Minimum Design & Construction Standards & Specifications for Wastewater

Islamorada, Village of Islands

December 2014
MINIMUM DESIGN AND CONSTRUCTION STANDARDS AND SPECIFICATIONS FOR WASTEWATER
Islamorada, Village of Islands

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Technical Guidance</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Design Guidelines</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Wastewater Systems, General</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Vacuum Sewers</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Low Pressure Sewers</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Gravity Sewers and Gravity Lateral Connections</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>Wastewater Force Mains</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Wastewater Pump Station Design & Construction</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>Record Drawings</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>Approved Product Lists</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Vacuum Sewer Details, Low Pressure Sewer Details, and Standard Details</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Permitting for Residential and Commercial Sewer Lateral Connections</td>
<td>101</td>
</tr>
<tr>
<td>14</td>
<td>Testing & Reporting Requirements</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>Grease Interceptor Policy</td>
<td>132</td>
</tr>
<tr>
<td>16</td>
<td>Notification/Application for Constructing a Domestic Wastewater Collection/Transmission System – DEP Form 62-602.300(8)(a)</td>
<td>148</td>
</tr>
<tr>
<td>17</td>
<td>Package Plant Abandonment and Decommissioning Requirements</td>
<td>160</td>
</tr>
<tr>
<td>18</td>
<td>Standard Notes for Commercial Permit Plan Submittals</td>
<td>162</td>
</tr>
</tbody>
</table>
Tables

Table 5-1 – Maximum EDU Requirements for AIRVAC Valve Pits 11
Table 7-1 – Minimum Slope Requirements for Gravity Sewer Pipe 32
Table 9-1 – Minimum Peaking Factors for Pump Station Design 39
Table 13-1 – Permitting Requirements for Single Family Residential and Single Building Commercial Connections 102
Table 13-2 – Permitting Requirements for Multiple Family Residential and Commercial Buildings 109
Table 14-1 – Minimum Mandrel Diameters 124
Table 14-2 – Allowable Makeup Water for 2-hr and 2-hr Pressure Testing 127

Figures

Figure 13-1 – Single Family Residential & Single Building Commercial Connections: Grinder Pump Station with Low Pressure Force Main 103
Figure 13-2 – Single Family Residential Connections: Vacuum System 104
Figure 13-3 – Single Building Commercial Connection: Grinder Pump with Vacuum System 22 106
Figure 13-4 – Single Family Residential & Single Building Commercial Connection Permit Process for Grinder Pumps w/ Low Pressure Force Main 108
Figure 13-5 – Single Family Residential & Single Building Commercial Sewer Connection Permit Process for Vacuum Sewers 111
Figure 13-6 – FDEP Permitted Connections for Multiple Commercial Building & Multiple Building Residential Connection 113
1.0 GENERAL

The Minimum Design and Construction Standards and Specifications for Wastewater (herein referred to as the “Minimum Design Standards”) are incorporated in and made a part of the Wastewater Utility Policy adopted by the Village, and provide the standards, specifications, and requirements necessary to ensure the quality of wastewater facilities constructed in the Village and to minimize future maintenance and replacement costs. The Minimum Standards may be amended by the Village Manager from time to time.

The Minimum Design and Construction Standards establish engineering design and construction standards and specifications of the Village applicable to all collection systems and Connections, including any and all facilities and equipment installed, constructed, operated and maintained by a Developer, Owner or Customer, which Connect to the Wastewater System, and the procedures and policies of the Village required for residential and commercial Connections, operation and maintenance of Wastewater facilities, including all requirements for compliance with the KLWTD Agreement and the Grease Interceptor Policy. Applicable Federal, State and County laws and regulations should be considered concurrently with the standards and specifications presented herein.

These Minimum Design Standards are binding as a minimum standard; however, the Village reserves the right to require a more stringent standard to be met when unusual circumstances or conditions exist on a particular project. The Village further reserves the right to revise these standards and specifications from time to time, in its sole discretion, as new information and products become available.
2.0 TECHNICAL GUIDANCE

The following technical standards and criteria contained in the following manuals and technical publications listed below, or as specified in the last edition or the most current version, and those referenced throughout this document are hereby incorporated by reference.

2.1 Applicable Codes

All design, material and work shall be in accordance with all applicable governmental, regulatory, and testing organizations including, but not limited to the following:

- ANSI – American National Standards Institute
- ASTM – American Society of Testing and Materials
- AWWA – American Water Works Association
- DOH – Department of Health
- FDEP – Florida Department of Environmental Protection
- FDOT – Florida Department of Transportation
- Florida Building Code 2010 and Companion Codes as amended
- OSHA – Occupational Safety and Health Administration
- USEPA – United States Environmental Protection Agency

2.2 Standard Manuals and Publications

In case where the standards and criteria contained in the publications listed below conflict with the Village’s Minimum Design Standards or other rules of the Village, the Village Minimum Design Standards and rules shall control.

In cases where the standards and criteria contained in the publications listed below conflict, the standards and criteria contained in the publication listed in 2.2(h), or as specified in the most current version, shall be used.

(a) AIRVAC 2012 Design Manual, 4217 N. Old U.S. 31, P.O. Box 528, Rochester, Indiana 46975. www.airvac.com.
(b) AIRVAC 2010 Landbased Vacuum Systems Operation, Installation and Maintenance Manual, 4217 N. Old U.S. 31, P.O. Box 528, Rochester, Indiana 46975.
(c) AIRVAC Standard Specification, Division 2 – Site Work, Section 02730 – Underground Vacuum Sewer Piping (Contractor Supplied Equipment, 2012 or latest edition), 4217 N. Old U.S. 31, P.O. Box 528, Rochester, Indiana 46975.

3.0 DESIGN GUIDELINES

3.1 General
The requirements of this section are a minimum and nothing herein shall be construed to eliminate consideration of a design based on a rational procedure not covered by such requirements. Standards or minimum requirements set forth in this document are not intended to relieve the Owner or the Developer from complying with good engineering and construction practices under specific conditions which require a higher degree of procedure, standards, or requirements.

3.2 Design Capacity
Wastewater facilities should be designed for the estimated buildout population. Parts of the system that can be readily increased in capacity such as lift stations may be submitted for approval based on phased implementation. A Basis of Design Report (BODR) that identifies the required capacity needed for the proposed development or upgrade, including engineering calculations prepared, signed and sealed by a Registered Engineer in the State of Florida for all projects shall accompany the plan documents submitted to the Village for review and approval.

3.3 Design Flow
Any Owner/Developer seeking to obtain wastewater service from the Village for a new development or re-development that requires installation or extension of wastewater facilities, shall base sewer system design on full ultimate development as known or projected using an Average Daily Flow (ADF) of 157 gallons per day per EDU, rounded to the nearest 1/10 EDU.

3.3.1 Peak Hourly Flow
Peak Hourly Flow (PHF) shall be utilized for the sizing of all gravity sewers, force mains and lift station pump sizing. Peak hourly flow peaking factor (Pf) shall follow Figure 1 - Ratio of Peak Hourly Flow to Design Average Flow, of the “Recommended Standards for Wastewater Facilities”, by the Water Supply Committee of the Great Lakes – Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers, 2004 Edition. PHF peaking factors for vacuum and low pressure sewers are identified in Sections 5 – Vacuum Sewers and Section 6 – Low Pressure Sewers, respectively of this manual.
3.4 Construction Drawings

All utility plans shall be prepared and submitted on 11”x17” sheets utilizing the following minimum scales:

1” = 20’ horizontal, 4’ vertical for vacuum sewer and force main wastewater plan and profile sheets
1” = 40’ horizontal, 8’ vertical for low pressure wastewater plan and profile sheets
1” = 50’ horizontal, 5’ vertical for gravity wastewater profile sheets
1” = 10’ for lift station plans.

Drawings submitted on other size sheets or with other scales will be returned without review.

The additional following items must also be included and/or addressed with submittals:

- Cover sheet with location map;
- A key map shall be included with all plan sheets;
- Standard detail sheets shall be utilized;
- Match lines and phase lines must be clearly delineated;
- Detailed storm piping systems shall be shown on utility plans, including yard drains, roof drains, and exfiltration trenches;
- Field verified data for existing facilities shall be shown;
- Elevations of conflicting pipes shall be shown indicating top and bottom pipe elevations;
- All manholes, fire hydrants, and valves shall be numerically identified;
- Manhole invert and rim elevations shall be shown;
- Piping shall be constructed in road rights-of-way unless unavoidable;
- The number of equivalent dwelling units shall be identified;
- Grease traps, oil/grease interceptors and sand/oil interceptors shall be identified;
- The type, capacity, and location of oil/grease interceptors and sand/oil interceptors shall be identified;
- Proposed utility easements for new and existing facilities shall be identified on utility plans or a separate easement plan;
- Restoration drawings, including the identification of pavement, curb, sidewalk, and private driveway restoration; replacement of all trees, shrubs and landscaping; restoration of any damaged and temporarily relocated utilities and improvements, including all underground utilities;
- Utility plans shall be prepared on State Plan Coordinate System; vertical control shall be tied to NGVD29, National Geodetic Vertical Datum 1929; and
- CAD/PDF utility plan design file is required with every final plan submittal.
4.0 WASTEWATER SYSTEMS, GENERAL

Wastewater collection and transmission systems shall be designed to collect and transport wastewater to the designated point of treatment with capital cost, reliability, extended useful life, and operating costs all being considered. Also, the design must be in accordance with all requirements shown herein and meet all local, state, and regulatory requirements. These include, but are not limited to:

- Islamorada, Village of Islands Building Department;
- US Army Corps of Engineers;
- Florida Department of Transportation;
- Florida Department of Environmental Protection;
- The State of Florida Building Code;
- The National Electric Code;
- The National Fire Protection Association;
- Coastal Management Program;
- South Florida Water Management District; and
- Key Largo Wastewater Treatment District Inter-local Agreement.
5.0 VACUUM SEWERS

Vacuum sewers are the preferred method of sewering residential and commercial properties within the Village. As a result, a major portion of the collection systems to be constructed on Plantation, Upper Matecumbe, and Lower Matecumbe Keys will consist of vacuum sewers. This section provides options for connecting to an existing vacuum sewer system as well as a general overview of the minimum design and construction standards required for vacuum sewers in the Village.

All vacuum system components shall be manufactured and/or distributed by Bilfinger Airvac Water Technologies, Inc. (AIRVAC). All standard details for AIRVAC vacuum sewer designs are provided in Section 12 – Vacuum Sewer Details, Low Pressure Sewer Details, and Standard Details.

5.1 Preliminary Approval Requirements for Connecting to an Existing Vacuum Sewer System in the Village

The Village must approve the use of vacuum sewers for each specific application before a preliminary plan is prepared for submittal and review by the Owner/Developer. The Owner/Developer must provide the Village with the following minimum information for review and approval for connecting to an existing vacuum sewer system in the Village:

1. The Owner/Developer must obtain written approval from the engineering firm who designed the Village vacuum sewer collection system or from another engineering firm with qualified experience in vacuum sewer design (within the State of Florida) that is acceptable to the Village.

2. The engineering firm shall provide the following:
 a. An evaluation of the capacity of the existing vacuum pump station which determines whether the existing capacity of the facility is sufficient or whether certain upgrades are necessary. Required upgrades needed for the pump station shall be identified in writing and included with the preliminary plan submitted by the Owner/Developer;
 b. An evaluation of the existing capacity of the vacuum collection system (vacuum mains) and a determination of how much capacity in the system exists for additional, future flows;
 c. A hydraulic analysis of the system identifying static and friction losses; and
 d. Calculation of the total design peak flow of the Village’s base system (gpm) and the total peak flow expected from the development or re-development.

5.2 Preliminary Plan Submittal Requirements

Upon approval of the use of vacuum sewers for the planned development, the Owner (or Developer) shall submit three (3) copies of preliminary plans to the Village for review and approval. Preliminary plan submittals shall include the following minimum information:
1. Hydraulic analysis
2. General layout;
3. Plan and profile sheets;
4. Vacuum details; including standard options used for connecting with the existing vacuum system (see Section 5.3); and
5. Easement requirements.

Owners of new developments or re-development projects are advised to meet with the Village Engineer to conduct a pre-application meeting and due diligence prior to submitting final engineering plans to discuss the proper procedure for obtaining approval for any modifications.

5.3 Options for Connecting to An Existing Vacuum Sewer System

Owner/Developers that desire to connect with the Village’s existing vacuum sewer system have four options available as described below. In all options, maximum peak flows and connections to valve pits and/or buffer tanks are limited as shown in Table 5.1.

5.3.1 Option A: Gravity Service to a Single Valve Pit

This option would be used for 1 to 4 EDUs where the cumulative peak flow from the houses connected to the valve pit is less than 3 gpm and service is provided with a single AIRVAC valve pit. Under this option, the Village maintains the valve pit and valve.

All gravity lateral service connections with the AIRVAC valve pit shall be performed by a licensed plumber and witnessed by the Village. Installation of the vacuum valve shall be performed by the Village or its representative if not already previously installed for service to an existing customer.

5.3.2 Option B: Extension of the Vacuum System Within the Village Right-of-Way

Under this option, the developer would pay the cost associated with extending the Village’s existing vacuum collection system to the proposed development. This extension of the system would include standard vacuum mains (up to 10 inches), AIRVAC valve pits, and collection system appurtenances. The Village would own and maintain the extended collection system within the Village right-of-way, including the vacuum mains, valve pits, valves and appurtenances. Standard flushing and testing procedures (see Section 14) apply to this option for extension of services.

All gravity lateral service connections with the AIRVAC valve pit(s) shall be performed by a licensed plumber and witnessed by the Village. Installation of the
vacuum valve(s) shall be performed by the Village or its representative if not already previously installed for service to an existing customer.

5.3.3 Option C – Gravity Sewer to Buffer Tank(s)

This option is used when providing a gravity collection system that will connect to a buffer tank(s). The Village will own and operate the buffer tank(s) while the gravity collection system will be responsibility of the Owner/Developer. The Owner/Developer must adhere to AIRVAC’s standards for using buffer tanks (see Section 5.9). Under this option, the Owner/Developer will be required to pay for the installation cost associated with installing an AIRVAC cycle counter at each buffer tank. Standard flushing and testing procedures (see Section 14) apply to this option for extension of services.

All gravity lateral service connections the buffer tank shall be performed by a licensed plumber and witnessed by the Village. Installation of the vacuum valve(s) shall be performed by the Village or its representative if not already previously installed for service to an existing customer.

Table 5-1. Maximum EDU Requirements for AIRVAC Valve Pits

<table>
<thead>
<tr>
<th>Valve Pit Type</th>
<th>Max Peak Q (gpm)</th>
<th>Type of Customer</th>
<th>ADF/EDU (gpd)</th>
<th>Peak Factor</th>
<th>Peak Q/EDU (gpm/EDU)</th>
<th>Max # EDU’s Theoretical</th>
<th>Recm’d</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRVAC valve pit – 5 ft deep</td>
<td>3 gpm</td>
<td>Residential</td>
<td>157</td>
<td>3.50</td>
<td>0.38 gpm/EDU</td>
<td>n/a</td>
<td>2 conn*</td>
</tr>
<tr>
<td>AIRVAC valve pit – all others</td>
<td>3 gpm</td>
<td>Residential</td>
<td>157</td>
<td>3.50</td>
<td>0.38 gpm/EDU</td>
<td>n/a</td>
<td>4 conn*</td>
</tr>
<tr>
<td>AIRVAC valve pit – all others</td>
<td>3 gpm</td>
<td>Commercial</td>
<td>157</td>
<td>7.00</td>
<td>0.76 gpm/EDU</td>
<td>3.9</td>
<td>4 EDU</td>
</tr>
<tr>
<td>Single Buffer Tank</td>
<td>15 gpm</td>
<td>Commercial</td>
<td>157</td>
<td>7.00</td>
<td>0.76 gpm/EDU</td>
<td>19.7</td>
<td>20 EDU</td>
</tr>
<tr>
<td>Dual Buffer Tank</td>
<td>30 gpm</td>
<td>Commercial</td>
<td>157</td>
<td>7.00</td>
<td>0.76 gpm/EDU</td>
<td>39.5</td>
<td>40 EDU</td>
</tr>
<tr>
<td>Dual Buffer Tank (2)</td>
<td>60 gpm</td>
<td>Commercial</td>
<td>157</td>
<td>7.00</td>
<td>0.76 gpm/EDU</td>
<td>78.9</td>
<td>80 EDU</td>
</tr>
<tr>
<td>Serve by other means</td>
<td>>60 gpm</td>
<td>Commercial</td>
<td>157</td>
<td>7.00</td>
<td>0.76 gpm/EDU</td>
<td>> 80 EDU</td>
<td></td>
</tr>
</tbody>
</table>

In addition to the 3 gpm max peak flow, these valve pits are limited to 2 & 4 physical connections respectively

5.3.4 Option D – Low Pressure Sewers to Buffer Tank(s)

This option can only be used for connecting a grinder pump station and a grinder pump service lateral connection with a buffer tank where the pumping rate does not exceed the capacity of the buffer tank. For example, when using a single buffer tank, the rated capacity of the grinder pump station cannot exceed 15 gpm. If using a dual buffer tank, the rated capacity of the grinder pump station(s) cannot exceed
Option D can only be used if Options A, B and C are not feasible and the limitations for using buffer tanks can be met as stipulated in the AIRVAC 2012 Design Manual (or latest edition). Standard flushing and testing procedures (see Section 14) apply to this option for extension of services.

All service connections with the buffer tank shall be performed by a licensed plumber and witnessed by the Village. Installation of the vacuum valve(s) shall be performed by the Village or its representative if not already previously installed for service to an existing customer.

5.4 Average Daily Flow and Peak Hourly Flow

Based on the Recommended Standards for Wastewater Facilities (2004), flow rates shall be based on documented wastewater flows for each of the service areas defined in the Village Wastewater Master Plan.

For vacuum sewer systems, all vacuum sewers shall be sized based on peak flow rates and peaking factors as defined in the AIRVAC 2012 Design Manual (or latest edition) and in the Water Environment Federation Manual of Practice FD-12 – Alternative Sewer Systems, 2nd edition, 2008.

5.5 Pipe Material

Vacuum main piping is used to connect individual valve pits to the collection tank at the vacuum pump station. Pressure rated schedule 40 or standard dimension ratio (SDR) 21 polyvinyl chloride (PVC) pipe shall be used for vacuum main piping. Doubled lipped “Reiber style” gasketed joints shall be used with all piping. High density polyethylene (HDPE) piping may be used in certain instances where directional borings are allowed by the Village for short piping runs, i.e. under a highway. PVC pressure rated fittings are required for directional changes, branch to main connections, and service lateral to branch or main connections in a vacuum sewer system. Tee fittings and 90 degree bends shall not be used for vacuum service. Bends are restricted to 45 degree elbows only. Pressure rated fittings available for use include solvent welded, assembled/fabricated, and molded as recommended in the most current version of the AIRVAC Design Manual.

Gravity stub-outs (the 4” or 6” stub-out pipe from the vacuum valve pit) and gravity service lateral connections shall be constructed of pressure rated Schedule 40 (220 psi) or SDR 21 PVC (200 psi) pipe. Pressure rated pipe must be used for two reasons. First, the pipe OD must match the valve pit grommet to prevent the entrance of infiltration and inflow (I/I) into the valve pit sump. Second, the building sewer may be exposed to high vacuum at times. Non-pressure rated pipe shall not be used.

5.6 Piping Diameter

Vacuum mains and branches shall be sized per the requirements of the most recent version of the AIRVAC Design Manual. Typical vacuum main sizes include 4-inch, 6-inch,
8-inch and 10-inch diameter piping. No vacuum main shall be sized less than 4-inches in diameter or larger than 10-inches in diameter without written approval of AIRVAC.

5.7 Pipe Velocity

Fluid velocity in a vacuum system can sometimes exceed 20 feet per second and therefore is not a primary design factor for sizing a vacuum sewer system. Self-cleansing velocity will always be achieved in a properly design vacuum main.

5.8 Vacuum Pits

Vacuum pits shall be either of the “one piece” polyethylene (PE) variety or the two-piece hybrid PE/Fiberglass variety. One piece vacuum pit sizes include 5.0 ft and 6.5 ft deep pits. The “two piece” hybrid PE/fiberglass (FRP) pits are available from AIRVAC provided that Village approval for their use is granted.

For residential and commercial connections, a maximum of 4 single family residential connections (or 4 EDUs) are allowed on a 6.5 foot, 8.0 foot, and 10.0 foot deep vacuum pits. A maximum of 2 residential connections are allowed on the 5.0 foot deep pit. The use of 5.0 foot deep pits is only acceptable for two (2) residential connections (no commercial connections) as long as both homes are being served on the same side of the street and both homes can be served with gravity lateral connections that comply with building code requirements.

