contact, with lowest elevations (lavender) lying 2 to 2.5 km below surface. Colored stars depict temperatures from springs, shallow wells, and direct-push holes drilled in 2010: green <20°C, yellow 20-26°C, orange 26-37°C, red >37°C. Cross-section of Slide 35 cross section shown with white line (profile 1). A 10-km UTM wgs84 grid is shown with thin orange lines. Magenta lines on east and west margins of image mark the 812 km² Teels Marsh surface catchment basin.
Teels Marsh, Nevada
Structural studies

The main faults are shown in the thick red, blue and black lines.

Structural model of Teels Marsh superimposed on 24,000-scale geology. Excelsior Mountain fault system of Wesnousky (2005) shown in solid red (known) and dotted red (concealed). Faults inferred from the gravity-derived basin depth model of Wright (2015) shown in black (SE-dipping) and blue (NW-dipping). Larger displacement faults are indicated with bold black and blue lines. Colored stars depict temperatures from springs and shallow wells/geoprobe holes: yellow 20-26°C, orange 26-37°C, red >37°C. Colored squares represent maximum lithium concentrations obtained from 9-foot-deep (2.7-metre-deep) auger holes: blue 13.5-53.4 ppm, green 53.4-92.7 ppm, yellow 92.7-132.5 ppm, orange 132.5-218 ppm, red 218-460 ppm. Elevated lithium brine concentrations at two localities indicated by colored crosses: red = 70 ppm, yellow = 20 ppm. Cross-section of slide 35 shown with straight yellow line (profile 1). Magenta lines on east and west margins of map mark the Teels Marsh surface catchment basin boundary. One-mile square section boundaries from the cadastral survey are visible as thin black lines in background. North is up.
Teels Marsh, Nevada
Structural studies

Diagrammatic cross section of Teels Marsh showing the geologically young sediments that fill the basin in yellow and the older rocks that form the basin in green.

Cross-sectional view looking northeast of the modeled graben along profile line 1 (plan-view location shown in Figs. 2, 3). The original gravity-derived model of the basin-bottom elevation is shown with the yellow background shading. QTal = basin fill deposits, including muds, clastic rocks including silt, sand, and possible conglomerates; evaporite deposits, and ash beds (tephra layers). Tertiary and older rocks include Paleozoic and Mesozoic sedimentary and volcanic rocks, Mesozoic plutons, Tertiary volcanic rocks including basalt, andesite, probable felsic tuffs, and some Tertiary sedimentary rocks including lacustrine rocks equivalent to the Esmeralda Formation. Higher confidence is placed on faults denoted with the bold blue lines (E, G) that match strong gradients in the gravity model. Smaller faults (A-D, F, H) are known with less certainty, and in some cases, a primary sloping bedrock contact could explain the gravity model without the need for faulting. Horizontal and vertical scales are in meters, 1:1.
Dajin Resources Corp. has been carrying out exploration at Alkali Lake since early 2015. Surface sampling followed by a gravity survey have been completed. In December 2015, Dajin entered into an option agreement with Southern Sun Minerals Inc. now Nevada whereby Southern Sun may earn up to a 60% interest in the Alkali Lake Lithium exploration project, located in Esmeralda County, Nevada. The agreement requires Southern Sun to make a one-time payment of shares, cash payments over three years and complete certain exploration milestones in order to earn its interest.
Alkali Lake, Nevada – Surface: 3,851 acres (1,558 hectares)
- Claims: 191 placer claims 100% owned by Dajin Resources (US) Corp.
- Surface sampling has provided promising results
- Gravity survey indicates the basin is deep – possibly up to 4,000 feet (1,200 m)
- Significant volume of volcanic ash accumulation probable from Long Valley (Bishop Tuff) and Mt. Mazama
- Geothermal system to the south of the basin, may contribute Lithium and promote dissolution of Li in volcanic ash.
- Good access and infrastructure
- 7 miles (12 km) northeast of Rockwood Lithium mine in Clayton Valley
- Earn in agreement with Nevada Energy Metals (formerly Southern Sun)
Alkali Lake, Nevada

Alkali Lake Project – Esmeralda County, Nevada

Land Position:
• 1,558 hectares
• 3,851 acres
• 191 placer claims
100% owned by Dajin Resources (US) Corp., a wholly owned subsidiary of Dajin Resources Corp.

Orthophoto of western Nevada, rugged mountains appear as dark areas surrounding the white colours sediments that fill the closed basins. (Rockwood Lithium is shown in green and Pure Energy land in pink)
Alkali Lake, Nevada

The Alkali Lake property is located approximately 7 miles (12 km) northeast of the Rockwood Lithium operations in Clayton Valley. These operations are North America’s only Lithium “brine based deposit.”. They have been producing since 1967.

Both basins are classic fault bound closed-basins termed “playas” (or “salar” in South America). Both Clayton Valley and Alkali Lake have active geothermal systems. In addition to Rockwood, It is also the location of property held by Pure Energy, who recently released a NI 43-101 report with an inferred resource of 816,000 metric tonnes of Lithium carbonate equivalent.
Alkali Lake, Nevada

The Alkali Lake property is similar to the Clayton Valley geology. Both are classic fault bound closed-basins termed “playas” (or “sals” in South America). Both Clayton Valley and Alkali Lake have active geothermal systems. Clayton Valley Lithium brines have been produced by Rockwood (now Albemarle) since 1967. It is also the location of property held by Pure Energy, who recently released as NI 43-101 report with an inferred resource of 816,000 metric tonnes of Lithium carbonate equivalent.
Alkali Lake, Nevada

A recently completed gravity survey by Dajin at Alkali Lake has shown that the basin is over 4,000 feet deep (1,200 meters). The survey has also helped define some of the basin bounding structures in addition to a second basin to the east of the originally staked ground.