To minimize the risk of damage to the valve pit during Owner connection to the system, a 4 inch or 6 inch stub-out pipe of sufficient length, typically 6 feet from the valve pit is recommended. The orientation of the valve pit (as it relates to the house and the wye connection) will vary according to the number of connections to the pit.

Vacuum pit details for 1-piece 5 foot valve pits, 1-piece, 6-1/2 foot valve pits, and 1-piece 6-1/ foot valve pits with a 1-foot extension are provided in Section 12 of this document.

5.9 Vacuum Valves

The AIRVAC vacuum valve is a full-port 3” valve capable of passing a 3” spherical solid while matching the outside diameter of 3” PVC SDR pipe. To ensure proper air-to-liquid ratios, AIRVAC recommends a maximum peak flow of 3 gpm be used for all valve pits serving residential customers.

The controller is the key component of the AIRVAC 3” vacuum valve. The controller relies on three forces for its operation: pressure, vacuum, and atmosphere. The controller requires a source of atmospheric air to the actuator chamber permitting spring assisted closing of the 3” vacuum valve. The in-sump breather uses atmospheric air from the sump and its associated 4” gravity building sewer and 4” air intake or from a 6” dedicated air terminal.
The AIRVAC 3” vacuum valve and controller combination require 5” Hg vacuum for operation and to avoid low air-to-liquid ratios. The lower the vacuum level, the less differential (atmospheric pressure to line vacuum) exists. This equates to less air entering the system resulting in lower line velocities and sluggish flow characteristics.

5.10 Vacuum Valve Pits and Buffer Tanks

The following are design guidelines for the maximum number of EDUs that can be served with a single vacuum pit, a single buffer tank, and a dual buffer tank. Because the quantity of valve pits has a major bearing on the overall project costs, the engineering design is typically driven toward minimizing the number of valve pits by maximizing the number of homes that can be served by a single pit. This concept is not recommended for use on a widespread, system-wide basis. Rather, the house to pit ratio should not exceed 2.5:1 as established in the FDEP Vacuum Sewer Systems Design Checklist.

Vacuum valve pit design requirements have been established which are included in these Minimum Design Standards. These standards establish the guidelines for the engineering design of residential and commercial properties that will receive centralized wastewater services using vacuum sewers within the Village. Design guidelines have been established based on the Village-wide flow of 157 gallons per capita per day (gpcd) and established peaking factors required for providing service during peak flow periods. These standards have been established to avoid “water-logging” from occurring whereby the vacuum mains are choked-off at the extreme ends of the system.

Residential and Commercial Connections with Vacuum Valve Pits. For single family residential and commercial connections, a maximum of 4 EDUs are allowed on a single valve pit that is 6-ft deep or deeper. A maximum of 2 connections are allow on any 5-ft deep valve pit.

Commercial Connections with Buffer Tanks. Buffer tanks may be used for apartment buildings, commercial buildings, and other large volume users in the system. Buffer tanks cannot be used where individual valve pits could otherwise be used. Buffer tanks shall not be placed at line extremities without consulting with AIRVAC.

Single buffer tanks must be connected to a 6 inch diameter or larger vacuum main. Dual buffer tanks must be connected to an 8 inch diameter or larger vacuum main.

For single buffer tanks, design peak flows should not exceed 15 gallons per minute (gpm). For dual buffer tanks, design peak flows should not exceed 30 gpm.

Two (2) dual buffer tanks with a splitter manhole can be for applications for maximum peak flows up to 60 gpm. The maximum number of EDUs and the associated peaking factors are indicated in Table 5.1.

Design rules for the use of buffer tanks must be followed accordingly to the hydraulic limitations set forth in the most current version of the AIRVAC Design Manual. These conditions include the following:
• **25% Rule** – No more than 25% of the total peak flow of the entire system can enter through the buffer tanks.

• **50% Rule** – No more than 50% of the total peak flow of a single vacuum main can enter through the buffer tanks.

When a lift station or grinder pump station (from a low pressure sewer) discharges into a buffer tank, the rated discharge capacity of the pump (serving the owner) should be used for design peak flow. The conventional peak flow rates for the customer served by the pump should not be used. For guidance on friction loss values to use in these cases, consult with AIRVAC’s Engineering Department.

Standard details for buffer tanks are provided in Section 12 of this document.

5.11 Isolation Valves

Isolation valves shall be incorporated in major branches and service boundaries to allow field maintenance crews to efficiently determine the location of a system failure or open valve. Isolation valves shall be resilient-wedge gate valves. Isolation valves shall be used at the beginning of each branch and on the main line near branch locations. Where branch spacing exceeds 1,500 feet, an isolation valve shall be installed on that section. All isolation valves used shall be in accordance with AWWA C509 standards.

5.12 Vacuum Main, Appurtenances, and Accessories Testing

All testing shall be performed in accordance with the procedures outlined in the most current version of the AIRVAC Design Manual and as outlined in Section 14 – Collection and Transmission System Testing & Reporting Requirements of this document.

5.13 Backwater Valve

Local building code requires the installation of a backwater valve on the single family residential sewer lateral connection used with a vacuum sewer (see Figure 13-2). With most backwater valves, positioning is critical to ensure proper operation of the AIRVAC vacuum valve; however, this concern can be alleviated using a normally opened type backwater valve. Recommendations and product specifications for backwater valves are provided in the Owner Sewer Connection Packet provided by the Village and also specified in Section 11 – Approved Product Lists.
6.0 LOW PRESSURE SEWERS

When vacuum sewers are not feasible, low pressure sewers may be considered as a viable sewering option for residential and commercial properties in the Village. A low pressure sewer system (LPSS) may consist of one or more grinder pump stations. A grinder pump station shall be considered as the individual pumping unit which serves a single family residence or a single commercial building. A grinder pump station consists of a grinder pump, wet well basin, discharge piping, valving, electric motor and level controls, control panel, and related appurtenances and wiring.

The Village must approve the use of low pressure sewers for each specific application before a preliminary plan is prepared for submittal and review. The Owner/Developer shall provide the following minimum information for the evaluation and approval of using low pressure sewers:

(a) An evaluation of the existing sanitary sewer system serving the area detailing why the use of low pressure sewers is necessary;
(b) An evaluation of the existing collection system from the low pressure sewer system connection point to the treatment plant confirming that both collection and treatment capacity exist for conveying the development’s additional design flow;
(c) A topographic map identifying:
 a. The project area;
 b. Zoning in the project area;
 c. Existing sanitary sewer system downstream of the project area; and
 d. Finish floor elevations of all intended structures and invert elevations of proposed tie-in locations.
(d) A life cycle cost analysis comparing low pressure sewers with alternative systems. This analysis should consider initial construction and annual operating and maintenance costs. All assumptions should be specified, including the useful life for each alternative.

Upon approval of the use of low pressure sewers for the planned development, the Owner (or Developer) shall submit three (3) copies of preliminary plans to the Village for review and approval. Detailed requirements associated with the preliminary plan submittals are provided in Section 6.2 – Preliminary Plan Submittal Requirements.

All LPSS facilities which are located in public rights-of-way shall be conveyed to the Village for operation and maintenance. The Owner/Developer shall grant the Village any necessary easements for the installation, operation and maintenance of the low pressure sewer systems.

6.1 Applicability

Standards and requirements contained in this section are applicable to new development, re-development, existing residential properties serving more than 4 EDUs, and commercial properties proposing to utilize grinder pump systems as a sewering option in the Village. Standards and requirements contained in this section are also applicable to single family residences which do not participate in the Village-wide Residential Grinder Pump Program.

Owners of new developments or re-development projects are advised to meet with the Village Engineer to conduct a pre-application meeting and due diligence prior to
submitting final engineering plans to discuss the proper procedure for obtaining approval for any modifications.

6.2 Preliminary Plan Submittal Requirements

Any development or re-development proposing to use low pressure sewers shall prepare and submit preliminary plans to the Village for review. Submittals shall include the following information:

1. Hydraulic analysis;
2. General layout;
3. Plan and profile sheets;
4. Low Pressure Sewer detail sheets; and
5. Easements.

A detailed discussion of each requirement is presented below:

1. Hydraulic Analysis
 a. Branch analysis – perform a branch analysis in accordance with the guidelines of the grinder pump station manufacturer
 b. Retention time analysis –
 i. Report the cumulative retention time at the extremities of the collection system
 ii. Base analysis on uniform build out level
 iii. Report the predicted hydrogen sulfide buildup based on the estimated retention time. Hydrogen sulfide buildup estimates can be performed using an accepted estimation, e.g. *Odor and Corrosion in Sanitary Sewerage Systems and Treatment Plants* (EPA)

2. General Layout
 a. Include north arrow and scale with the general layout sheet;
 b. Identify datum plane and survey reference points. Vertical control shall be tied to NGVD29, National Geodetic Vertical Datum 1929;
 c. Identify existing and proposed development including all lots, both present and future, to be served by the low pressure sewer system;
 d. Identify existing sanitary sewer system including vacuum and low pressure sewers, existing manhole locations, all invert elevations of incoming and outgoing lines and grade elevations, pipe diameters, pipe material and slopes;
 e. Identify proposed sewer alignment, including all low pressure sewer mains, discharge lines, and each grinder pump station location. Indicate the length and diameter for each line; and
 f. Identify the location of all low pressure sewer appurtenances, including terminal flushing assemblies, cleanouts, air release valves, and isolation valves.

3. Plan and Profile Sheets
 a. Show and label all existing and proposed utilities;
 b. Show all existing and proposed utility easements and rights-of-way;
 c. Show all existing grade as solid line and proposed grades as dashed lines;
 d. All plan/profile sheets shall contain the following:
 i. Low pressure mains
ii. Pump discharge lines
iii. Low pressure sewer detail sheets
iv. Easements

4. Low Pressure Sewer Details Sheets
 a. Include all relevant low pressure details (see Section 12 – Low Pressure Sewer and Vacuum Sewer Standard Details).

5. Easements
 a. Locate all low pressure sewer mains in one of the following:
 i. A road right-of-way;
 ii. A platted utility easement;
 iii. A platted wastewater (or sewer) easement;
 iv. A wastewater (or sewer) easement transferred to the Village; or
 v. An easement to be obtained as part of the development.
 b. Submit preliminary plats and draft easements to be acquired as part of the project.

The following particulars should be considered in the design of any proposed low pressure system:

- Geographical location;
- Type of development - number of residences;
- Topography of service area (where applicable);
- Layout of existing or proposed service area;
- Projected wastewater flows;
- Location of nearest existing wastewater facility;
- Soil and water table information; and
- Availability of electric power.

Proposed designs for any low pressure sewer system shall also include an engineering feasibility evaluation which considers why the use of low pressures sewers is the preferred alternative for sewering the subject property (or properties). The alternative evaluation shall include engineering calculations which indicate why vacuum sewers are not possible for the proposed new development or re-development, including static and friction loss calculations as well as wastewater pump, collection tank, and vacuum pump calculations. This engineering evaluation shall be signed and sealed by a Professional Engineer licensed and registered in the State of Florida.

6.3 System Layout and Alignment

The low pressure sewer system shall be designed so that all contributory lines are branched into a main collector. "Looping" and "dead-endings" of macerated wastewater in remote areas of the system shall be avoided.

Pressure lines should be laid out to provide runs as short as possible with a minimum of major change in direction. To facilitate maintenance and repair, low pressure force mains should be laid outside the limits of pavement or heavy traffic areas.
All system lines shall be kept full, under a positive pressure head at all times. This can be maintained by locating the system terminus at the highest elevation, or by employment of a positive pressure control devise at the terminus.

To minimize the number of potential air pockets, pressure lines should be installed on a continuously rising grade as much as possible to predetermined points where air release devices and flushing ports can be installed in accordance with the Standard Details for Low Pressure Sewers (see Section 12).

6.4 Design Flow

As with any collection system, a low pressure sewer system must be designed to effectively handle all wastewater flow generated in the service area especially during times of peak flows.

Peak flow shall be determined by accepted sanitary sewer engineering principals and standards established by regulatory agencies. Proper design should assure that each contributing grinder pump unit in the service area, no matter what its location or what other grinder pumping units are operating at the same time, will be able to deliver into the system during peak flow system conditions at a rate sufficient to insure that there will be no wastewater removal problem at any individual building or unit.

6.5 Peak Hourly Flow

All low pressure mains and the Village’s approved grinder pump stations (centrifugal) shall be sized based upon the maximum flow rates expected to occur once or twice per day using the probability method or the rational method. The peak design flow estimates shall follow either Part 4 – Design Flows, of the “Design and Specification Guidelines For Low Pressure Sewer Systems”, by the FDEP, latest edition or Chapter 2, “Manual – Alternative Wastewater Collection Systems” (U.S.EPA, 1991).

6.6 Piping and Line Sizing

Pipe for small diameter pressure lines shall be smooth flow, polyvinyl chloride (PVC) pressure pipe color coded green with a flow factor (C) equal to between 140 to 150. Pipe shall be Type I, PVC 1 120 with a hydrostatic design stress of 2000 psi for liquid at 73.4 F. Heavy duty schedule 80 PVC will be used for pressure lines. Where pressure lines cross paved roadways, a protective galvanized steel sleeve will be used to facilitate removal of the pressure pipe.

Minimum service line diameter for residential grinder pump connections shall be 1.25 inches. Minimum service line and tap diameters for commercial connections shall be 2 inches. In the case of tying into an existing 2 inch or 2.5 inch main, a tee with a 2 inch outlet shall be cut in.
6.7 Minimum Flow Velocity

Line sizing must be designed to insure that scouring velocities will occur in the system pressure lines at some regular interval. At the same time, line velocities must be restricted to avoid excessive system pressures which can jeopardize the delivery capacity of any grinder pump unit on the system.

To maintain an unobstructed low pressure force main and corresponding grinder pump service lateral connection, the pipe velocity should be sufficient enough to transport grit that may be present in the wastewater, prevent grease buildup on the crown of the pipe, and scour and re-suspend previously settled material in the wastewater. A minimum self-cleaning velocity of 2 to 3 ft/sec should occur in the pressure lines at regular intervals (1-2 time daily minimum).

6.8 System Flushing

Design shall provide for the ability to mechanically purge wastewater from the system at regular intervals. Flushing connections to the force main system are shown in the Low Pressure Sewer Standard Details (Section 12).

6.9 Air Release

Design shall provide for relief of air at high points along the collection system. Recommendations for air release valves are provided in Section 11 – Approved Product Lists and Section 12 – Low Pressure and Vacuum Sewer Standard Details.

6.10 Grinder Pumps Stations

Grinder pump station installations shall comply with the design requirements specified in the Scope of Work – Residential Grinder Pump Program (Exhibit B) of Construction Change Order No. 5 issued on May 22, 2014.

The manufacturer of Grinder Pump Stations shall be as specified in Section 11 – Approved Product Lists of this document. A complete and operating pumping station, including all electrical and instrumentation components, shall be the responsibility of the Grinder Pump Station supplier.

All grinder pumps shall be progressive cavity, non-clogging, non-jamming, grinder pump capable of operating at a negative TDH without overloading the motor. Grinder Pump Stations shall be capable of comminuting all material normally found in domestic or commercial wastewater, including reasonable amounts of foreign objects such as glass, eggshells, sanitary napkins, thin rubber, small wood, plastic and the like to a fine slurry that will pass through the pump, a 1-1/4 inch NPT discharge piping and downstream appurtenances. The grinder impeller shall be a one piece, rotating type cutter wheel made of hardened 4140 steel. The cutter teeth shall be treated and hardened to 56 to 60 Rockwell C. The shredder ring shall be stationary type with a staggered tooth pattern and made of white cast iron per ASTM A532(1B).
An anti-siphon and check valve shall be integral with the Grinder Pump Station pump. Level sensing control for Grinder Pump Stations shall be a non-fouling type with no moving parts in contact with the wastewater. Each Grinder Pump Station shall have a high level audible and visual warning alarm to warn the residential or commercial property owner(s) of a high wet well level.

Power supply requirement should not exceed 30 amps. Grinder Pump Stations shall be shop-tested to include visual inspection to confirm construction in accordance with the specifications for correct model, horsepower, impeller length, voltage, phase and hertz. The pump and seal housing chambers shall be tested for moisture and insulation defects.

6.11 Wet Well

The wet well shall be molded of high-density polyethylene (HDPE) with a HDPE access-way. Access-way corrugated sections shall be double wall construction with the internal wall surface being generally smooth to promote scouring. Any incidental sections of a single wall construction are to be 0.250 inches thick (minimum). All polyethylene seams created during tank construction are to be thermally welded and factory tested for leak tightness. The tank wall and bottom must withstand the pressure exerted by saturated soil loading at maximum buried depth. All Grinder Pump Station components must function normally when exposed to 150 percent of the maximum external soil and hydrostatic pressure.

The wet well basin shall be designed so that all solids will be diverted directly below the Grinder Pump Station inlet to assure proper scouring of the basin. A heavy vertical rib or bottom flange shall be provided for anchoring the basin in concrete to prevent floatation.

The wet well assembly shall include a lockable cover assembly providing low profile mounting and watertight capability. The access cover shall be high density polyethylene, green in color, with a load rating of 150 pounds per square foot. The cover shall contain a captive, not separated gasket. Cover shall be bolted to the basin with type 316 stainless steel hex head tamperproof bolts and washers. Non-corroding stainless steel threaded inserts shall be fully encapsulated in the upper flange of the HDPE wet well basin. The access-way design and construction shall enable field adjustment of the station height in increments of 6 inches or less without the use of any adhesives or sealants requiring cure time before installation can be completed.

The Grinder Pump Station shall have all necessary penetrations molded in and factory sealed. To ensure a leak free installation, no field penetrations will be acceptable. No secondary welding of the wet well basin or cover will be accepted.

6.12 Wet Well Appurtenances

Wet well appurtenances are identified below and specified in Section 11—Approved Product Lists:
(a) Piping
All discharge piping shall be constructed of PVC, polypropylene, or EPDM. The standard size of internal piping is normally 32 to 38 mm (1-1/4 inch to 1-1/2 inch) diameter for 1,490 watts (2 horsepower) or less rated pumps. For 2,240 to 3,730 watts (3 to 5 horsepower) rated pumps, 51 to 644 mm (2 inch to 2-1/2 inch) diameter internal discharge piping is normally required. The tank shall be furnished with a factory installed PVC inlet flange to accept a 4.50: OD (4" Schedule 40) inlet pipe.

(b) Valves
The discharge hose assembly shall include a shut-off valve rated for 200 psi WOG and a quick disconnect feature to simplify installation and pump removal. The bulkhead penetration shall be factory installed and warranted by the manufacturer to be watertight.

(c) Check valves
The Grinder Pump Station discharge shall be equipped with a factory installed, gravity operated flapper-type integral check valve built into the stainless steel discharge piping. The check value will provide a full-ported passageway when open and shall introduce a friction loss of less than 6 inches of water at maximum rated flow. Moving parts will be made of a 300 Series stainless steel and fabric reinforced synthetic elastomer to ensure corrosion resistance, dimensional stability, and fatigue strength. The valve body shall be an injection molded part made of an engineered thermoplastic resin. The valve shall be rated for continuous operating pressure of 235 psi. Ball-type check valves will not be accepted.

(d) Anti-Siphon Valve
The Grinder Pump Station discharge shall be equipped with a factory-installed, gravity-operated, flapper-type integral anti-siphon valve built into the discharge piping. Moving parts will be made of a 300 Series stainless steel and fabric reinforced synthetic elastomer to ensure corrosion resistance, dimensional stability, and fatigue strength. The valve body shall be an injection molded part made of an engineered thermoplastic resin. Holes or ports in the discharge piping are not acceptable anti-siphon devices due to their tendency to clog from the solids in the slurry being pumped. The anti-siphon port diameter shall be no less than 60% of the inside diameter of the Grinder Pump Station discharge piping.

6.13 Sealing of adaptors or piping passing through basin walls
For polyethylene basins, the outlet coupling should be either bonded and coated or bolted to the basin wall with type 316 stainless steel bolts. Appropriate rubber gaskets shall be used for bolted adapters.
6.14 Venting
The cover assembly shall include a 2 inch vent to prevent wastewater gases from accumulating in the wet well basin. Any additional venting requirements shall be specified and provided.

6.15 Flood Conditions
The Grinder Pump Station shall be designed to prohibit inflow from the 25-year flood unless lesser flood levels are appropriate based on local conditions, but not less than the 10-year storm event. Grinder Pump Stations shall be designed to withstand the effects of buoyancy under submerged conditions (assuming the basin is empty). Ballast calculations shall be included with the design report submitted to the Village for review and approval.

6.16 Basin Volume
Due to the potential for extended power outages, the Grinder Pump Station basin shall be capable of providing additional storage capacity. The basin must be able to contain a minimum of 190 gallons without discharging wastewater or causing damage to the Grinder Pump Station.

6.17 Electrical Motor and Level Controls
The pump motor shall be of the submersible type, single-phase operation with capacitor start/capacitor run type for high starting torque. Inherent protection against running overloads or locked motor conditions for the pump motor shall be provided by the use of an automatic-reset, integral thermal overload protector incorporated into the motor.

The stator winding shall be of the open type with Class F insulation. The stator shall be pressed into the cast iron motor housing. The common motor pump and grinder shaft shall be of type 416 stainless steel threaded to take the pump impeller and grinder impeller.

Non-fouling wastewater level controls for controlling pump operations shall be accomplished by monitoring pressure changes in an integral air column connected to a pressure switch. The air column shall be integrally molded from a thermoplastic elastomer suitable for use in wastewater and impact resistant. The air column shall have only a single connection between the water level being monitored (in the wet well) and the pressure switch. All connections shall be sealed with redundant O-rings. The level detection device shall have no moving parts in direct contact with the wastewater and shall be integral to the pump core assembly in a single, readily-exchanged unit. Float switches of any kind, including float trees, will not be accepted.

The control panels and all associated components on each standard simplex Grinder Pump Station shall be U.L. Approved and shall bear the U.L. Approved label. All equipment associated with each grinder pump station shall be meet the current requirements of the National Electric Codes and all applicable Federal, State and local
electrical codes. The Owner/Developer shall coordinate and schedule with the Village Building Inspector to perform all required electrical code inspections.

(a) Grinder pump station control system
 All electrical elements shall be furnished pre-wired and housed in a NEMA 4X enclosure (control box). Control circuit shall be 115 volt. The door of the control box shall be hinged of the dead type with locking hasp and suitable accessories to allow wall mounting. Motor shall be activated by a magnetic type contactor and a reset overload shall protect the motor against excessive current conditions. A heat sensor thermostat in the motor winding wired in series with the magnetic contactor coil shall protect the motor against excessive heat. The sensor shall reset automatically when motor cools. An alarm test switch, HOA switch, run light, auto/off switch, and overload reset button shall be supplied inside the control box. A terminal strip with box type connections shall be supplied to make all power and control connections. All terminals shall be marked for easy identification. A ground terminal strip shall also be provided and labeled.

(b) Electrical Quick Disconnect
 The Grinder Pump Station shall include a factory-installed NEMA 6P electrical quick disconnect (EQD) for all power and control functions. The EQD will be supplied with a minimum of 30 feet of useable electrical supply cable to connect with the alarm panel.

(c) Generator Receptacle and Auto Transfer
 The alarm panel shall include a 20 amp, 250 VAC generator receptacle with a spring-loaded, gasketed cover suitably mounted to provide access for connection of an external generator while maintaining a NEMA 4X rating. An automatic transfer switch shall be provided, which automatically switches from AC power to generator power.

(d) Standby Emergency Power Requirements
 The minimum emergency storage capacity for systems which are not participating in the Village-wide Residential Grinder Pump Program and all other facilities which are discharging into the Village’s wastewater collection system shall be 12 hours with standby power manually activated, or four hours with standby power automatically activated, or with a high-water alarm automatically contacting a 24-hour maintenance service (capable of providing standby emergency power) which is approved by the Village.

(e) Service Equipment/Main Service Disconnect Breaker
 A separate, internal breaker rated and approved for used as “service equipment” and acts as a main service disconnect of the Grinder Pump Station shall be provided.

(f) Pump and Alarm System Wiring
 SealTite conduit, or rigid electrical PVC conduit, shall be supplied for the power supply. The SealTite fittings shall also seal to the junction hub wall with an “O” gasket or other
effective means. Conduits through which moisture may contact energized live parts shall be sealed or plugged at either of both sides so that condensation from the conduit or ground water will not enter the enclosure.

(g) Monitoring Requirements
Each Grinder Pump Station shall be tied into the Village’s telemetry system which supports the Village’s wastewater facilities. The telemetry system shall provide real-time data information pertaining to the monitoring of individual Grinder Pump Station pump failure and wet well high flows as indicated by each individual grinder pump system alarm panel.

6.18 Installation Procedures
Prior to initiating installation, the Owner/Developer shall submit complete and detailed installation procedures that will be utilized for the installation of each grinder pump system to the Village and its representative for review and approval. Recognizing that installation procedures may vary from island to island, installation procedures shall be submitted for review and approval for each island service area.

The Owner/Developer shall coordinate the installation of this work with the Village and each property owner. Installation shall be accomplished so that 1” to 4” of access way, below the bottom of the lid, extends above the finished grade line. The finished grade line shall slope away from the pumping unit. The diameter of the excavated hold shall be large enough to allow for the concrete anchor.

A 6-inch (minimum) layer of naturally rounded aggregate, clean and free flowing with a particle size of not less than 1/8-inches, or more than 3/4-inches, shall be used as bedding material under each unit.

A concrete anti-floatation collar, sized according to the manufacturer’s instructions, shall be required and shall be pre-cast to the grinder pump wet well or poured in place. Each grinder pump station with its pre-cast anti-floatation collar shall have a minimum of three lifting eyes for loading and unloading purposes.

If the concrete is poured in place, the unit shall be leveled and filled with water, to the bottom of the inlet, to help prevent the unit from shifting while the concrete is being poured. The concrete must be manually vibrated to ensure there are no voids. If concrete must be poured to a level higher than the inlet piping, an 8 inch sleeve is required over the inlet prior to the concrete being poured.

6.19 Backfill Requirements
Backfill of clean native earth, free of rocks, roots, and foreign objects shall be thoroughly compacted in lifts not exceeding 12-inches to a final Proctor Density of less than 90 percent. The finish grade line shall be 1” to 4” below the bottom of the lid, and final grade shall slope away from the grinder pumps station.
6.20 Site Restoration

All restoration shall be the responsibility of the Owner/Developer. All property shall be restored to their original condition in all respects, including but not limited to, curb and sidewalk replacement, landscaping, seeding, and restoration of the traveled ways.

6.21 Safety

All maintenance tasks for the grinder pump station must be possible without entry into the grinder pump station per CFR, Part 1910.146 (OSHA Permit-Required Confined Spaces). “Entry means the action by which a person passes through an opening into a permit-required confined space. Entry includes ensuing work activities in that space and is considered to have occurred as soon as part of the entrant’s body breaks the plane of an opening into the space.”

The grinder pump shall be free from electrical and fire hazards as required for functionality in a residential environment. The completed assembled and wired grinder pump station shall be listed by Underwriters Laboratories, Inc. to be safe and appropriate for the intended use. UL listing of components of the station, or third-party testing to UL standard is not acceptable.

The grinder pump system shall meet accepted standards for plumbing equipment in or near residences, shall be free from noise, odor, or health hazards, and shall have been tested by an independent laboratory to certify its capability to perform as specified in either individual or low pressure sewer system applications.

6.22 Signage

Grinder pump stations shall have signage identifying the residence by ID number and emergency telephone number(s). This information shall be installed on the grinder pump station control panel and be readily visible.

6.23 Grinder Pump Service Laterals

Grinder pump service laterals shall conform to applicable parts of the Florida Building Code. Where requirements of the Village Minimum Design Standards or Village Building Code are more restrictive than the Florida Building Code, the Village’s Minimum Design Standards or the Village Building Code shall prevail.

(a) Lateral Materials and Sizing. Grinder pump service laterals for single residential parcels (1 EDU) shall be constructed of 1.25-inch HDPE, minimum SDR 11 and Pressure Class 160 in accordance with ASTM F714. The piping shall be manufactured with an integral color code strip of HDPE, color green.
All other grinder pump service laterals for residential properties up to 4 EDUs shall be sized in accordance with the requirements of the Florida Building Code for building sewers. Common laterals are for one (1) building with multiple residential units (up to 4 EDUs) are also prohibited. The intent is to have individually owned residential units served by individual laterals.

(b) Lateral Location. All properties shall be served from the street side of the property. All grinder pump service laterals shall be constructed with a minimum 24 inches of cover. Grinder pump service laterals shall not be located under driveways, retaining walls, or other areas that may restrict access to the private lateral for maintenance and repair or may cause damage to the private lateral.

(c) Service Lateral Casings. Grinder pump service laterals shall be installed inside casing where additional protection of the line is necessary as determined by the Village. Casing end seals shall be installed at either end of the casing pipe to prevent migration of water and soil along the carrier pipe.

(d) Separation Distance. All grinder pump service laterals shall meet the FDEP's requirements for minimum separation from other utilities (F.A.C 62-555.314).

(e) Flushing. All grinder pump service laterals shall be tested after the grinder system is completely installed. Prior to commencement of testing, service lateral pipe sections should first be flushed to remove any debris that may remain inside the lateral. The flushing procedure should develop a water velocity of at least 2.5 feet per second and should result in at least 100% turnover of the water in the service lateral.

(f) Testing. After each service lateral has been installed, flushed, partially backfilled and fully charged with water, each service lateral shall be subjected to a hydrostatic pressure equal to either 150 percent of the maximum operating pressure or 2.5 times the working pressure, whichever is greater, but shall not exceed the pressure rating for the service lateral installed. Testing shall be conducted for a period of not less than two hours in accordance with the Hydrostatic Testing Requirements of AWWA C600 and C603. If the pressure drops more than 5 psi in one hour, the test shall be considered failed. The applicant is responsible for assuring that the cause of the test failure is determined, all necessary repairs have been made, and repeating the hydrostatic pressure test until the service lateral segment passes.

(g) Prohibited Lateral Connections. Only grinder pump service lateral wastewater lines shall connect to the Village’s low pressure wastewater system. Approved discharges include domestic waste and all other commercial discharges that have a valid, current permit issue by the Village. No laterals shall be connected to the Village’s wastewater collection system that have any of the following sources of clear water: roof drains, swimming pools, cooling water, or any other sources of clear water such, but not limited to yard and/or driveway drains.
6.24 Maintenance Requirements

All Grinder Pump Stations connected with the Village's wastewater collection system are required to be inspected, maintained and repaired on a routine basis. Non-participants in the Village Residential Grinder Pump Program connected with the Village’s wastewater collection system are required to perform all maintenance, repair, renewal and replacement work on the Grinder Pump Station, Grinder Pumps, Grinder Pump Service Lateral Connections and all appurtenances, including but not limited to routine maintenance, electrical repairs, cleaning, pumping and odor control.
7.0 GRAVITY SEWERS AND GRAVITY LATERAL CONNECTIONS

Standards and requirements contained in this section are applicable to new development, re-development, existing residential properties serving more than 4 EDUs, and commercial properties proposing to utilize gravity sewers and transfer pump stations for connecting with the Village’s wastewater collection system. While the construction of gravity sewers are acceptable, the Village will not accept ownership or the responsibility of maintenance of gravity sewer collection systems. The Owner/Developer shall be responsible for maintenance of the gravity sewer collection system, including the transfer pump station(s).

7.1 Preliminary Plan Submittal Requirements

Any new development, re-development, existing residential properties serving more than 4 EDUs or commercial properties proposed to utilize gravity sewers shall prepare and submit preliminary plans to the Village for review. The Owner/Developer shall submit three (3) copies of preliminary plans to the Village for review and approval.

Submittals shall include the following minimum information:

1. Hydraulic analysis;
2. General layout;
3. Plan and profile sheets;
4. Gravity sewer detail sheets;
5. Calculation of the total design peak flow of the Village’s base system (gpm) and the total peak flow expected from the development. In general, a peaking factor of 3.5 shall be applicable for average daily flow rates; and
6. An evaluation of the proposed transfer pump station requirements for connecting with the Village’s wastewater collection system.

Owners of new developments or re-development projects are advised to meet with the Village Engineer to conduct a pre-application meeting and due diligence prior to submitting final engineering plans to discuss the proper procedure for obtaining approval for any modifications.

7.2 Pipe Material

All new gravity sewer shall be green PVC SDR 26, ASTM D-3034. In places where a minimum cover of 3.0 feet cannot be maintained, AWWA C-900 or C-905 green PVC DR-25, Class 100 or concrete encasement shall be used.

7.3 Minimum Size

The minimum allowable gravity sewer pipe line diameter for all new gravity sanitary sewer mains (manhole to manhole) shall be a minimum of 8 inches in diameter.
7.4 Minimum Cover
The minimum depth of cover for gravity sewers shall be 36". Any cover that is proposed to be less than 36" must be given prior approval by the Village Engineer.

7.5 Manholes
(a) Materials. All manholes shall be precast concrete with monolithic bases and concentric conical cone sections. Precast manhole sections and bases shall be manufactured in accordance with the latest edition of ASTM C478 with 4000 p.s.i. Type II cement (ASTM C150). Lift holes through precast structures are not permitted. All pipe penetration shall be precast or core-drilled. Flexible pipe connectors (ASTM C293) shall be used at all pipe penetrations. Brick manholes shall not be permitted. Cast-in-place manholes may be accepted on a case by case basis where conflict resolution is needed.

(b) Location. Manholes are required at end of each line; at all changes in grade, size or alignment. Stubs eight (8) inches or larger will require a manhole at the terminus point.

Manholes shall be spaced not greater than 300 feet for sewers 15 inches in diameter or less, 400 feet for sewers 18 inches in diameter or greater.

(a) Diameter: All manholes shall be a minimum interior diameter of 48-inches for pipe sizes up to and including 12-inches and a minimum interior diameter of 60-inches for pipe sizes greater than 12-inches with a 30-inch opening at the top of the concentric corbel.

(b) Drop Manholes. Sanitary sewer drop manholes shall only be used under special conditions as approved by the Village. Drops less than 2.0 feet shall not be allowed.

(c) Flow Channel. The flow channel through a manhole shall be made to conform to the shape and slope of the sewer. A positive 0.1 grade differential shall be provided between the upstream and downstream invert on all manholes. Flow direction changes greater than 90 degrees shall not be included in sewer alignments without special consideration. When directional changes exceed 45 degrees, an additional flow line elevation drop of 0.1 foot across the manhole shall be provided.

(d) Coatings. Lift station wet wells, valve vaults, and force main receiving manholes shall be constructed using an AGRU American Sure Grip HDPE Liner or AGRU Sure Grip PPR with 3M sealant type 5354 and ADEKA P-201 water stop in strict accordance with the manufacturer’s recommendations. The lining shall be checked for pinholes with a high voltage holiday detector at the location of the precast manufacturer prior to job site delivery and shall have notations on the liner indicating the date of spark test and initials of the person...
performing the tests. Prior to placing manholes into service, the lining shall be retested by a certified tester. The lining shall be free of any pinholes. All linings shall have a minimum five (5) year labor and materials warranty including all costs necessary and related to the repair and replacement of the defective application. All testing shall be performed by a tester certified by Agru Liner. Test reports for each manhole shall be submitted to the Village for approval. The report shall include date of testing, equipment used, manhole location, pass or fail, project name, certified tester’s name and telephone number along with the tester address and contact information. If testing fails, report shall indicate what corrective measures were taken.

(e) Castings. Gray iron castings for manhole frames, covers, adjustment rings and other items shall conform to ASTM Designation A 48, Class 30. Castings shall be true to pattern in form and dimensions and free of pouring faults and other defects that would impair their strength or otherwise make them unfit for the service intended. The seating surface between the frame and cover shall be machined to fit true. No plugging of filling will be allowed. Lifting or “pick” holes shall be provided, but shall not penetrate the cover. Casting patterns shall conform to those shown or indicated on the drawings in the Standard Details (Section 12). All manhole frames and covers shall be traffic bearing meeting AASHTO H20 loadings. Frames shall be suitable for the future additional of a cast iron ring for upward adjustment of top elevation. Bolt down covers and gasketed covers shall be located as shown on the Drawings.

7.6 Slope

All sewers shall be designed and constructed to give mean velocities, when flowing full, of not less than 2.0 feet per second, based on Manning’s formula using a “n” value of 0.011 for PVC and 0.013 for other pipe materials. The following are minimum slopes allowed:
7-1. Minimum Slope Requirements for Gravity Sewer Pipe

<table>
<thead>
<tr>
<th>Sewer Size</th>
<th>PVC Pipe Minimum Slope (ft/100 ft)</th>
<th>Other Pipe Material Minimum Slope (ft/100 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-inch</td>
<td>0.28</td>
<td>0.40</td>
</tr>
<tr>
<td>10-inch</td>
<td>0.21</td>
<td>0.28</td>
</tr>
<tr>
<td>12-inch</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>15-inch</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>21-inch</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>24-inch</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>27-inch</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>30-inch</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>36-inch</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>42-inch</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

When possible, slopes at least 10% above the minimums shown are preferred. However, in no case will slopes be designed which would provide a mean velocity less than 2.0 feet per second when flowing full, based on an “n” value of 0.013.

All sewers shall be laid in straight alignment and with a constant slope between manholes. When a smaller sewer joins a larger one, the invert of the larger sewer should be lowered sufficiently to maintain the same energy gradient. An approximate method for securing these results is to place the 0.8 depth point of both sewers at the same elevation. Intersecting sewers shall not meet at an alignment angle of less than 90 degrees to downstream flow.

7.7 Service and Lateral Connections

Service connection shall be through a gravity low pressure and miscellaneous appurtenances, as shown in the Section 12 – Vacuum Sewer Details, Low Pressure Sewer Details, and Standard Details. Laterals not requiring the open cutting of a roadway or driveway made to an existing Village wastewater collection system must be reviewed and approved by the Village, made by the Owner/Developer’s licensed plumber, and inspected by the Village after payment of all applicable fees and charges. Laterals to new and existing wastewater collection systems for structures within new subdivisions, non-
residential uses, multi-family residential improvements, and those installations that require the open cutting of a roadway or driveway must be reviewed and approved by the Village, made by the Owner/Developer’s licensed plumber, and inspected by the Village. The Owner/Developer shall be responsible for all costs related to the lateral installation and restoration of all disturbed public and private improvements in accordance with Village Minimum Design Standards. Detailed information on the permitting process for gravity and grinder pump service lateral connections is presented in Section 13 – Permitting for Residential and Commercial Sewer Lateral Connections and Commercial Package Plant Connections.

Laterals and fittings shall be a minimum of six (6) inches in diameter. Services and fittings shall be a minimum of 4 inches in diameter for single family residential installation and 6 inches in diameter for all other installations. Single or double laterals shall be allowed. All laterals shall extend from the sewer main to the right-of-way terminating with a cleanout at each building service branch stub-out. Laterals (4 to 6 inches in diameter) shall have a minimum slope of 1/8-inch per foot (1.04%). No laterals shall be allowed to discharge into a sanitary manhole, except at a terminal manhole.

7.7.1 Gravity Sewer Pipe (Gravity Lateral Connections)

All gravity sewer laterals, fittings, and stub-out pipes shall be pressure rated and constructed using Schedule 40 PVC. Non pressure rate pipe and fittings and foam core pipe are not acceptable.

Fittings Schedule 40: ASTM D1784 and ASTM D2466

7.8 Testing for Lateral Connections

All testing requirements for all Residential and Commercial Sewer Lateral Connections and FDEP Permitted Connections are specified in Section 14 – Collection and Transmission System Testing & Reporting Requirements.

7.9 Utility Separation Requirements

Sanitary sewers and storm sewers crossing under water mains shall be laid to provide a minimum vertical distance of eighteen (18) inches between the invert of the upper pipe and the crown of the lower pipe. Where this minimum separation cannot be maintained, the crossing shall be arranged so that the sewer pipe joints and water main joints are equidistant from the point of crossing with no less than ten (10) feet between any two joints and both pipes shall be ductile iron pipe (D.I.P.). At locations where these criteria cannot be met, designs shall adhere to the minimum vertical and horizontal sewer and water main separation requirements as provided in F.A.C. Rule 62-555.314, including any amendments.
Where storm sewers cross above or below sanitary sewer mains, the minimum vertical separation between the outside of the storm sewer main and the outside of the sanitary sewer main is 18 inches. Where the minimum separation cannot be maintained, the sewer main shall be constructed of C-900, DR-18 PVC (MH to MH). Vertical separations of less than 12 inches, will not be accepted.

The minimum vertical separation between sanitary sewer mains and any other utility other than those listed above is (12) inches. Vertical separations of less than 12 inches, will not be accepted.

No landscaping or construction of surface features (i.e., walls, fences, fountains, etc.) shall be placed in a manner that would adversely affect access to utility easements or Village infrastructure. Trees shall be a minimum of 10’ away from any gravity sewer main or service line/lateral. This may be reduced to 7’ with the use of an approved root barrier system.

All gravity sewer mains shall be a minimum of 10’ horizontally from any structures. This setback shall be measured from the outside edge of the pipe to the nearest part of the structure, including underground (i.e., footers) or above ground (i.e., roof overhangs) features.