The figure represents the three dimensional shape of the basin if all the sediments were removed. The colour bands characterize depth with the bottom of the basin modeled as deep as 4,000 feet (1,200 meters).
Alkali Lake, Nevada

The results of the gravity survey indicated that there in fact two basins in the Alkali Flats area. One underlies Alkali Lake and the other is just to the east in an area covered with a large, low angle alluvial fan. The area was staked following the review of the results of the gravity survey.
JUJUY PROVINCE
ARGENTINA
Jujuy Province, Argentina
South America’s Lithium Triangle

Dajin Resources S.A. controls 100% interest in a series of mineral concessions located in the Jujuy province of Argentina. This province is historically known to host Lithium, Potassium and Boron brine-based deposits in the form of “salars” or evaporated salt lake basins.

The lithium triangle is an area where 80% of the world’s supply of Lithium is found.

Dajin Resources S.A. properties lie 85 km (47 miles) to the west of two Lithium producing plants. Orocobre is located in Salinas Olaroz and Lithium America’s Cauchari salar plant.
Jujuy Province, Argentina
South America’s Lithium Triangle

Dajin’s concessions total approximately 93,000 hectares (230,000 acres) in various drainage basins including 51,970 hectares (128,421 acres) of salar (salt lake) in Salinas Grandes and 41,068 hectares (101,481 acres) in Guayatoyoc salt lake basin.

In Salinas Grandes, Dajin is well advanced in obtaining the necessary permits to start exploration for the San Jose project.

Tertiary paleo-salar in the Salinas Grandes/Guayatayoc salt lake basin.

41,068 ha
51,970 ha
San Jose Project (4,400 hectares)

Legend
Dajin Claims
Salt Flats
Lithium Triangle

Tertiary paleo-salar in the Salinas Grandes/Guayatayoc salt lake basin.
Jujuy Province, Argentina

PROJECT SUMMARY

Jujuy Province, Argentina

- Claims: 93,000 hectares (230,000 acres) of claims 100% controlled by Dajin Resources Corp. (Argentina) in Salinas Grandes and Guayatoyoc salars
- Completed an exploration agreement with COOPERATIVA DE TRABAJO MINERO PRODUCCION DE BORATOS JUJEÑOS Ltda for the 4,400 hectare San Jose and Navidad concessions.
- Completed a cooperation agreement with the Aboriginal community of Inti Killa Tres Morros.
- Surface sampling by Orocobre in Salinas Grandes has provided promising results.
- First UGAMP meeting held with no major issues raised; 2nd meeting March 15th.
- Geothermal system to the south of the basin, may contribute Lithium and promote dissolution of Li in volcanic ash.
- Two operational Lithium brine plants 84 km (47 miles) to the west.
- Good access and infrastructure
Jujuy Province, Argentina

Tres Morros

Dajin has signed an agreement with the Cooperativa of Tres Morros for the right to explore the San Jose and Navidad concessions for Lithium. This agreement gives Dajin the right to explore the 4,400 hectare (10,873 acres) San Jose and Navidad concessions within the Salinas Grandes salar.
Jujuy Province, Argentina San Jose Project
Tres Morros

On July 10, 2015, Dajin signed an exploration agreement with representatives of Cooperative de Trabajo Minero Produccion de Boratos Jujeños Ltda. Tres Morros for the rights to explore San Jose and Navidad concessions for Lithium. From left to right Andrés Castillo (Tres Morros community President and Cooperativa Secretary), Vidal Aguirre (President of the Cooperativa), Arturo Pfister (lawyer for the Cooperativa), Cosme Beccar-Varela (President, Dajin Argentina), and Catherine Hickson (Director, Dajin Resources Corp).
Jujuy Province, Argentina San Jose Project

Tres Morros
On February 27, 2016, Dajin Director, Catherine Hickson met with representatives of the Aboriginal community of Inti Killa Tres Morros and signed an agreement of cooperation for the exploration phase of the project. Photo at the right is Andrés Castillo, Tres Morros community leader, and Hickson signing the accord. Below, community Matriarch, Maria Dominga Cordoba signs.
Dajin’s concessions are in close proximity with a number of concessions owned by Orocobre Limited (TSX:ORL-T) which announced in 2010 that preliminary sampling on the Salinas Grandes indicated highly concentrated deposits of lithium and potassium over an area of approximately 60 square kilometres. A subsequent 12 hole diamond drill program and 47 holes of shallow auger drilling lead to an estimated inferred resource of 56.5 million cubic metres of brine at 795 milligrams per litre lithium and 9,550 milligrams per litre potassium, which is equivalent to 239,200 tonnes of lithium carbonate and 1.03 million tonnes of potash based on 5.32 tonnes of lithium carbonate being equivalent to one tonne of lithium and 1.91 tonnes of potash being equivalent to one tonne of potassium. (Orocobre NI 43-101 2013 http://www.orocobre.com/Investors_Reports_T echnical.htm)
Jujuy Province, Argentina

San Jose Project

Dajin’s concessions are in close proximity with a number of concessions owned by Orocobre Limited (TSX:ORL-T). Dajin believes planned exploration programs on its own concessions and San Jose and Navidad could produce similar results as Orocobre and ultimately lead to delineating its own resource.