In addition to the above requirements, gravity sewer design shall follow Ten States Standards, at a minimum.
8.0 WASTEWATER FORCE MAINS

8.1 Location

Force mains shall be located within dedicated rights-of-way, alleys, or established utility easements with sufficient width. Where this is not possible, a minimum of 20 foot wide Village service easement shall be provided.

No mains shall be placed under buildings, retention ponds, tennis courts, swimming pools, or other structures. Unless approved in writing by the Village Engineer, mains shall not be located within side or rear lot lines. Placement of a main within side or rear lot line may be allowed on a case by case basis if such a configuration results in efficient placement and utilization of the system. These criteria shall also apply to placement of mains in retention pond berms. In general, manholes shall not be placed on side or rear lot lines.

8.2 Design and Construction

The basic design criteria for force mains are as follows:

Pipe Material

Force mains shall be constructed of C-900 PVC or HDPE (DR-11 min). Minimum force main diameter shall be 4 inches, except in the case of low pressure force mains (LPFMs) where in the minimum diameter shall be 2 inches. All force mains shall be constructed with a minimum cover of 3-feet.

Velocity

At design pumping rates, a minimum cleaning velocity of at least 2 feet per second should be maintained. Maximum velocity at design pumping rates should not exceed 8 feet per second for ductile iron pipe of 5 feet per second for PVC pipe.

Friction Losses

Friction losses through force mains shall be based on the Hazen and Williams formula. In the use of the Hazen and Williams formulas, the “C” value shall be 150 for PVC pipe.

When initially installed, force mains may have significantly higher “C” factor. The higher “C” factor should be considered only in calculating maximum power requirements and duty cycle time of the motor.

Design Pressure

The force main and fittings, including all restrained joint fittings and thrust blocking, shall be designed to withstand pump operating pressures and pressure surges, but not less than 150 psi.

When restrained joints are used in lieu of thrust blocks, the restrained joint table in the STANDARD DETAILS shall be utilized. Bearing area of thrust blocks shall be adequate to prevent any movement of the fitting. The sizes and dimensions of the thrust blocks shall be
shown utilizing the format shown on the Standard Details (Section 12 – Low Pressure Sewer and Vacuum Sewer Standard Details).

Branches of intersecting force mains shall be provided with appropriate valves such that one branch may be shut down for maintenance and repair without interrupting the flow of other branches. Stub outs on a force main, placed in anticipation of future connections, shall be equipped with a valve to allow such connections without interruption of service.

Air Release and Vacuum Relief Valves

At all times, the force main shall be laid level and per the design elevations approved by the Village. An automatic air release valve shall be placed at all high points of all force mains with a diameter of 4 inches or larger, as indicated on the construction plans and approved by the Village.

All automatic air release/air vacuum valve shall be placed in a manhole as provided in the Village’s standard details. Air release valves, or air/vacuum relief valves, shall be provided, as necessary, to prevent air locking and vacuum formation. All such valves shall be clearly delineated on the force main profile in the Drawings. The Developer’s Engineer shall submit calculations to the Village justifying the valve sizing.

Force main design drawings are to indicate elevations at all high points and all low points with constant slopes in between such points. Low point drains should be placed at all low points in the force main profile.

Separation Distances

Force main design shall be in accordance with the requirements of FDEP. Designs shall be in compliance with all underground utilities and shall be constructed with a minimum coverage of 36-inches of cover. Force mains shall be designed to maintain a 10-foot horizontal separation and an 18-inch vertical separation from existing water mains wherever possible. At locations where these criteria cannot be met, designs shall adhere to the minimum vertical and horizontal sewer and water main separation requirements as provided in F.A.C. Rule 62-555.314, including any amendments.

The minimum vertical separation between force mains and any other utility is 12 inches. Vertical separations of less than 12 inches, will not be accepted.

When a force main or reclaimed water main is to be installed parallel to a drainage pipe, a minimum horizontal separation of 7 feet shall be maintained. This may be required to be increased for drainage pipes larger than 48” in diameter.

Miscellaneous

Approved restrained joints shall be provided at all force main bends.

Terminal ends of force main (permanent or temporary) shall be as shown on the Standard Details.

Force mains shall not terminate directly into a gravity sewer line. Force mains should enter the gravity sewer system at the flow line of the receiving manhole.
Force mains from private pump stations shall be designed to Village standards and connect with the Village’s force main system through an approved pressure switch assembly as specified in this Manual and Standard Drawings.

8.3 Private Force Main Tie-Ins

Force mains from private pump stations shall be designed to Village standards and connect with the Village’s conveyance force main system. All privately owned and maintained pump stations shall be design to meet the receiving force main’s peak 24-hour operating conditions.
9.0 WASTEWATER PUMP STATION DESIGN & CONSTRUCTION

Wastewater pump station design shall meet all requirements of the Florida Department of Environmental Protection, the NEC, and the Village’s Minimum Design Standards. Pump stations shall be placed in areas located and designed to minimize the development of nuisance conditions such as noise, odor, etc. in the surrounding area. No portion of the pump station electrical equipment shall be located below the 100-year flood elevation as identified on the most recent FEMA Flood Insurance Rate Map. Pump stations shall be designed to achieve total containment of the influent wastewater prior to being conveyed through the force main and shall be designed such that infiltration and inflow is minimized. Pump stations must be designed to be operational and accessible during the 25-year flood unless lesser flood levels are appropriate, but not less than a 10-year flood event. Designs must be inclusive of Class 1 reliability and all related issues. All pump stations must be equipped with a flow meter and recording device.

9.1 Buoyancy

Below-grade pump station structures shall be protected from the buoyant forces of groundwater and floodwaters, including wave action and scouring. Buoyancy protection shall be demonstrated through the use of flotation calculations. Flotation calculations shall be performed on all pump station structures using the 100-year flood elevation to calculated uplift forces.

9.2 Flood Protection

Pump station structures and all associated equipment and appurtenances shall be protected from the 100-year flood. Such protection measures shall ensure that the pump station shall remain fully functional, operational, and free from physical damage during a 100-year flood.

9.3 Basic Design Criteria

The basic design criteria for pump stations shall follow the standard criteria defined in the “Recommended Standards for Wastewater Facilities”, by the Water Supply Committee of the Great Lakes – Upper Mississippi River Board of State and Provincial Public Health and Environmental Managers, latest edition (i.e., Ten States Standards).

Design flows shall be based upon the total ultimate development flow from all contributory areas to the pump station. The design average daily flow shall be based on 157 gallons per equivalent dwelling unit (EDU), rounded to the nearest 1/10 EDU.

Pump stations shall be sized to handle the peak hourly flows from the tributary areas with the largest pumping unit out of service (firm capacity). The design pumping capability of the station shall be based upon the Peak Design Flow shall be calculated by multiplying the design average daily flow with the applicable minimum peaking factors as outlined in
the table below.

<table>
<thead>
<tr>
<th>Design Average Daily Flow (gpd)</th>
<th>Minimum Peaking Factor for Peak Design Flow Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows to 50,000</td>
<td>3.5</td>
</tr>
<tr>
<td>50,000 to 250,000</td>
<td>3.0</td>
</tr>
<tr>
<td>250,000 to 2,000,000</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Under no circumstances shall peaking factors less than 2.0 be allowed.

Pump total dynamic head shall be based on static head, lift station friction losses and pipeline friction factor (C) of 120. Pumping units shall be capable of operating based on a C=100 and not “running out” based on a C=140. Pumping units shall be capable of passing spheres of at least three (3) inches in diameter. Under normal conditions, pumps operate under a positive suction head.

9.3.1 Wet Wells

All wet wells shall be designed to resist flotation at times of the highest groundwater and/or the 100 year flood (whichever is greater) at the site, without consideration of the weight of the pumps, with a safety factor of at least 1.0.

Wet well cycle times shall be 10 minutes minimum, 30 minutes maximum; based on the formula:

\[T = \frac{V}{Q} + \frac{V}{S} \]

where:

- \(T \) = Cycle time (minutes)
- \(V \) = Effective volume of wet well (gallons)
- \(Q \) = Pumping rate (gpm)
- \(S \) = Average daily flow (gpm)

All lift stations shall be given a 1.0-inch coat of Sewper Coat, Strong Seal, Refratta HAC 100 or other approved calcium aluminate corrosion barrier.

9.4 Electrical Design Criteria

Electrical systems for wastewater pump stations shall be designed in strict
conformance with NFPA 70 “National Electric Code”, ANSI, and all applicable federal, state, and local codes. All electrical and instrumentation/control systems and components shall be protected against corrosion. If located in a wet well or other location where explosive or flammable gases may concentrate, electrical and instrumentation and control systems and all associated components shall meet the requirements for a Class I, Group D, Division 1 location. Every pump and motor unit shall be provided with a separate electrical supply, motor starter, alarm sensors, as well as electrical and instrumentation and control system components. All electrical, instrumentation, and control system components shall be located such they may be disconnected from outside if located inside a wet well. All cables and conduits shall be provided with seals that are both water-tight and gas-tight, shall be protected from corrosion, and shall be provided with strain relief. The main power feed to all pump station equipment shall be equipped with a fused disconnect switch located above the 100-year flood plain as identified on the most recent FEMA Flood Insurance Rate Map.

Panels and enclosures for electrical and control components shall be located outside of any wet well and in a location that is readily accessible, ensures maximum electrical and personal safety, and is protected from flood damage. Enclosures shall have a NEMA-rating appropriate for the installation location.

9.5 Site Fencing

Perimeter fencing at the pump station site shall comply with Village ordinances. In general, all pump station sites shall be fenced. An exception to this requirement may be made by the Village, on a case by case basis, subject to sufficient landscape screening and the satisfactory resolution of station security and public safety issues.

9.6 Landscaping

Landscaping of pump stations, vacuum pump station sites, and wastewater treatment facilities shall be provided to meet the landscaping requirements of the Village’s ordinances. Landscaping and complete site sodding shall be installation along with AC powered automatically controlled complete irrigation system at all pump station sites transferred to the Village. The control box for the irrigation system shall be mounted on the pump station’s control panel support system.

9.7 Above Ground Pumping Stations

The wastewater pumps, motors, and standby power generator system for the above ground wastewater pump station shall be housed in an appropriately sized decorative concrete block structure approved by the Village. The building shall conform to all Village building code requirements. Sufficient ventilation and interior and exterior illumination shall be provided and all areas shall be sodded and landscaped. All wastewater pump stations shall be provided with a water system which has adequate
capacity and pressure for station wash down and other requirements. A metered potable water line terminating in a hose bib at the building shall be provided by means of a reduced pressure type backflow preventer. The appropriately sized power standby generator and appurtenances shall be fully equipped with an automatic electric starting capability,

9.8 Emergency Power

All pump stations which do not have a permanent standby generator system shall be provided with an external mounted generator power receptacle of the required size.
10.0 RECORD DRAWINGS

This section pertains to any new development, re-development, or commercial properties requiring permits for connecting to the Village’s wastewater collection system.

Following final inspection and completion of all work to the satisfaction of the Village Engineer, the Owner/Developer shall be responsible for ensuring that the system is properly certified and accepted by the Florida Department of Environmental Protection and as-builts are provided to the Village prior to any use of the system. Final Record Drawings, on full size reproducible material and an electronic file, shall be submitted to the Village as follows:

1. Two (2) final black line record drawings, signed and sealed by a Professional Engineer licensed and registered in the State of Florida. This certification shall consist of the seal bearing the registration number, signature and date on each data of the drawing set. In addition, the key sheet, cover sheet or first sheet of the plan set shall list the business address and telephone number of the engineer of record.

2. Record drawings shall be legibly marked to record actual construction.

3. Drawings shall show actual location of all underground and above ground water and wastewater piping and related appurtenances. All changes to piping location including horizontal and vertical locations of utilities and appurtenances shall be clearly shown and referenced to permanent surface improvements. Drawing shall show actual installed pipe material, class, etc.

4. Drawings shall clearly show all field changes of dimension and detail.

5. Drawings shall clearly show all detail not indicated on the original contract drawings but constructed in the field. All equipment and piping relocation shall be shown.

6. One (1) compact disk with the record drawing electronic file (.DWG format) in the latest version of AutoCAD. Only one (1) AutoCAD file shall be accepted containing the entire record drawing (additional files used for x-referencing are acceptable) and one Adobe Acrobat file with the entire record drawing as provided on the black line drawing set. AutoCAD files must be established in state plane coordinate system, NAD 83, Florida East Zone. The vertical datum referenced shall be NGVD 29.

Representative items of work that shall be shown on record drawings as verified, changed, or added shall include the following:

1. Plans:
 a. Structure types, location with grade of rim and flow-line elevations
 b. Sewer type, length, size and elevation
 c. Utility type, length, size and elevation in conflict structures
d. All maintenance access structures, valves and hydrants within right-of-way

2. Pavement Marking and Signing Plans: sign location where installed if different from plans

3. Water and Sewer Plans: Location (horizontal and vertical) of all pipe lines, structures, manholes, fittings, valves, valve boxes and appurtenances.
 a. Every valve, tee, bend, fire hydrant, beginning and ending of deflections, maintenance access structure, wet well, etc. shall be located, both horizontally and vertically, from the nearest surface landmark (i.e. centerline of intersection, seawall corner, maintenance access structure, face of a building extended or some other similar landmark that in unlikely to “move” or be buried).
 b. In addition to dimensioning for appurtenances, the elevation along the top of pipe every 200 feet will also be required.
 c. All valves shall be referenced from at least two and preferably three permanent points.

4. As-built of sewer/water lines shall include the following information:
 a. Top of pipe elevations and horizontal location every 200 linear feet (LF)
 b. Locations and elevations of all fittings including bends, tees, gate valves, double detector check valves, fire hydrants, etc.
 c. All tie-ins to existing lines shall be as-built
 d. The ends of all water services at the buildings or home shall be as-built or where the water service terminates
 e. Water services with meter boxes and sanitary sewer laterals with cleanouts at the property line shall be located with a dimension to the nearest landmark.
 f. The depth from finished grade of potable water mains, wastewater collection piping, and sewer force mains shall be indicated at all valve locations.

5. Records of all gravity sanitary sewer lines shall include the following information:
 a. Rims, inverts, and length of piping between structures as well as slopes.
 b. The stub ends of all sewer laterals shall be located and if there are any cleanouts installed on the sewer laterals then the invert elevation of these cleanouts need to be obtained.

6. Profile Views – the following are minimum Record Drawing data that shall be annotated
on the Profile Plans:

a. Every valve, tee, bend, fire hydrant, beginning and ending of deflections, maintenance access structure, wet well, etc. shall be located, both horizontally and vertically, from the nearest surface landmark (i.e. centerline of intersection, seawall corner, maintenance access structure, face of a building extended or some other similar landmark that in unlikely to "move" or be buried).

b. In addition to dimensioning for appurtenances, the elevation along the top of pipe every 200 feet will also be required.

7. Force Mains and vacuum main records shall be prepared the same as sewer/water line as-builts.

8. Records of all drainage lines shall include the following information:
 a. Rims, inverts, and length of piping between structures and weir elevations if applicable.
 b. The size of the piping shall be verified by the survey crew at time of as-built

9. All rock records for parking lot, roadway, and swale areas shall consist of the following:
 a. Rock elevations at all high and low points, and at enough intermediate points to confirm slope consistency.
 b. Rock as-builts shall be taken at all locations where there is a finish grade elevation shown on the design plans.
 c. All catch basin and manhole rim elevations shall be shown.
 d. Elevations around island area will be required.

10. Retention area as-built elevations shall be taken at the bottom of the retention area and at the top of the bank.

11. Every utility (gas, telephone, power, water, forcemain, etc.) encountered and/or crossing drainage, water or sanitary sewer facilities (whether a conflict or with sufficient clearances) shall be noted, both horizontally and vertically. The clearance between the facilities horizontal and vertical shall be noted.

12. Pipelines that are "dead" or have been abandoned shall be noted during construction and shall be annotated on the Record Drawings.

13. As-built survey drawings shall meet applicable minimum technical standards for land surveyors as outlined in Section 61G17 of the Florida Administrative Code.
11.0 APPROVED PRODUCT LISTS

This section identifies a listing of approved materials and products which can be used with the design and construction of any new development or re-development of wastewater facilities that will be transferred to the Village. Any material or product not on this list shall be approved in advance by the Village. Shop drawings shall be required for all items contained on this list, including manholes, wet wells, and other castings.

Four (4) sets of the Contractor’s shop drawings shall be submitted to the Village for the Village’s use and approval, plus the number of sets needed for the Contractor use. Ordering material and products without the specific written approval from the Village of the submitted list and shop drawings is not recommended.

11.1 Resilient Seat Gate Valves – All Available Sizes

Muller A2360 Series
American Series 2500
Clow F-6100 Series
U.S. Pipe Metroseal 250

11.2 Butterfly Valves – 30-inch and Larger Water Mains

Mueller Line seal B-3211
Kennedy BFV-84
Clow 1450
Dezurik AWWA Series

11.3 Curb Stops – Ball Valve Type

Ford Brass Ball Valve Curb Stop, #B11-666

11.4 Plug Valves – All Available Sizes

Clow Full Flo Series
U.S. Pipe
Dezurik Permaseal Series
Mueller/Pratt, Ballcentric (as approved by the Village)

11.5 Tapping Valves – Resilient Seat Gate Valves

American Series 2500
Kennedy 950X
Clow F6114 Series
M and H 751-01
Mueller H687 (for 12 inches or less)

11.6 Service Saddles, Stainless Steel

Romac Model 306 (Cast iron, DIP, PVC)
Romac Model 306-H (HDPE)
11.7 Check Valves – Lever and Weight

M and H 159-02
Mueller A-2600-6-01
Kennedy 106
Clow F-5380 Series
American 52SC
American Series 2100

11.8 Valve Stops – Ball Valve Type

Clow F-2450 Series
Russell Pipe (Submit Product Information)
Star Industries (Submit Product Information)

11.9 Air Release Valves – Sized Appropriately for Sewer Service

Valmatic 48S
Valmatic 301S

11.10 Backwater Valves

Mainline Backflow Products

11.11 Couplings for Existing Facilities

Fernco
Rockwell 900 Services

11.12 Wastewater Pump Station – Municipal Rated

Flygt (Submersible)
ABS (Submersible, Dual Guide Only, and meets Flygt Standards)
Gorman-Rupp (Above Ground)

11.13 Liner – Wet Well, Valve Vault, and Force Main Receiving Manhole

AGRU America HDPE and PP Sure Grip® (Light Colored)
GSE StudLiner HDPE (Light Colored)
Fiberglass (Specify Manufacturer ____________)
Other (Specify Manufacturer ____________)

11.14 Wet Well and Valve Vault Hatches – Structural Aluminum Type

Halliday Products, Inc.
Other (Specify Manufacturer ____________)

December 2, 2014
11.15 Pump Station Control Panel – Municipal Rated

Sta-Con, Inc.
Quality Control, Inc.

11.16 Vacuum Sewer System Components – Valve Pits, Valves, Controllers, and Appurtenances

Bilfinger Airvac Water Technologies, Inc. (AIRVAC)

11.17 Low Pressure Grinder Pump Station – Residential

Environment One Corporation
Keen Pump
Other (Specify Manufacturer ________)

11.18 Pump Station Radio Telemetry

Curry Controls
Other (Specify Manufacturer__________)

11.19 Sanitary Sewer Lateral Locating Devices

3M Test & Measurement System, Mini-Marker #1258
Industrial Technology Omni Marker

11.20 Manhole Ring and Cover

U.S. Foundry 227AS (Sanitary)
Other (Specify Manufacturer__________)

11.21 Valve Boxes

Tyler 6850 Series
NDS Pro Series
U.S. Foundry 7600 Series

11.22 Detectable Underground Utility Marking Tape

PRESCO Detectable Underground Utility Marking Tape
SECTION 12

VACUUM SEWER DETAILS,
LOW PRESSURE SEWER DETAILS, AND
STANDARD DETAILS
SECTION 'A'-A'

6' SDR 21, PIPE, SEE SPECIFICATIONS

4' 0"

4" +/- 3/8"

GLUE HALF OF A SLIP COUPLING IN PLACE 4" FROM END OF GRAVITY STUB-OUT TO ACT AS A STOP

6' 0" MIN. LENGTH GRAVITY STUB-OUT WITH GLUED CAP

SECTION 'B'-B'
SHOWING UP TO 4 GRAVITY CONNECTIONS TO SUMP

G 3" VACUUM LATERAL AND AIRVAC VALVE

G 3" VACUUM VALVE

INTERGAL ANTI-BUOYANCY COLLAR

AIRVAC 3" VACUUM VALVE
WEIGHT OF CONCRETE REQUIRED (LBS.)

<table>
<thead>
<tr>
<th></th>
<th>GROUNDWATER @ SURFACE</th>
<th>GROUNDWATER @ 1FT. DEPTH</th>
<th>GROUNDWATER @ 2FT. DEPTH</th>
<th>GROUNDWATER @ >2FT. DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP3030WT</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VP4830WT</td>
<td>800</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VP4842WT</td>
<td>1100</td>
<td>600</td>
<td>200</td>
<td>0</td>
</tr>
</tbody>
</table>

SEE VALVE PIT CONCRETE COLLAR DETAIL

FINISHED GRADE

COMPACTED SELECT FILL MATERIAL WITH MINIMUM DENSITY OF 110 LBS PER CUBIC FOOT

SAND OR OTHER SUITABLE FILL MATERIAL, MAY BE THE SAME AS ABOVE ANTI-BUOYANCY COLLAR

COMPACTED GRANULAR BEDDING FROM BOTTOM OF EXCAVATION TO CENTER LINE OF GRAVITY STUB-OUT IN SUITABLE MATERIAL SUCH AS #57 STONE, CRUSHED SEA SHELL, "PEA" GRAVEL, DO NOT BED IN OTHER MATERIAL WITHOUT AIRVAC APPROVAL

UNDISTURBED SOIL

1 PIECE VALVE PIT BEDDING AND BACKFILL N.T.S.

DETAIL VAC-5
Method "A"

Method "B"

NOTE: REFER TO PLAN AND PROFILE FOR SERVICE LINE ORIENTATION AND DEVIATIONS FROM STANDARD DETAIL.
INITIAL INSTALLATION - TO INSURE PROPER ALIGNMENT
1. FLEXIBLE CONNECTOR LENGTH MAY NOT BE ALTERED. DO NOT CUT PVC PIPE OR THE FLEXIBLE HOSE.

2. INSERT BEVELED END INTO THE ALIGNMENT PORT ON THE VALVE PIT. PUSH FLEXIBLE CONNECTOR ALL THE WAY TO THE 3" SUCTION ELBOW IN THE VALVE PIT.

3. TO INSURE PROPER ALIGNMENT, CONNECT THE BEVELED END TO THE 3" SUCTION ELBOW USING A TEMPORARY SLIP COUPLING. DO NOT GLUE THIS COUPLING.

AFTER VALVE PIT INSTALLATION IS COMPLETED - TO ALLOW FOR VACUUM TESTING
1. AFTER THE VALVE PIT INSTALLATION IS COMPLETE, INCLUDING BACKFILL, REMOVE TEMPORARY PVC COUPLING AND CUT THE PVC PIPE TO THE CENTER OF THE VALVE PIT ±1". GLUE 3" PVC CAP ONTO END OF PVC PIPE.

2. DO NOT CONDUCT MAIN LINE VACUUM TESTING UNTIL THE TEMPORARY COUPLING HAS BEEN REMOVED AND THE PVC CAP GLUED ON.

SEE AIRVAC INSTALLATION INSTRUCTIONS FOR ADDITIONAL DETAILS
SERVICE LATERAL NOTES

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum slope on 3” service lateral</td>
<td>0.20%</td>
</tr>
<tr>
<td>Minimum slope between lifts</td>
<td>See Detail No. VM-4</td>
</tr>
<tr>
<td>Maximum number of lifts</td>
<td>5</td>
</tr>
<tr>
<td>Minimum distance, valve pit to first lift</td>
<td>5'-0"</td>
</tr>
<tr>
<td>Minimum distance, last lift to vacuum main</td>
<td>5'-0"</td>
</tr>
<tr>
<td>Maximum lift height</td>
<td>3'-0"</td>
</tr>
<tr>
<td>Recommended lift height</td>
<td>1'-0"</td>
</tr>
</tbody>
</table>
SERVICES LATERAL NOTES

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum slope on 3" service lateral</td>
<td>0.20%</td>
</tr>
<tr>
<td>Minimum slope between lifts</td>
<td>See Detail No. VM-4</td>
</tr>
<tr>
<td>Maximum number of lifts</td>
<td>5</td>
</tr>
<tr>
<td>Minimum distance, valve pit to first lift</td>
<td>5'-0"</td>
</tr>
<tr>
<td>Minimum distance, last lift to vacuum main</td>
<td>5'-0"</td>
</tr>
<tr>
<td>Maximum lift height</td>
<td>3'-0"</td>
</tr>
<tr>
<td>Recommended lift height</td>
<td>1'-0"</td>
</tr>
</tbody>
</table>

MIN 5'-0" @ 0.20% SLOPE FROM LAST LIFT TO MAIN

GRADE

LIFT (TYP.)

45°

3" SERVICE LATERAL

VACUUM MAIN CONNECTION

MIN 5'-0" , 20'-0" OR GREATER RECOMMENDED, FOR SLOPE SEE DETAIL NO. VM-4

AIRVAC® VACUUM DETAIL

SERVICE LATERAL - CROSSING A SWALE WITH LIFTS N.T.S.

DETAIL VAC-11
ENLARGED VIEW OF ACCESS DOOR, INCLUDES AIR INLET WITH SLOTS FOR AIR FLOW. POSITION ABOVE HIGHEST FLOOD WATER LEVEL.

10' MAXIMUM LENGTH

AIRVAC 1 PIECE MOLDED HDPE AIR TERMINAL (SEE MOUNTING DETAIL)

SEAL FOR FINAL SUMP TESTING AND UNTIL TERMINAL IS IN PLACE

36-1/2"

12" MIN

NO SEWAGE FLOW ALLOWED

6" SDR 21 PVC

GLUE HALF OF A 6" COUPLING AT 4" FROM END OF PIPE TO ACT AS A STOP

SCH 40 PRESSURE RATED FITTINGS

6" DEDICATED AIR TERMINAL - ELEVATION (PREFERRED)

N.T.S.

DETAIL VAC-13
NOTES:
1) THE AIR TERMINAL MUST BE POSITIONED BETWEEN THE VALVE PIT AND THE GRAVITY INLET(S) LINES.
2) NO MORE THAN 2 GRAVITY INLET LINES MAY BE CONNECTED TO THE SAME PIPE THAT CONTAINS THE AIR TERMINAL.

PRIVATE PROPERTY (TYP.)

RIGHT-OF-WAY

AIRVAC 1 PIECE MOLDED HDPE AIR TERMINAL

FLOW

TO SINGLE PROPERTY LINE

PROPERTY LINE

RIGHT-OF-WAY

GRAVITY STUB-OUT (TYP.)

AIRVAC 1 PIECE MOLDED HDPE AIR TERMINAL

"3" VACUUM LATERAL AND AIRVAC VALVE

TO SINGLE PROPERTY LINE

6" NON-DEDICATED AIR TERMINAL - PLAN (OPTIONAL)
N.T.S.

DETAIL
VAC-14
NOTES:
1) THE AIR TERMINAL MUST BE POSITIONED BETWEEN THE VALVE PIT AND THE GRAVITY INLET(S) LINES.
2) NO MORE THAN 2 GRAVITY INLET LINES MAY BE CONNECTED TO THE SAME PIPE THAT CONTAINS THE AIR TERMINAL.

ENLARGED VIEW OF ACCESS DOOR, INCLUDES AIR INLET WITH SLOTS FOR AIR FLOW. POSITION ABOVE HIGHEST FLOOD WATER LEVEL.

60' MAXIMUM LENGTH *
REDUCE BY 10 LF FOR EACH ADDITIONAL 45° ELL

AIRVAC 1 PIECE MOLDED HDPE AIR TERMINAL

SEAL FOR FINAL SUMP TESTING AND UNTIL TERMINAL IS IN PLACE

WHERE FLOOD LEVEL WILL ALLOW, TERMINAL MAY BE INSTALLED MAX, 12" BELOW GRADE

SCH 40 PRESSURE RATED FITTINGS

6" SDR 21 PVC, PRESSURE RATED PIPE TO BE A DEDICATED AIR PIPE FROM THE SEWAGE HOLDING SUMP WITH NO SEWAGE FLOW

GLUE HALF OF A 6" COUPLING AT 4" FROM END OF PIPE TO ACT AS A STOP

* 20' MIN IN AREAS WITH A WINTER DESIGN (DRY BULB TEMPERATURE 32°F OR LOWER)
WYE FITTING (1)
45° ELL TURNED TO UP (2)
45° ELL TURNED SIDE (2)

VACUUM SEWER MAIN

FLOW

FROM VALVE PIT

3" LATERAL, 2" OR 0.20% FALL FROM VALVE TO MAIN (MIN.)

6" MINIMUM FROM TOP OF LIFT

PLAN VIEW

DIMENSIONS BASED ON SPEARS MANUFACTURING
1. 45 DEG WYE, SOCKET x SOCKET x SOCKET
2. 45 DEG ELL, SOCKET x SOCKET

ELEVATION

<table>
<thead>
<tr>
<th>WYE SIZE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F- INVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 4 x 3</td>
<td>8 7/8"</td>
<td>2 7/8"</td>
<td>2 7/8"</td>
<td>3 23/32"</td>
<td>14.93"</td>
<td>1.24'</td>
</tr>
<tr>
<td>5 x 6 x 3</td>
<td>10 1/4"</td>
<td>2 7/8"</td>
<td>2 7/8"</td>
<td>3 23/32"</td>
<td>15.35"</td>
<td>1.32'</td>
</tr>
<tr>
<td>8 x 8 x 3</td>
<td>13"</td>
<td>2 7/8"</td>
<td>2 7/8"</td>
<td>3 23/32"</td>
<td>17.82"</td>
<td>1.48'</td>
</tr>
<tr>
<td>10 x 10 x 3</td>
<td>14 5/8"</td>
<td>2 7/8"</td>
<td>2 7/8"</td>
<td>3 23/32"</td>
<td>18.97"</td>
<td>1.58'</td>
</tr>
</tbody>
</table>
Plan View (B)

<table>
<thead>
<tr>
<th>WYE SIZE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D - INVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 4 x 4</td>
<td>8 1/4"</td>
<td>3 3/32"</td>
<td>8.02"</td>
<td>0.67'</td>
</tr>
<tr>
<td>4 x 4 x 3</td>
<td>8 7/8"</td>
<td>2 7/8"</td>
<td>8.30"</td>
<td>0.63'</td>
</tr>
<tr>
<td>6 x 6 x 6</td>
<td>11 21/32"</td>
<td>5 7/32"</td>
<td>11.93"</td>
<td>0.99'</td>
</tr>
<tr>
<td>6 x 6 x 4</td>
<td>10 1/4"</td>
<td>3 3/32"</td>
<td>9.44"</td>
<td>0.78'</td>
</tr>
<tr>
<td>6 x 6 x 3</td>
<td>10 1/4"</td>
<td>2 7/8"</td>
<td>9.28"</td>
<td>0.77'</td>
</tr>
<tr>
<td>8 x 8 x 8</td>
<td>15 1/4"</td>
<td>6 7/16"</td>
<td>15.34"</td>
<td>1.28'</td>
</tr>
<tr>
<td>8 x 6 x 6</td>
<td>16 1/6"</td>
<td>5 7/32"</td>
<td>15.09"</td>
<td>1.26'</td>
</tr>
<tr>
<td>8 x 8 x 4</td>
<td>14 1/4"</td>
<td>3 3/32"</td>
<td>12.26"</td>
<td>1.02'</td>
</tr>
<tr>
<td>8 x 8 x 3</td>
<td>13"</td>
<td>3 7/8"</td>
<td>11.22"</td>
<td>0.94'</td>
</tr>
<tr>
<td>10 x 10 x 10</td>
<td>22 1/8"</td>
<td>8 1/8"</td>
<td>21.34"</td>
<td>1.78'</td>
</tr>
<tr>
<td>10 x 10 x 8</td>
<td>16 25/32"</td>
<td>6 7/16"</td>
<td>16.42"</td>
<td>1.37'</td>
</tr>
<tr>
<td>10 x 10 x 6</td>
<td>15 7/8"</td>
<td>5 7/32"</td>
<td>14.92"</td>
<td>1.24'</td>
</tr>
<tr>
<td>10 x 10 x 4</td>
<td>15 1/2"</td>
<td>3 3/32"</td>
<td>13.15"</td>
<td>1.10'</td>
</tr>
<tr>
<td>10 x 10 x 3</td>
<td>14 5/8"</td>
<td>2 7/8"</td>
<td>12.37"</td>
<td>1.03'</td>
</tr>
</tbody>
</table>

AIRVAC® VACUUM DETAIL

BRANCH TO MAIN CONNECTION ASSEMBLY

OPTION 1

N.T.S.

DETAIL

VAC-17

December 2, 2014
PLAN VIEW (A)

SECTION A-A

BRANCH TO MAIN CONNECTION ASSEMBLY
OPTION 3
N.T.S.

DETAIL
VAC-19
Finished Grade

Vacuum Main

Other Utilities (TYP.)

Provide 3/4 inch styrofoam between the pipe and the concrete (TYP.)

1’-0” Min.

3’-0” Min.

1’-8” Min.

1’-8” Min.

8’ Min.
EXISTING GRADE

FLOW DIRECTION

6'

LIFT ASSEMBLY

NO VALVE PIT CONNECTIONS MAY BE MADE IN THIS AREA

PROHIBITED CONNECTIONS
N.T.S.

DETAIL
VAC-22
NOTE:
1) SCH 40 PVC RIEBER GASKET
FITTINGS ARE ALSO ACCEPTABLE
2) 90° FITTINGS ARE NOT TO BE USED
FOR CHANGES IN DIRECTION
SLOPE SCHEDULE

<table>
<thead>
<tr>
<th>PIPE DIA.</th>
<th>MINIMUM FALL BETWEEN LIFTS * USE GREATER VALUE OF (A) OR (B)</th>
<th>DISTANCE AT WHICH (B) GOVERNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3"</td>
<td>0.20 FT 0.2% x DISTANCE</td>
<td>> 100 FT</td>
</tr>
<tr>
<td>4"</td>
<td>0.25 FT 0.2% x DISTANCE</td>
<td>> 125 FT</td>
</tr>
<tr>
<td>6"</td>
<td>0.25 FT 0.2% x DISTANCE</td>
<td>> 125 FT</td>
</tr>
<tr>
<td>8"</td>
<td>0.25 FT 0.2% x DISTANCE</td>
<td>> 125 FT</td>
</tr>
<tr>
<td>10"</td>
<td>0.25 FT 0.20% x DISTANCE</td>
<td>> 125 FT</td>
</tr>
</tbody>
</table>

* WHEN NOT BETWEEN LIFTS, USE 0.2% SLOPE
AIRVAC INSPECTION PORT TERMINAL UNIT
ASSEMBLED BY AIRVAC INCLUDING GAUGE TUBING, GROMMET, 2" PIPE WITH CAP, AND COUPLING. OPTIONAL WIRELESS MONITORING NOT INCLUDED UNLESS SPECIFIED AT ADDITIONAL COST.

INSPECTION PORT TERMINAL UNIT

AIRVAC® VACUUM DETAIL

INSPECTION PORT TERMINAL UNIT
N.T.S.

DETAIL
VAC-25
NOTE:
1. BREATHER DOME HEIGHT MUST BE ABOVE FLOOD LEVEL AND SHOULD BE PLACED NEXT TO A STATIONARY OBJECT.

2. BUFFER TANK UNIT MUST BE WATER TIGHT. SEAL ALL JOINTS WITH BUTYL SEALANT. TEST FOR LEAKS PER AIRVAC SPECIFICATIONS IN INSTALLATION MANUAL.

3. ANY LIFT EXCEEDING 6' MUST BE ADD TO HEAD LOSSES ON VACUUM MAIN AND SERVICE LINE TO DETERMINE IF SUFFICIENT VACUUM HEAD IS AVAILABLE.

4. IF MANHOLE IS MORE THAN 5' DEEP A SERVICE PLATFORM MAY BE REQUIRED FOR VALVE MAINTENANCE.

5. SECURE 2" SENSOR PIPE AND 3" SUCTION PIPE TO BUFFER TANK SIDE WALL WITH STAINLESS STEEL UNISTRUT, SEE STANDARD DETAILS.

SINGLE BUFFER TANK USING 4" MANHOLE ELEVATION AND NOTES N.T.S. DETAIL VAC-26
SINGLE BUFFER TANK USING 4’ MANHOLE
PLAN AND ELEVATION
N.T.S.
NOTE:
1. CAN BE PLACED NEXT TO A STATIONARY OBJECT, OUT OF TRAFFIC AREA OR NEXT TO A 4 X 4 WOOD POST IN PLACE OF CONCRETE

2. A BLADE TYPE CUTTER SUCH AS RIGID NO. 138 PLASTIC PIPE CUTTER IS RECOMMENDED (NOT SUPPLIED BY AIRVAC)

3. AVOID CONNECTING BREATER PIPING DIRECTLY BEHIND AIRVAC VALVE

BPD - GREEN PLASTIC BREATHER DOME

3/4" FPT X 1 1/4" BARB NYLON REDUCER

27-3/8" STANDARD LENGTH 1-1/4" I.D. X 3/8" WALL GREEN POLYURETHANE TUBING. LENGTH SUCH THAT BREATHER DOME IS ABOVE FLOOD LEVEL.

18" TYP.

BUFFER TANK SIDE WALL

USE PIPE SEALANT

#343 BREATHER LINE GROMMET

1 1/4" X 3/4" MPT NYLON ADAPTOR #BP-2

#8TA - 3/4" BREATHER "T" WITH TUBING ADAPTERS. MAY BE TILTED UP TO 45° FROM VERTICAL.

#8 TA - 3/4" TUBING ADAPTER. TUBING adapter MAY BE TILTED UP TO 45° FROM VERTICAL.

1-1/4" X 1-1/4" MPT NYLON ELBOW

1-1/4" X 1-1/4" FPT ADAPTOR (MATERIAL NOT SUPPLIED BY AIRVAC)

USE 1-1/4" SCH. 80 PVC PIPE (MATERIAL NOT SUPPLIED BY AIRVAC)

FLEXIBLE BREATHER PIPE ASSEMBLY N.T.S.

DETAIL VAC-28
PIPE ANCHORING DETAIL
N.T.S.

SECTION A-A

STAINLESS STEEL UNI-STRUT
(4 REQUIRED)

NON-METALLIC PIPE STRAP

3" SUCTION PIPE

2" SENSOR PIPE

1/4" SS ANCHOR BOLTS
(2 PER STRUT)

BUFFER TANK SIDE WALL

AS REQUIRED
12" MIN

DETAIL
VAC-29
ENLARGED VIEW OF ACCESS DOOR, INCLUDES AIR INLET WITH SLOTS FOR AIR FLOW POSITION ABOVE HIGHEST FLOOD WATER LEVEL.

10' MAXIMUM LENGTH

AIRVAC 1 PIECE MOLDED HDPE AIR TERMINAL (SEE MOUNTING DETAIL)

SEAL FOR FINAL SUMP TESTING AND UNTIL TERMINAL IS IN PLACE

35-1/2"

12" MIN

BUFFER TANK SIDE WALL

NO SEWAGE FLOW ALLOWED

6" SDR 21 PVC

SCH 40 PRESSURE RATED FITTINGS

GLUE HALF OF A 6" COUPLING AT 4" FROM END OF PIPE TO ACT AS A STOP

6" DEDICATED AIR TERMINAL FOR BUFFER TANK (MOLDED)

N.T.S.

DETAIL

VAC-30
VALVE BOX

4" (MAX)

3" DIAMETER WET-WELL WITH PUMP

CONTROL PANEL (SEE SECTION VIEW)

FUSED DISCONNECT - 30AMP*

HOMEOWNER SHALL COORDINATE WITH UTILITY PRIOR TO CONNECTION WITH FORCE MAIN

TERMINATE W/CAP AT PROPERTY LINE

ISOLATION VALVE (SEE DETAIL)

LOW PRESSURE FORCE MAIN

EDGE OF ROAD

*FOR DUPLEX INSTALLATIONS (5,000 SQ. FT. OR MORE) USE 60 AMP FUSCABLE DISCONNECT.

**REPLACE EXISTING CLEANOUT IF NOT 2-WAY.
TYPICAL RESIDENTIAL GRINDER SYSTEM LAYOUT (PLAN VIEW)

NOTES:
1. Actual locations of services shall be determined in field by resident engineer depending upon existing conditions & locations of existing septic tank.
2. See plan sheet for location of services.
3. Min 4' of #57 rock bedding shall be placed below valve boxes.
4. Valves inside service box shall be Sch 80 1.5" PVC ball valve, Spears Mfg or approved equal check valve shall be 2" flowmatic PVC ball check valve, (Model-200S) sup x sup with 2"x1.5" bushings.
5. EMS marker shall be #1258 electronic marker system as MFG by 3M test and measurement system.
6. Service boxes located in pavement shall be traffic rated.
FOR DUPLEX INSTALLATIONS (3,000 SQ. FT. OR MORE)
USE 60 AMP FUSEABLE DISCONNECT.

REPLACE EXISTING CLEANOUT IF NOT 2-WAY.

FOR DUPLEX STATIONS, USE TWO (2) – 2" SCH. 80 CONDUITS.

TYPICAL RESIDENTIAL GRINDER SYSTEM LAYOUT (SECTION VIEW)

DETAII

LP-2

(for reference only)
NOTES:
1. Actual locations of services shall be determined in field by resident engineer depending upon existing conditions & locations of existing septic tank.
2. In R.O.W. all ball valves shall be Ford Brass ball valve curb stop #611-666 for 1.25” w/Ford QT67 operating nut, use brass nipples each side of brass ball valves.
3. See plan sheet for location of services.
4. Min 4” of #37 rock bedding shall be placed below valve boxes.
5. Where services are bored under a roadway, a valve box shall be constructed with the isolation valve (see details above).
6. EMS marker shall be #1258 electronic marker system as MFG by 3M TEST and MEASUREMENT SYSTEM.

TYPICAL ROAD CROSSING SECTION VIEW
NOTES:
1. EMS SHALL BE INSTALLED ON STREET SIDE OF TEE AND VALVE.
2. VALVE BOX SHALL BE TYP# 149-R FOR 30'-42' DEPTH WITH CURB ROD TO WITHIN 6' OF FINISHED GRADE. (SEE DETAIL #LP-6)
3. TAPPING SADDLE SHALL BE ROMAC MODEL 306 FOR CAST IRON, DIP, AND PVC PIPE. USE MODEL 306-H FOR HDPE PIPE.
NOTES:

1. FOR OFFSET CONDITION, AIR VALVE IN MANHOLE STRUCTURE SHALL BE ADEQUATELY SUPPORTED ON 316 SS UNISTRUT BAR ANCHORED TO THE CONCRETE WALLS OF MANHOLE AND/OR ANCHORED TO THE CONCRETE ON MANHOLE FLOOR.

2. UNISTRUT BARS SHALL BE 316 SS OR NON CORROSIVE TYPE. STRAPS ANCHORING ARV TO UNISTRUT SHALL BE OF SAME TYPE MATERIAL.
SURFACE AND BASE REPAIR. SEE TABLE.

GENERAL BACKFILL/COVER MATERIAL FROM 4" ABOVE PIPE TO TOP OF TRENCH, NOT INCLUDING SURFACE REPAIR. SHALL BE FREE OF ROCKS, CLAY, AND ORGANIC MATERIALS. PLACE IN 8 INCH LIFTS. COMPACT TO 98% OF MODIFIED PROCTOR. IN GRASSED AREAS, COMPACT TO 95% MODIFIED PROCTOR. TEST FREQUENCY AS PER SPECS/INSPECTOR DISCRETION. FLOWABLE FILL IS ALSO ALLOWED.

INSTALL BACKFILL FOR BEDDING, HAUNCHES, BEDDING COVER IN FOUR INCH LIFTS.

BEDDING, HAUNCHES, AND BEDDING COVER MATERIAL SHALL BE FREE OF ROCKS, CLAY, AND ORGANIC MATERIALS. USE NUMBER 57 STONE OR EQUAL. COMPACTION OF BEDDING 98% MODIFIED PROCTOR. TEST FREQUENCY AS PER SPECS/INSPECTOR DISCRETION.

NOTES:
1. CONTRACTOR SHALL FOLLOW THE BEDDING, HAUNCHES AND BEDDING COVER OF THIS DETAIL FOR ALL PIPELINE INSTALLATION OUTSIDE FDOT JURISDICTION.
2. FOR ALL WORK INSTALLED IN FDOT JURISDICTION FOLLOW THE FDOT DETAIL CRITERIA FOR THE TRENCH AREA ABOVE BEDDING COVER.
3. TEMPORARY ASPHALT SHALL BE APPLIED TO ALL TRENCHES NOT REPAIRED WITHIN 30 DAYS AFTER PIPING INSTALLATION WHERE THE FLOWABLE FILL OPTION IS NOT USED.
4. AT THE CONTRACTORS OPTION, FLOWABLE FILL MAY BE INSTALLED FLUSH WITH EXISTING PAVEMENT AS A TEMPORARY MEASURE. FINAL RESTORATION WILL REQUIRE MILLING OF THE FLOWABLE FILL AND INSTALLATION OF 1 1/2" OF ASPHALT.

SURFACE REPAIR REQUIREMENTS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDOT ROADWAY/INTERSECTING</td>
<td>FOLLOW FDOT CRITERIA</td>
</tr>
<tr>
<td>STEETS IN FDOT RIGHT-OF-WAY</td>
<td></td>
</tr>
<tr>
<td>CONCRETE DRIVES, ETC.</td>
<td>6" - 3000 psi CONCRETE; 8" LIMEROCK BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>SIDEWALKS</td>
<td>4" - 3000 psi CONCRETE; 8" LIMEROCK BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>SHELL DRIVES, ETC.</td>
<td>6" - SHELL; 8" LIMEROCK BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>NON-FDOT ASPHALT ROADWAY/DRIVES</td>
<td>MINIMUM 1-1/2" 9-1; 8" LIMEROCK BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>OTHER/NON PAVED/OPEN</td>
<td>RESTORE TO CONDITIONS THAT EXISTED PRIOR TO START OF CONSTRUCTION</td>
</tr>
</tbody>
</table>

TRENCHING/BEDDING DETAIL

N.T.S.

STANDARD DETAIL

1
NOTES:
1. CONTRACTOR SHALL FOLLOW THE BEDDING, HAUNCHES AND BEDDING COVER OF THIS DETAIL FOR ALL PIPELINE INSTALLATION OUTSIDE FDOT JURISDICTION.

2. FOR ALL WORK INSTALLED IN FDOT JURISDICTION FOLLOW THE FDOT DETAIL CRITERIA FOR THE TRENCH AREA ABOVE BEDDING COVER.

3. TEMPORARY ASPHALT SHALL BE APPLIED TO ALL TRENCHES NOT REPAIRED WITHIN 30 DAYS AFTER PIPING INSTALLATION WHERE THE FLOWABLE FILL OPTION IS NOT USED.

4. AT THE CONTRACTOR'S OPTION, FLOWABLE FILL MAY BE INSTALLED FLUSH WITH EXISTING PAVEMENT AS A TEMPORARY MEASURE. FINAL RESTORATION WILL REQUIRE MILLING OF THE FLOWABLE FILL AND INSTALLATION OF 1 1/2" OF ASPHALT.

SURFACE REPAIR REQUIREMENTS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDOT ROADWAY/INTERSECTING</td>
<td>FOLLOW FDOT CRITERIA</td>
</tr>
<tr>
<td>STREETS IN FDOT RIGHT-OF-WAY</td>
<td></td>
</tr>
<tr>
<td>CONCRETE DRIVES, ETC.</td>
<td>6" - 3000 psi CONCRETE; 8" LIMERIC BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>SIDEWALKS</td>
<td>4" - 3000 psi CONCRETE; 8" LIMERIC BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>SHELL DRIVES, ETC.</td>
<td>6" - SHELL; 8" LIMERIC BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>NON-FDOT ASPHALT ROADWAY/DRAVES</td>
<td>MINIMUM 1.1/2" S.1; 8" LIMERIC BASE OR FLOWABLE FILL</td>
</tr>
<tr>
<td>OTHER/IN N PAVED OPEN</td>
<td>RESTORE TO CONDITIONS THAT EXISTED PRIOR TO START OF CONSTRUCTION</td>
</tr>
<tr>
<td>HERITAGE TRAIL</td>
<td></td>
</tr>
</tbody>
</table>
FILTER FABRIC PLACEMENT OVER UNSUITABLE SOILS

SEE ALSO TRENCH DETAILS FOR ADDITIONAL INFORMATION. ALL ITEMS ARE NOT SHOWN FOR CLARITY.

NOTE: FABRIC MUST EXTEND A MINIMUM OF 12" OVER THE TOP OF THE PIPE OR 12" ABOVE THE UNSTABLE SOILS INTERFACE.
NOTE:
1. STEEL CASING TO EXTEND A MINIMUM OF 5'-0" BEYOND THE EDGE OF PAVEMENT.
2. IF DUCTILE PIPE IS USED AS VACUUM MAIN, CASING CHOCKS MAY BE REDUCED TO (3) PER LENGTH OF PIPE.
PIPE RESTRRAIN FOR PVC PIPE (C-800/C-805 DR 18)

MINIMUM RESTRAINED LENGTH (FT) - EACH SIDE OF FITTING

PIPE SIZE - INCHES

<table>
<thead>
<tr>
<th>FITTING TYPE</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERT. UP OR HORIZ.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>11-1/4 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>29-1/2 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>45 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>90 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

VERTICAL DOWN

11-1/4 BEND	3	3	3	3	4	4	4	4	5	5
29-1/2 BEND	3	3	3	3	4	4	4	4	5	5
45 BEND	3	3	3	3	4	4	4	4	5	5
90 BEND	3	3	3	3	4	4	4	4	5	5

| BRANCH OF TEE | -10 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 |
| DEAD END | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

| REDUCERS | 8X4 | 8X4 | 8X6 | 8X6 | 10X6 | 10X6 | 10X8 | 10X8 | 12X8 | 12X8 |
| REST LENGTH | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

PIPE RESTRRAIN FOR D.I. PIPE

PIPE SIZE - INCHES

<table>
<thead>
<tr>
<th>FITTING TYPE</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERT. UP OR HORIZ.</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>11-1/4 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>29-1/2 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>45 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>90 BEND</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

VERTICAL DOWN

11-1/4 BEND	3	3	3	3	4	4	4	4	5	5
29-1/2 BEND	3	3	3	3	4	4	4	4	5	5
45 BEND	3	3	3	3	4	4	4	4	5	5
90 BEND	3	3	3	3	4	4	4	4	5	5

| BRANCH OF TEE | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| DEAD END | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |

| REDUCERS | 8X4 | 8X4 | 8X6 | 8X6 | 10X6 | 10X6 | 10X8 | 10X8 | 12X8 | 12X8 |
| REST LENGTH | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |

NOTES

1. **INCREASE RESTRAINED LENGTH WHEN TEST PRESSURES EXCEED 150 PSI.**
2. **RESTRAINED LENGTH BASED ON USING DUCTILE IRON FITTINGS.**
3. **RESTRAINED LENGTHS SHOWN ARE BASED ON LAYING CONDITION 4, AND MINIMUM COVER OF 3 FT.**
4. **RESTRAINED LENGTHS ARE BASED ON GOOD SAND SOILS (SW, SP), INT. FRICTION ANGLE = 30°, DENSITY = 100 PCF**
 PIPE TO SOIL FRICTION RATIO OF 0.7 (PVC), 0.8 (DI), PIPE TO SOIL COHESION RATIO OF 0.0 (PVC) AND 0.0 (DI)
 ADJUST RESTRAINED LENGTHS FOR DIFFERENT SOIL TYPES.
5. **INCREASE DIP RESTRAINED LENGTH WHEN USING POLYETHYLENE ENCASMENT.**
7. **AT ALL TEES, THE TOTAL LENGTH BETWEEN THE FIRST JOINTS OR RESTRAINED LENGTH ON EITHER SIDE OF TEE (RUN) SHALL BE A MINIMUM TOTAL DISTANCE OF 30 FT. SEE ABOVE TABLE FOR RESTRAINT LENGTH ON TEE BRANCH LINE.**
8. **ALL PROPOSED REVISIONS TO THE ABOVE SHALL BE APPROVED BY THE ENGINEER.**
9. **THE SAFETY FACTOR UTILIZED FOR THE ABOVE TABLE IS 1.5.**

PIPE RESTRAINT TABLE AND NOTES

<table>
<thead>
<tr>
<th>N.T.S.</th>
<th>STANDARD DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed Utility</td>
<td>Potable Water</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Horizontal</td>
</tr>
<tr>
<td>POTABLE WATER</td>
<td>-</td>
</tr>
<tr>
<td>RECLAIMED WATER</td>
<td>3'</td>
</tr>
<tr>
<td>SANITARY SEWER</td>
<td>6'</td>
</tr>
<tr>
<td>FORCED MAIN</td>
<td>-</td>
</tr>
<tr>
<td>SANITARY SEWER</td>
<td>6" above</td>
</tr>
<tr>
<td>GRAVITY MAIN</td>
<td>12" below</td>
</tr>
<tr>
<td>FIRE HYDRANT</td>
<td>-</td>
</tr>
<tr>
<td>MUNICIPAL DRAINS</td>
<td>-</td>
</tr>
<tr>
<td>STORM SEWER OR</td>
<td>3" above</td>
</tr>
<tr>
<td>VALVE BOX</td>
<td>12" below</td>
</tr>
</tbody>
</table>

1. The table represents the minimum separation requirements as described in O.D.P. rules per the Florida Administrative Code (F.A.C.). These separation requirements shall apply between newly proposed utility lines and existing or proposed utility lines.

2. For the purpose of this table, reclaimed water shall mean unrestricted public access reuse water as defined by F.A.C. 62-810. Other types of reclaimed water are considered raw sewage and separation listed for sanitary sewer shall apply.

3. All separation distances are from outside of pipe to outside of pipe.

4. The minimum horizontal separation between potable water and gravity sanitary sewer may be reduced to 3 feet if the bottom of the water main is located at least 8 inches above the top of the gravity sewer.

5. At utility crossings, one full length of water main shall be centered above or below the other utility pipe. If maximizing the separation of pipeline joints alternately, water main joints must be:
 a. At least 2' from all joints in vacuum type sanitary sewers, storm sewers, stormwater force mains, or unrestricted public access reclaimed water.
 b. At least 6' from all joints in gravity or pressure sanitary sewers, wastewater force mains, and all other types of reclaimed water.
 c. No water pipe shall pass through or be constructed touching any part of a sanitary manhole or storm sewer manhole or inlet structure.

7. New or relocated water mains and fire hydrants with underground mains must be at least 10 feet from any existing or proposed "on-site sewage treatment system" (ostads) as defined in Section 301.004(2), F.S., and Rule 65E-6.002 F.A.C. Examples of ostads include septic tanks, drainfields, and grease traps.

8. The following are acceptable alternative construction variances where it is not possible to meet the separation requirements, and are only to be implemented upon receipt of express written consent from the engineer.

 a. Where a water main is being laid less than the required minimum horizontal distance and/or where a water main crossing has less than the minimum required distance between joints:
 1. Use of pressure rated pipe conforming to ANSI B31.8/ASME, for a gravity or vacuum type pipe line.
 2. Use of welded, fused or otherwise restrained joints for either pipe.
 3. Use of watertight casing pipe or concrete encasement at least 4" thick for either pipe.

 b. Where a water main is being laid less than 9 feet horizontally from another pipe line and/or where a water main is being laid with less than the required minimum vertical separation:
 1. Use of pipe on casing pipe, having high impact strength at least equal to 0.25" thick D.L.P. (135 psi) or concrete encasement at least 4" thick for the watermain and the other pipe line if the other pipe line conveys wastewater or reclaimed water.

9. Minimum Horizontal and Vertical Separation Requirements

<table>
<thead>
<tr>
<th>N.T.S.</th>
<th>Standard Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>
PVC Deflection Schedule

<table>
<thead>
<tr>
<th>Nominal Size PVC Pipe (Inches)</th>
<th>Maximum Distance of Offset (Inches)</th>
<th>Maximum Angle of Offset (Deg.)</th>
<th>Minimum Radius of Curve (Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Note:

1) Minimum radius of curvature valid for 20' & 10' pipe lengths.

PVC Pipe Deflection N.T.S.

Standard Detail 7
NOTES:
1. FLOWABLE FILL MIX: (1,500 PS)
2. MATERIALS SHALL BE AS SPECIFIED IN SECTION 03300—CONCRETE.
3. REQUIREMENT IS SAME FOR EXIST. WATER MAINS CROSSING UNDER VACUUM SANITARY SEWER MAINS.
4. THIS DETAIL SHALL BE USED WHERE VACUUM SEWER MAIN CROSSES ABOVE OR BELOW AN EXISTING OR PROPOSED WATERMAIN AND VERTICAL SEPARATION PER FAC 62–555 CANNOT BE MET.

FLOWABLE FILL ENCASEMENT
(VACUUM SANITARY SEWER MAINS)
N.T.S.

STANDARD DETAIL
8
VALVE MARKER

CONC VALVE BOX PAD
NOTES:
1. SHIM MAN-HOLE FRAME/COVER TO MEET ROADWAY CROSS SECTION.
2. MATERIAL AND COMPACIION REQUIREMENTS AS PER SPECIFICATIONS
3. PRIME AND TACK COATS PER SPECIFICATIONS.

1 PIECE VALVE PIT INSTALLATION IN PAVED AREAS N.T.S. STANDARD DETAIL 10
PERMITTING FOR RESIDENTIAL AND COMMERCIAL SEWER LATERAL CONNECTIONS

13.1 Types of Service Connections

The connection of a single-family residential and single-building commercial property to the wastewater collection system is permitted through the Village Building Department. The connection of other property types or properties that will be directly connected to the conveyance force main require permitting through the Village Building Department and the FDEP. The FDEP permits are generally required of properties with existing package treatment plants and/or properties with multiple buildings. Service connections are provided for three types of properties within the Village described in the sections below.

13.1.1 Single Family Residential and Single Building Commercial Connections

The design of service connections for single family residential properties and single building commercial properties must meet the requirements of the current version of the Florida Building Code. Detailed descriptions of the various types of connections associated with these property types when connected into the Village wastewater collection system are presented in Table 13-1 and described in the sections which follow.

As indicated in Table 13-1, all Single Family Residential and Single Building Commercial properties must obtain a connection permit through the Village Building Department. Additionally, these facilities must obtain a permit from the Monroe County DOH to decommission, abandon, or otherwise disconnect from the existing OSTDS in accordance with the requirements of the DOH and FDEP.

The type of service connection for these properties will depend on the type of collection system installed (low pressure or vacuum sewer) as indicated in Table 13-1.

Single Family Residential (SFR). Single Family Residential connections consist of a single building which must connect with the Village wastewater collection system. As shown in Table 13-1, SFR connections typically consist of a grinder pump service lateral connection or a single gravity service lateral connection as described below.

1. A grinder pump service lateral which connects with the Village’s permitted Low Pressure Force Main (LPFM). Figure 13-1 illustrates the general layout for this connection type. Single Family Residential property connections with the LPFM can be accomplished in one of the following two methods:
a. As a participant in the Village Residential Grinder Pump Program; or
b. As a private homeowner installation (a non-participant in the Village Residential Grinder Pump Program).

Table 13-1. Permitting Requirements for Single Family Residential and Single Building Commercial Connections

<table>
<thead>
<tr>
<th>Building Connection</th>
<th>Village Sewer System Connection</th>
<th>Connection Method</th>
<th>Village Building Permit Required?</th>
<th>FDEP Permit Required?</th>
<th>Monroe County DOH Permit Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Family Residential</td>
<td>Low Pressure Force Main (LPFM)</td>
<td>Grinder Pump Service Lateral</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Family Residential</td>
<td>Vacuum Sewer</td>
<td>Gravity Service Lateral into Vacuum Valve Pit</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Building Commercial</td>
<td>Low Pressure Force Main (LPFM)</td>
<td>Grinder Pump Service Lateral</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Building Commercial</td>
<td>Vacuum Sewer</td>
<td>Gravity Service Lateral or Grinder Pump Service Lateral into a Buffer Tank</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2. A single gravity service lateral which discharges into a Village vacuum valve pit located in the right-of-way and connects with the Village permitted vacuum sewer main. **Figure 13-2** illustrates the general layout for this connection type.

For either residential connection, the Owner must obtain a Village Building Permit (see Section 13.4). The tie-in to the connection point at the street cannot be completed until the written Service Availability and Connection Notice has been received from the Village and the Owner has successfully passed all applicable Village inspections and required testing. The Owner must also submit a Monroe County DOH Septic Tank Abandonment permit application (see Section 13.4).
Figure 13-1. Single Family Residential & Single Building Commercial Connections: Grinder Pump Station with Low Pressure Force Main

Notes:
1. Installation of the Gravity Service Connection and appurtenances (between the SFR/SBC and the Grinder Pump Station) are the responsibility of the Owner or his/her designated Contractor.
2. Installation of the Grinder Pump Station, the Grinder Pump Service Lateral Connection, and all appurtenances located on the Private Property are the responsibility of the Village for customers participating in the Residential Grinder Pump Program (4 EDUs or less).
3. Non-participants in the Residential Grinder Pump Program (4 EDUs or less) are responsible for the installation and maintenance of the Grinder Pump Station, the Grinder Pump Service Lateral Connection, and all appurtenances.
4. Items shown in the right-of-way (ROW) are the responsibility of the Village to install.
Figure 13-2. Single Family Residential Connections: Vacuum System

Notes:
1. Items shown above the property line are the responsibility of the Owner or his/her designated contractor to install.
2. Items shown below the property line are the responsibility of the Village to install.
Single Building Commercial (SBC). A Single Building Commercial connection consists of a single commercial establishment which must connect with the Village wastewater system. As shown in Table 13-1, SBC connections can consist of grinder pump service lateral connection or a gravity service lateral connection as described below.

1. A grinder pump service lateral which is connected to the Village’s permitted Low Pressure Force Main (LPFM) located in the right-of-way. Figure 13-1 illustrates the general layout for this connection type.

2. A single gravity service lateral or grinder pump service lateral which is connected to a Village buffer tank located in the Village right-of-way that connects with the Village permitted vacuum sewer main. Figure 13-3 illustrates the general layout for a grinder pump service lateral connection.

In either case, the Owner must obtain a Village Building Permit (see Attachments). The tie-in to the connection point at the street cannot be completed until the written Service Availability and Connection Notice has been received from the Village and the Owner has successfully passed all applicable Village inspections. The Owner must also submit a Monroe County DOH Septic Tank Abandonment permit application (see Section 13.4). All service connections with the Village-owned collection system shall be performed by a Florida licensed plumber.

13.1.2 FDEP Permitted Connections

The design of connections for properties that require permitting through the FDEP must comply with the requirements of Rule 62-604, F.A.C. The Village (through the KLWTD) must certify that treatment plant capacity is available for these FDEP permitted connections.

The different connection methods associated with FDEP permitted facilities that must connect with the Village wastewater collection system are presented in Table 13-2. As indicated in Table 13-2, any multiple family residential building with a private collection system and/or a pumping station is required to obtain both a Village sewer system permit and a FDEP collection system permit (DEP Form 62-604.300(8)(a)).

Additionally, two or more buildings connected into a common sewer line are considered a private collection system and therefore must obtain both a Village sewer system permit and a FDEP collection system permit. Any single commercial building connecting with the conveyance force main
Figure 13-3. Single Building Commercial Connection: Grinder Pump with Vacuum System

Notes:
1. Items shown above the property line are the responsibility of the Owner or his/her designated contractor to install with the exception of the Grinder Pump Station (Village Responsibility).
2. Items shown below the property line are the responsibility of the Village to install.
3. The rated discharge capacity of the grinder pump shall be used to size the buffer tank.
would also be required to obtain both a Village sewer permit and a FDEP collection system permit.

Additionally, these facilities must also obtain a Monroe County DOH permit for permitting, decommissioning or abandoning the existing OSTDS located on the premises. Owners are also responsible for the testing of any existing collection systems to be connected with the Village wastewater collection system to ensure adequacy and compliance with the Village’s infiltration and inflow requirements. Copies of the required DEP permit and the Monroe County DOH permit applications are provided in Section 13.4.

13.2 Service Connection Permitting

This section presents the permit requirements for each type of service connection described in Section 13.1 and also identifies the report submittal requirements associated with each permit. The flowchart in Figure 13-4 illustrates the permitting process for Single Family Residential and Single Building Commercial Sewer Connections for Low Pressure Sewer Connections (using Grinder Pumps). The permit process for these connection types is described below.

An Owner desiring to obtain a sewer connection will receive a Service Availability and Connection Notice stating the Village’s collection system is ready for Owner connection.

- Upon receipt of the notification, the Owner (or plumber) will prepare and submit a Septic Tank Abandonment Permit Application (DH 4015) to the Monroe County Department of Health (see website at www.doh.state.fl.us).
- Upon receipt of the DOH Permit, the Owner shall submit a copy of the County Health Department Septic Tank Abandonment Permit to the Village Building Services Division.
- For participants in the Residential Grinder Pump Program, the Owner shall apply for a Village Building - Sewer Connection Permit. This permit is required for (1) the electrical connection to the grinder pump station electrical panel and (2) for the gravity lateral connection between the home (or building) and the Village-installed Grinder Pump Station.
- For non-participants in the Residential Grinder Pump Program, the Owner shall apply for a Village Building – Sewer Connection Permit. This permit is required for (1) the Owner-installed Grinder Pump Station, (2) the electrical connection to the Grinder Pump Station, and (3) the gravity lateral connection between the home (or building). Permit submittals for individual connections shall include shop drawings of the proposed grinder pump system, wet well basin, valves, piping, SCADA system, and control panel. All shop drawings shall be submitted to the Village Utility Department for review and approval. All components associated with the grinder pump installation shall comply with the Village’s Minimum Design Standards.
- Upon receipt of a Village Building – Sewer Connection Permit, the Owner/Plumber can proceed with the installation of the grinder pump system on personal property without physically connecting with the Village low pressure force main (located in the right-of-
Figure 13-4
Single Family Residential & Single Building Commercial Connection Permit Process for Grinder Pumps w/ Low Pressure Force Main

Homeowner
Receives "Service Availability & Connection Notice" from Village stating that System is Ready for Connection

Homeowner/Plumber
Submits for Septic Tank Abandonment Permit Application (DH 4015) to Monroe County Department of Health
www.doh.state.fl.us

DBO/Plumber:
(1) Contact Severn Trent for sewer lateral camera inspection
(2) Make plumbing connection to Low Pressure FM
(3) Connection Inspection by Severn Trent

DBO/Owner/Plumber:
Submits copy of Monroe Co. DOH Permit to Village Building Services Division & Applies for Village Building – Sewer Connection Permit

DBO/Plumber: Contact Village Building Services Division for Sewer Lateral Inspection/Test 305-664-6440

Within 90 days

DBO/Owner/Plumber:
Installs Low Pressure Wet Well w/ Pump, Valving, Piping, Control Panel and Disconnect & Completes Testing (w/o making physical connection to Low Pressure FM)

Homeowner/Plumber:
Contact Village Building Services Division for Final Construction Inspection (upon final restoration)

Homeowner/Plumber:
Perform Septic Tank Abandonment

Homeowner/Plumber:
Contact Monroe County DOH for Final Inspection and Sign/Submit Abandonment Permit

File: HomeownerSewerConnectionPermitProcess.ppt

December 2, 2014
108
way). All installations shall be made in accordance with Village Minimum Design Standards, local plumbing and electrical codes, and regulations of the Florida Department of Environmental Protection.

- Upon completion of installing the grinder system, the Owner/Plumber shall contact the Village Building Services Division and request a sewer lateral inspection and test. Testing and reporting requirements are provided in Section 14 – Collection & Transmission System Testing and Reporting Procedures.
- Upon completion of a satisfactory inspection and test, a licensed Plumber will be permitted to connect the Low Pressure pumping system with the Village Low Pressure Force Main and disconnect and properly abandon the existing onsite treatment system which the property is connected.
- Excavations shall remain open and protected until such time as an inspection has been performed and a satisfactory connection is made. A connection inspection will be required by the Village Building Services Division upon successful completion of the Owner’s Low Pressure system with the Village Low Pressure Force Main. Upon final restoration, the Owner/Plumber will request a final inspection from the Village.
- The Owner/Plumber shall contact the Monroe County Department of Health for a final inspection of the abandoned septic system.

Table 13-2. Permitting Requirements for Multiple Family Residential and Commercial Buildings

<table>
<thead>
<tr>
<th>Building Connection</th>
<th>Village Sewer System Connection</th>
<th>Connection Method</th>
<th>Village Building Permit Required?</th>
<th>FDEP Permit Required?</th>
<th>Monroe County DOH Permit Required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Family Residential Buildings</td>
<td>CFM or LPFM or Buffer Tank</td>
<td>Private Collection and/or Pump Station</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple Commercial Buildings</td>
<td>CFM or LPFM or Buffer Tank</td>
<td>Private Collection and/or Pump Station</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Single Commercial Building</td>
<td>CFM</td>
<td>Pump Station</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
1. CFM = Conveyance Force Main
2. LPFM = Low Pressure Force Main
The key permits required for these facilities include:

- Monroe County DOH Septic Tank Abandonment Permit (DH 4015)
- Village Building Sewer Connection Permit

The flowchart in **Figure 13-5** illustrates the permitting requirements for Single Family Residential and Single Building Commercial Sewer Connections for Vacuum Sewer Connections. The permit process for these connection types is described below.

- An Owner desiring to obtain a sewer connection will receive a Service Availability and Connection Notice stating that the Village’s collection system is ready for Owner connection.
- Upon receipt of the notification, the Owner (or Plumber) will prepare and submit a Septic Tank Abandonment Permit Application (DH 4015) to the Monroe County Department of Health (see website at www.doh.state.fl.us).
- Upon receipt of the DOH Permit, the Owner shall submit a copy of the County Health Department Septic Tank Abandonment Permit to the Village Building Services Division
- Owner shall apply for a Village Building – Sewer Connection Permit.
- Upon receipt of a Village Building – Sewer Connection Permit, the Owner/Plumber can proceed with installation of the gravity service lateral connection, backflow preventer, and cleanout on their personal property, but without making a physical connection with the vacuum valve pit located in the Village right-of-way. All plumbing installations shall be made in accordance with Village Minimum Design Standards referenced herein, local plumbing and electrical codes, and the regulations of the Florida Department of Environmental Protection.
- Upon completion of installing the service lateral connection, the Owner/Plumber shall contact the Village Building Services Division and request a sewer lateral inspection and test (see Section 14 – Collection & Transmission System Testing and Reporting Requirements).
- Upon completion of a satisfactory inspection, a licensed Plumber (certified in making service connections with the vacuum sewer system) will be permitted to make the plumbing connection with the vacuum pit and properly abandon the existing onsite treatment system to which the property is connected.
- Lateral connection excavations shall remain open and protected until such time as a connection inspection has been performed by the Village Building Services Division upon successful completion of the Owner’s gravity lateral connection with the Village vacuum pit and vacuum sewer main. Upon final restoration, the Owner shall request a final inspection from the Village.
- The Owner/Plumber shall contact the Monroe County DOH for a final inspection of the abandoned septic system.
Figure 13-5
Single Family Residential & Single Building Commercial Sewer Connection Permit Process for Vacuum Sewers

Homeowner
Receives “Service Availability & Connection Notice” from Village stating that System is Ready for Connection

Homeowner/Plumber
Submits for Septic Tank Abandonment Permit Application (DH 4015) to Monroe County Department of Health www.doh.state.fl.us

Plumber:
(1) Contact Severn Trent for sewer lateral camera inspection
(2) Make plumbing connection to Vacuum Valve Pit
(3) Connection Inspection by Severn Trent

Homeowner/Plumber:
Contact Village Building Services Division for Sewer Lateral Inspection/Test 305-664-5440

Homeowner/Plumber:
Installs Gravity Lateral Connection (Piping) to Property Line/Right-of-Way & Completes Testing (w/o making physical connection to Vacuum Valve Pit)

Homeowner/Plumber:
Within 90 days

Homeowner/Plumber:
Contact Village Building Services Division for Final Construction Inspection (upon final restoration)

Homeowner/Plumber:
Performs Septic Tank Abandonment

Homeowner/Plumber:
Contact Monroe County DOH for Final Inspection and Sign/Submit Abandonment Permit
The key permits required for these facilities include:

- Monroe County DOH Septic Tank Abandonment Permit (DOH 4015)
- Village Building Sewer Connection Permit

The flowchart in Figure 13-6 illustrates the permit and reporting requirements for Multiple Commercial Buildings and Multiple Building Residential Connections which connect with the Village Wastewater System. The key permits and reports required for these facilities which obtain permits include:

- FDEP Collection System Permit (DEP Form 62-604.300(8)(a))
- Engineering Report, including Infrastructure Testing Report and Condition Report
- Grease Trap Inspection Report (if applicable)
- FDEP Facility Abandonment Plan
- FDEP Asbestos Notification (if required)
- Injection Well Abandonment Certification Letter (sign/sealed by a Florida licensed Engineer of Record)
- Injection Well Abandonment Certification Letter from County Clerk (w/ doc stamps and recorded survey from a Florida licensed Professional Land Surveyor)
- FDEP Injection Well Plugging and Abandonment Permit Application (DEP Form 62-528.900(6))
- FDEP Injection Well Completion Form (DEP Form 62-528.900(2))

Testing and reporting requirements are presented in **Section 14 – Collection and Transmission System Testing and Reporting Procedures**. Package Plant Abandonment and De-commissioning Protocol are presented in **Section 17 – Package Plant Abandonment and Decommissioning Requirements**.
Figure 13-6
FDEP Permitted Connections for Multiple Commercial Building & Multiple Building Residential Connections

Owner Receives "Service Availability & Connection Notice"

Owner Submits DEP Permit Application
DEP Form 62-604.300(8)(a)
Sign/Sealed by Florida P.E.

Obtain DEP Permit (submit copy to Village)

Owner Submits Facility Abandonment Plan to DEP (copy to Village)
60 days prior to Abandonment

Owner Submits DEP Permit Application
Owner Submits copy of Engineering Report & Drawings to Village

Construct Collection System in accordance w/ DEP Permit

Owner Abandons Plant Facility in accordance w/ Plan Submitted to DEP
Owner Contacts Village Bldg Services to schedule plant decommissioning

Complete Testing of infrastructure, incl. salinity testing

Owner Obtains DEP Clearance Letter

Submit Grease Trap Inspection Report & Cleanout Log to Village

Submit Copy to Village Bldg Services Division & Coordinate Service Connection Date

Owner Provides Asbestos Notification if Required
F.A.C. Rule 52-257.200(7)

Owner Submit Documents to DEP Reg'd by Permit:
1. Sign/Sealed Letter-form Engineer of Record Certifying Abandonment & Plugging of Wells in accordance w/ permit application
2. Certification from County Clerk w/ doc stamps & survey recorded
3. DEP Form 62-520.900(2) documenting work is completed

Owner Maintains O&M Manual & Record Drawings
Onsite Rules 62-604.500(4) & 62-620.410, F.A.C.

Owner Submits Final Sign/Sealed Checklist to Village

Owner Submits Record Drawings to Village

Abandon Injection Well(s) Using a Florida Licensed Water Well Driller
13.3 Agency Contacts

The following is a listing of agency contacts for required for residential, commercial and FDEP permitting facilities.

Village Building Department Permitting

Islamorada Building Services Division
305/664-6440
http://www.islamorada.fl.us/

Commercial Package Plant Abandonment Permit

Florida Department of Environmental Protection
South District Marathon Branch Office
2796 Overseas Highway, Suite 221
Marathon, FL 33050
305/289-7070

Multiple Buildings and/or Building Directly Connected to Village Conveyance Force Main

Florida Department of Environmental Protection
South District Marathon Branch Office
2796 Overseas Highway, Suite 221
Marathon, FL 33050
305/289-7070

Septic Tank, Cess Pit or ATU Abandonment Permits

Monroe County Health Department
Suite 202
102050 Overseas Highway (MM 102.8 Bayside) Murray Nelson Government Center
Key Largo, FL 33037
305/453-8750
Hours: M-F 8:30 am – 5:00 pm (closed from 12:00-1:00 pm for lunch)
13.4 Permit Applications, Forms and References

13.4.1 Village Building Permit Application (Page 1/2)

2010 Florida Building Code in effect.
Minimum Application Deposit: $108.00

INSTRUCTIONS: Complete all sections of this form, including contact information and notarized signatures of the property owners and contractors. Submit completed application with all necessary documentation and submittals to the Building Services Department. Applicants may be asked to submit additional information during the permit review process.

PROPERTY OWNER: CONTRACTOR:
Name: Business Name:
Mailing Address: Mailing Address:
City/State/Zip: City/State/Zip:
Home/Mobile: Office: Home/Mobile: Office:
E-mail: Fax: E-mail: Fax:

AUTHORIZED AGENT / CONTRACTOR CONTACT: SUB-CONTRACTORS:
Name: Electrical:
Mailing Address: Plumbing:
City/State/Zip: Mechanical:
Home/Mobile: Office: Roofing:
E-mail: Fax: Sign:

PROPERTY DESCRIPTION:
Physical Address: Mile Marker:
Lot: Block: Subdivision:
☐ Plantation Key ☐ Windley Key ☐ Upper Matecumbe Key ☐ Lower Matecumbe Key
Parcel ID (Real Estate) Number: Alternate Key:
Existing Use of Property:
Business Name:

PERMIT TYPE (Check all that apply): ☐ Building ☐ Electrical ☐ Plumbing ☐ Mechanical ☐ Roofing
☐ Gas ☐ Demolition ☐ Right-of-Way ☐ Change of Occupancy

Detailed Description of Proposed Development:

Value of Work: $ Square/Linear Feet of Construction:

Change Requested: ☐ Contractor ☐ Revision ☐ Renew Expired Permit
(Original/Previous Permit #) (Original/Previous Permit #):

Office Use Only
Rec'd By: Date: / / Reviewed By: Planning: Building: Fire: Public Works/Utilities:
13.4.1 Village Building Permit Application (Page 2/2)

Islamorada, Village of Islamorada
Application for Building Permit

Application is hereby made to obtain a permit to do the work and installations as indicated. I certify that no work or installation has commenced prior to the issuance of a permit, and that all work will be performed to meet the standards of all laws regulating construction in this jurisdiction. I understand that a separate permit must be secured for ELECTRICAL WORK, PLUMBING, SIGNS, WELLS, POOLS, FURNACES, BOILERS, HEATERS, TANKS, and AIR CONDITIONERS, etc. [F.S. 713.135(6)(a)].

OWNER'S AFFIDAVIT: I certify that all the foregoing information is accurate and that all work will be done in compliance with all applicable laws regulating construction and zoning, including but not limited to, the current edition of the Florida Building Code, the Florida Fire Prevention Code and the Code of Ordinances of Islamorada, Village of Islands, Florida, as amended from time to time. Work shall be installed in accordance with the approved construction documents, and any changes made during construction that are not in compliance with the approved construction documents shall be resubmitted for approval as an amended set of construction documents. Furthermore, I understand that if the actual cost of the repair, reconstruction, rehabilitation, or improvement of a structure equals or exceeds 50 percent (50%) of the market value of the structure, then the structure must conform to all current laws and Codes.

WARNING TO OWNER: YOUR FAILURE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOUR PAYING TWICE FOR IMPROVEMENTS TO YOUR PROPERTY. A NOTICE OF COMMENCEMENT MUST BE RECORDED, A COPY OF THE RECORDED NOTICE MUST BE SUBMITTED TO THE BUILDING SERVICES DEPARTMENT AND POSTED ON THE JOB SITE BEFORE THE FIRST INSPECTION. A NOTICE OF COMMENCEMENT IS EFFECTIVE FOR A PERIOD OF ONE (1) YEAR AFTER THE DATE OF RECORDING, UNLESS A DIFFERENT DATE IS SPECIFIED. IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR LENDER OR AN ATTORNEY BEFORE COMMENCING WORK OR RECORDING YOUR NOTICE OF COMMENCEMENT. [F.S. 713.135(6)(a)]

NOTICE: In addition to the requirements of this permit, there may be additional restrictions applicable to this property that may be found in the public records of this county, and there may be additional permits required from other governmental entities such as water management districts, state agencies or federal agencies. [2007 FBC 155.3.3]

Asbestos Notification Statement: It shall be the owner's or operator's responsibility to comply with the provisions of Section 469.003, Florida Statutes, and to notify the Department of Environmental Protection of his or her intentions to remove asbestos, when applicable, in accordance with state and federal law. [2007 FBC 105.9, F.S. 469.003]

If one or more previously unidentified artifacts or human skeletal or fossilized remains or non-human vertebrate fossils are found on the property during development or other site-disturbing activity, all development or disruptive activity directly over the potential find shall immediately cease. Before any further development or disruptive activity continues, the Village shall be notified of the potential find and the procedures pursuant to the Islamorada Code of Ordinances shall apply. [VC Sec. 30-1999]

PROPERTY OWNER:
Signature:
Print Name:
Date:

CONTRACTOR OR AUTHORIZED AGENT:
Signature:
Print Name:
Date:

NOTARY PUBLIC:
STATE OF __________, COUNTY OF __________
Sworn to and subscribed before me this ___ day of ________, 20__, by ______________ (name of person making statement).
Signature:
☑ Personally Known ☐ Produced Identification
Type of ID Produced: __________________
Notary Seal:

APPLICATION APPROVED BY:

GERALD E. ALBERTSON, CBO/CFM, BUILDING OFFICIAL

☐ DEVELOPMENT. Pursuant to Chapter 9J-1, F.A.C., this permit shall not take effect or be acted upon until forty-five (45) days after rendition to the Florida Department of Community Affairs, unless a later date is specified, and the effectiveness of this permit shall be stayed by the filing of a notice of appeal pursuant to Section 360.07, Florida Statutes.

☐ NOT DEVELOPMENT (EXEMPT)

Page 2 of 2
STATE OF FLORIDA
DEPARTMENT OF HEALTH
ONSITE SEWAGE TREATMENT AND DISPOSAL
APPLICATION FOR CONSTRUCTION PERMIT

APPLICATION FOR:
[] New System [] Existing System [] Holding Tank [] Innovative
[] Repair [] Abandonment [] Temporary []

APPLICANT:

AGENT: TELEPHONE:

MAILING ADDRESS:

TO BE COMPLETED BY APPLICANT OR APPLICANT’S AUTHORIZED AGENT. SYSTEMS MUST BE CONSTRUCTED BY A PERSON LICENSED PURSUANT TO 489.105(3)(a) OR 489.552, FLORIDA STATUTES. IT IS THE APPLICANT’S RESPONSIBILITY TO PROVIDE DOCUMENTATION OF THE DATE THE LOT WAS CREATED OR PLATTED (MM/DD/YY) IF REQUESTING CONSIDERATION OF STATUTORY GRANDFATHER PROVISIONS.

PROPERTY INFORMATION
LOT: _____ BLOCK: _____ SUBDIVISION: ___________________________ PLATTED: ______

PROPERTY ID #: ___________________________ ZONING: _______ I/M OR EQUIVALENT: [Y/N]

PROPERTY SIZE: _____ ACRES WATER SUPPLY: [] PRIVATE [] PUBLIC [] <=2000GPD [] >2000GPD

IS SEWER AVAILABLE AS PER 381.0045, F.S.? [Y/N] DISTANCE TO SEWER: _______ FT

PROPERTY ADDRESS:

DIRECTIONS TO PROPERTY:

BUILDING INFORMATION
[] RESIDENTIAL [] COMMERCIAL

<table>
<thead>
<tr>
<th>Unit</th>
<th>Type of Establishment</th>
<th>No. of Bedrooms</th>
<th>Building Area Sqft</th>
<th>Commercial/Institutional System Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Table 1, Chapter 64E-6, FAC</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[] Floor/Equipment Drains [] Other (Specify)

SIGNATURE: DATE: ________

DN 4015, 08/39 (Obsoletes previous editions which may not be used)
Incorporated 64E-6.001, FAC

Page 1 of 4
13.4.2 Monroe Co. Septic Tank Abandonment Permit Application (Page 2/2)

APPLICANT: Property owner's full name.

AGENT: Property owner's legally authorized representative.

TELEPHONE: Telephone number for applicant or agent.

MAILING ADDRESS: P.O. box or street, city, state and zip code mailing address for applicant or agent.

LOT, BLOCK, SUBDIVISION: Lot, block, and subdivision for lot (recorded or unrecorded subdivision). If lot is not in a recorded subdivision, a copy of the lot legal description or deed must be attached.

DATE OF SUBDIVISION: Official date of subdivision recorded in county plat books (month/day/year) or date lot originally recorded. Dividing an approved lot into two or more parcels for the purpose of conveying ownership shall be considered a subdivision of the lot.

PROPERTY ID#: 27 character number for property. CHD may require property appraiser ID # or section/township/range/parcel number.

ZONING: Specify zoning and whether or not property is in I/M zoning or equivalent usage.

PROPERTY SIZE: Net usable area of property in acres (square footage divided by 43,560 square feet) exclusive of all paved areas and prepared road beds within public rights-of-way or easements and exclusive of streams, lakes, normally wet drainage ditches, marshes, or other such bodies of water. Contiguous unpaved and non-compact ed road rights-of-way and easements with no subsurface obstructions may be included in calculating lot area.

WATER SUPPLY: Check private or public <= 2000 gallons per day or public > 2000 gallons per day.

SEWER AVAILABILITY: Is sewer available as per 381.0065, Florida Statutes, and distance to sewer in feet.

PROPERTY ADDRESS: Street address for property. For lots without an assigned street address, indicate street or road and locate in county.

DIRECTIONS: Provide detailed instructions to lot or attach an area map showing lot location.

BUILDING INFORMATION: Check residential or commercial.

TYPE ESTABLISHMENT: List type of establishment from Table II, Chapter 64E-6, FAC. Examples: single family, single wide mobile home, restaurant, doctor's office.

NO. BEDROOMS: Count all rooms designed primarily for sleeping and those areas expected to routinely provide sleeping accommodations for occupants.

BUILDING AREA: Total square footage of enclosed habitable area of dwelling unit, excluding garage, carport, exterior storage shed, or open or fully screened patios or decks. Based on outside measurements for each story of structure.

BUSINESS ACTIVITY: For commercial/institutional applications only. List number of employees, shifts, and hours of operation, or other information required by Table II, Chapter 64E-6, FAC.

FIXTURES: Mark Floor/Equipment Drains or Others and specify item or "NA" if not applicable.

SIGNATURE / DATE: Signature of applicant or agent. Date application submitted to the CHD with appropriate fees and attachments.

ATTACHMENTS: A site plan drawn to scale, showing boundaries with dimensions, locations of residences or buildings, swimming pools, recorded easements, onsite sewage disposal system components and location, scope of property, any existing or proposed wells, drainage features, filled areas, obstructed areas, and surface water. Location of wells, onsite sewage disposal systems, surface waters, and other pertinent facilities or features on adjacent property. If the features are with 75 feet of the applicant lot. Location of any public well within 200 feet of lot. For residences, a floor plan (residences) showing number of bedrooms and building area of each unit. For nonresidential establishments, a floor plan showing the square footage of the establishment, all plumbing drains and fixture types, and other features necessary to determine composition and quantity of wastewater.
13.4.3 FDEP Collection Permit Application (DEP Form 62-604.300(8)(a))

13.4.4 FDEP Injection Well Plugging and Abandonment Permit Application (DEP Form 62-528.900(6))

13.4.5 FDEP Injection Well Completion Form (DEP Form 62-528.900(2))
14.0 TESTING AND REPORTING REQUIREMENTS

This section provides information and guidance on testing and reporting requirements for all wastewater facilities and wastewater connections prior to approval by the Village, including new development, re-development, existing residential properties greater than 4 EDUs, commercial properties, and any residential properties which are not participating in the Residential Grinder Pump Program. Any existing wastewater piping that remains as part of the Owner’s onsite plumbing connection with the Village wastewater collection system must also comply with the testing and reporting requirements presented herein. All testing, procedures, and video inspections shall be performed by the Owner/Developer in the presence of Village inspection personnel and a representative from the Key Largo Wastewater Treatment District and certified by the Owner/Developer’s Engineer. The Owner/Developer shall be responsible for furnishing all necessary labor, equipment, and water required for all testing and inspections.

14.1 General Testing Requirements
1. Testing shall be accomplished through the combination of visual inspections, deflection testing, low pressure air tests, and leakage test methods.
2. The Owner/Developer shall provide all necessary test equipment.
3. All testing required by the Village shall be paid for by the Owner/Developer.
4. All testing must be witnessed and testing reports must be signed and sealed by a Florida licensed professional engineer.
5. All final testing shall be performed in the presence of a representative from the Village and a representative from the Key Largo Wastewater Treatment District. The Village and the District shall be notified at least 72 hours (not including holidays or weekends) in advance of any work which is to be inspected or tested. Tests performed in the absence of a Village and District representative shall be considered invalid and shall be repeated at the Owner’s expense.
6. All testing shall only be performed after all work adjacent to and over the pipeline to be tested has been completed.
7. Gauges used for pressure pipe testing shall be scaled to the nearest 1.0 psi.
8. Gauges and pumps shall be in good working order with no noticeable leaks.
9. Backfilling, placement of fill, grading, initial base layering of pavement, concrete work, and any other superimposed loads shall be completed and in place prior to testing.
10. Pressure and leak testing for buried piping shall be made after all jointing operations are completed and restraints have been in place at least seven (7) days.
11. Sections of the system may be tested separately, but any defect which develops in a section previously tested and accepted shall be promptly corrected and retested.
12. Pressure tests shall be made between valves to demonstrate the ability of valves to sustain pressure.
13. Short sections of piping such as those between valves, may be isolated for testing. If short sections are tested, test plugs or bulkheads required at the ends of the test section together with anchors, braces, and other devices required to withstand the hydrostatic pressure without imposing any thrust on the pipe line, shall be furnished.
and installed by the Owner/Developer. The Owner shall be solely responsible for any damage which may result from the failure of test plugs or supports.

14. All defects in piping systems shall be repaired and/or replaced and retested until acceptable. Repairs shall be made to the stand of quality specified for the entire system.

15. Testing shall include:
 a. All laterals to main gravity line, including wyes
 b. Each individual lateral connecting with a manhole
 c. Individual manholes
 d. Each force main
 e. Each lift station
 f. All valves and controls
 g. All under building sewer connections

16. The entire system shall be operated for two days to prove compatibility of equipment and to achieve proper adjustment for operation. Valves, pipes, tanks, and other items that are not operational or are only operated on occasion, shall be tested for the ability to meet required design criteria.

14.2 Vacuum Main, Appurtenances, and Accessories Testing

Prior to testing any segment of vacuum main, appurtenances or accessories, care shall be taken to protect all installed vacuum equipment during testing. Temporary taps and air releases, as allowed by the vacuum system manufacturer, shall be permissible to facilitate testing. The Owner/Developer is responsible to provide any and all required water required for these testing requirements at the Owner/Developer’s cost. Water used for testing purposes shall be disposed of in a Village-approved location in accordance with state and federal laws and regulations.

All testing shall be performed in accordance with the procedures outlined in the AIRVAC 2012 Design Manual (or the most current version), the AIRVAC 2010 Landbased Vacuum Systems Operation, Installation and Maintenance Manual (or the most current version), and the AIRVAC Standard Specifications, Division 2 – Site Work, Section 02730 – Underground Vacuum Sewer Piping, Contractor Supplied Equipment, 2012 (or the most current version). In the event that a conflict occurs between the testing requirements specified in these documents, the most current version of the AIRVAC Standard Specifications shall prevail.

All testing shall be conducted in the presence of the vacuum system manufacturer’s field representative as well as the Village, the Owner/Developer, and the Engineer of Record or other authorized representative. The results of all testing shall be submitted to the Village as part of the construction record documentation. The following testing items are listed as examples and are not all inclusive:

- AIRVAC Sump Testing, 1-Piece and 2-Piece Pits;
- Buffer Tank Testing;
- External Breather Testing; and
- Vacuum Main Testing
14.3 Gravity Sewers

This section outlines the requirements for testing of gravity sewer pipe and gravity lateral connections. The Owner/Developer is responsible for providing any and all water required for these testing requirements at the Owner/Developer’s costs.

14.3.1 Visual Inspections: New Systems Only

1. Prior to inspections and testing, all installed pipelines and manholes shall be cleaned.

2. The Village representative shall visually inspect all newly installed gravity sewer piping to verify alignment and grade and to ensure that the pipe is free from obstructions and debris.

3. A light source and mirrors will be used for “flashing” the sewer pipe one section at a time.

4. When the full diameter of the pipe is visible between adjacent manholes, the inspected segment of piping shall be deemed properly aligned and free of sags and debris.

5. Any sewer in which the direct light of a lamp cannot be viewed in either direction, full circle, between adjacent manholes shall be considered unsatisfactory unless the line is designed with horizontal deflections, and shall be repaired.

6. If the inspected segment fails the visual inspection, the segment of pipe shall be cleaned and/or replaced and re-tested.

14.3.2 Leakage Testing: New and Existing Systems

Leakage is defined as the quantity of water to be supplied in the newly laid pipe or any valve section under test, which is necessary to maintain the specified leakage test pressure after the pipe has been filled with water and the air expelled. Should any test of pipe laid disclose leakage greater than that allowed, the Owner/Developer shall locate, replace, and/or repair the defective joints, pipe, or valve until the leakage from the subsequent testing is within the specified allowance.

1. The allowable limits of infiltration or exfiltration for the entire system, or any portion thereof, shall not exceed a rate of 100 gallons per inch of inside pipe diameter per mile per 24 hours. No additional allowance will be made for residential service lines. The allowable limits of infiltration or exfiltration of manholes shall not exceed a rate of four gallons per manhole per 24 hours.
2. Any part or all of the system may be tested for infiltration or exfiltration, as directed by the Village. Prior to testing for infiltration, isolate the system to eliminate all external water sources. The system shall then be pumped out so that normal infiltration conditions at the time of testing are permitted.

3. The amounts of infiltration or exfiltration shall be determined by pumping into or out of calibrate drums or by other methods approved by the Village.

4. The exfiltration test will be conducted by filling the portion of the system being tested with water to a level equal to the lowest part of the manhole frame.

5. Tests shall be conducted on portions of the system not exceeding three manhole runs or maximum of 1,200 feet whichever is greater unless otherwise directed by the Village. Tests shall be run continuously for two (2) hours. Test duration may be reduced to less than 2 hours at the discretion of the Village inspector.

6. Where infiltration or exfiltration exceed the allowable limits specified herein, the defective pipe, joints, or other fault construction shall be located and repaired. If the defective portions cannot be located, these portions shall be removed and reconstructed to the extent necessary in order to conform to the specified allowable limits.

7. The Owner/Developer, at no expense to the Village, shall provide all labor, equipment, and materials and shall conduct all testing required, under the direction of the Village.

14.3.3 Compensating for Ground Water Pressure

1. Where ground water exists, install pipe nipple at same time sewer line is placed. Use ½-inch capped pipe nipple approximately 10-inches long. Make installation through manhole wall on top of the sewer line where line enters manhole.

2. Immediately before performing line leakage test, remove cap, clear pipe nipple with air pressure, and connect clear plastic tube to nipple. Support tube vertically and allow water to rise in tube. After water stops rising, measure height in feet of water over invert of pipe. Divide this height by 2.3/psi to determine ground water pressure to be used in line testing.

14.3.4 Deflection Testing: New Systems Only

1. A deflection test shall be required for all plastic sewer pipe installed. Pipeline deflection testing shall be conducted after the final backfill has been in place for at least 30 days.
2. A GO-NO-GO Mandrel shall be pulled through the pipe a minimum of 60 days after the final placement of backfill and superimposed loads.

3. The deflection of the sewer pipe shall not exceed 5% when tested with a Mandrel specifically designed for the installed size and type of pipe.

4. Pipe segments which fail the Mandrel test shall be removed and replaced and retested. Because the inside diameter of composite plastic piping varies from solid wall PVC pipe, equipment systems used to perform Mandrel tests shall be specifically designed for the pipe material being tested.

5. Mandrels that do not specifically state the size and type of piping for which the testing is applicable shall not be allowed.

6. The minimum Mandrel diameter shall be accordance with the following:

Table 14-1. Minimum Mandrel Diameters

<table>
<thead>
<tr>
<th>Material and Wall Construction</th>
<th>Nominal Pipe Size (inches)</th>
<th>Average I.D. (inches)</th>
<th>Minimum Mandrel Diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC–Solid (SDR 26)6</td>
<td>6</td>
<td>5.764</td>
<td>5.476</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>7.715</td>
<td>7.329</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.646</td>
<td>9.162</td>
</tr>
<tr>
<td>PVC–Solid (SDR 35)12</td>
<td>12</td>
<td>11.737</td>
<td>11.150</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.374</td>
<td>13.655</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17.629</td>
<td>16.748</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>20.783</td>
<td>19.744</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>23.381</td>
<td>22.120</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>26.351</td>
<td>25.033</td>
</tr>
<tr>
<td>PVC-Truss</td>
<td>8</td>
<td>7.750</td>
<td>7.363</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>9.750</td>
<td>9.263</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>11.790</td>
<td>11.201</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14.770</td>
<td>14.032</td>
</tr>
<tr>
<td>HDPE – Profile</td>
<td>18</td>
<td>18.000</td>
<td>17.100</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21.000</td>
<td>19.950</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24.000</td>
<td>22.800</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>27.000</td>
<td>25.650</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>30.000</td>
<td>28.500</td>
</tr>
</tbody>
</table>

7. Deflection testing shall be considered satisfactory if the mandrel can be pulled by hand through the pipe being tested. If the mandrel cannot be pulled through the pipe, replace or correct the pipe and re-test until testing is satisfactory. Any
pipe removed or corrected due to failing deflection testing shall also be re-tested for leakage.

14.4 Force Mains and Grinder Pump Service Lateral Connections

This section outlines the requirements for testing of wastewater force mains, including low pressure force mains and grinder pump service lateral connections.

14.4.1 Pressure and Leakage Testing: PVC and Ductile Iron Mains

1. All pipes shall be pressure tested in accordance with the current AWWA C-600 Standard with a no leakage tolerance.

2. Piping shall be slowly filled with water and all air expelled. Care shall be taken that all air valves are installed and open in the section being filled, and that the rate of filling does not exceed the venting capacity of the installed air valves.

3. Prior to the commencement of testing, service lateral and force main pipe sections shall be flushed to remove any debris that may remain inside the lateral or main. The flushing procedure should develop a water velocity of at least 2.5 feet per second and should result in at least a 100% turnover of the water in the service lateral or main being flushed.

4. After each service lateral has been installed, flushed, partially backfilled, and fully charged with water, a hydrostatic test pressure of 150 psi shall be applied for a 10 minute period and for such additional period as necessary for the Village to complete inspection of the line under test. Do not exceed the pipe manufacturer's suggested time duration for the test pressure. If defects are noted, repairs shall be made and the test repeated until all parts of the pipe line withstand the test pressure.

Apply leakage test pressure of 150 psi. Maintain pressure at a maximum variation of 5% during the entire leakage test. The duration of the leakage test shall be two (2) hours minimum, and for such additional time necessary for the Village to complete inspection of the line under test. Testing shall be conducted in accordance with the Hydrostatic Testing Requirements of AWWA C600 and C603. If the pressure drops more than 5 psi in one hour, the test shall be considered failed. The Owner is responsible for assuring that the cause of the test failure is determined, all necessary repairs have been made, and repeating the pressure test until the service lateral segment passes. Leakage measurements shall not be started until a constant test pressure has been established. The line leakage shall be measured by means of a water meter installed on the supply side of the pressure pump.
5. No leakage is allowed in exposed piping, buried piping with flanged, threaded, or welded joints or buried non-potable piping in conflict with potable water lines.

6. No more than 1,000’ of force main shall be tested at one time.

7. Tested sections of buried piping with slip-type or mechanical joints will not be accepted if the piping has a leakage rate in excess of the rate determined by the following formulas:

 a. AWWA C-600 Ductile Iron Mains: \[L = \frac{SDP}{133,200} \]

 b. AWWA Manual No. M-23 – PVC Main: \[L = \frac{NDP}{7,400} \]

 where

 \(L \) = the maximum permissible leakage rate, in gallons per hour, throughout the entire length of line being tested;

 \(S \) = length of line tested (in feet);

 \(D \) = nominal internal diameter (inches) of the pipe; and

 \(P \) = the square root of the actual pressure (psig) on all joints in the tested portion of the pipe line. This actual pressure shall be determine by finding the difference between the average elevation of the all tested pipe joints and the elevation of the pressure gauge and adding the difference in elevation head to the authorized test pressure.

14.4.2 Pressure and Leakage Testing: Polyethylene Mains

1. Piping shall be slowly filled with water and all air expelled. Care shall be taken that all air valves are installed and open in the section being filled, and that the rate of filling does not exceed the venting capacity of the installed air valves.

2. Subject pipeline shall be tested to a 4 hour expansion phase prior to commencing leakage testing. Pipeline expansion shall be accomplished by applying a hydrostatic test pressure of 150 psi. To compensate for the initial expansion of the pipeline, add sufficient make-up water at hourly intervals to return to the required test pressure. At the end of the fourth hour, the test phase is to commence.

3. At the conclusion of the fourth hour of the expansion phase, fill the pipeline again with makeup water to return to the test pressure. The test phase shall consist of a two or three hour pressure test as required by the Village. At the end of the test phase, measure the amount of makeup water required to return to the test pressure. The pipeline passes the pressure test if the makeup water required does not exceed the quantity identified in the table below:
Table 14-2. Allowable Makeup Water for 2-hr and 3-hr Pressure Testing

<table>
<thead>
<tr>
<th>Nominal Pipe Size (in)</th>
<th>Allowable Makeup Water (Gallons/100 ft of Pipeline)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Two Hour Test</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>12</td>
<td>2.3</td>
</tr>
<tr>
<td>16</td>
<td>3.3</td>
</tr>
<tr>
<td>18</td>
<td>4.3</td>
</tr>
<tr>
<td>20</td>
<td>5.5</td>
</tr>
<tr>
<td>24</td>
<td>8.9</td>
</tr>
</tbody>
</table>

4. If any defects or leaks are revealed, the leaks shall be corrected and the pipeline retested after a minimum 24 hour recuperation period between tests. Total testing conducted on a section of pipeline shall not exceed 8 hours within a 24 hour period.

5. All apparent leaks discovered within one year from the date of final approval of the work by the Owner shall be located and repaired by the Contractor, regardless of the total line leakage rate.

14.5 Manholes

The section outlines the requirements for testing manholes.

1. Plug inlets and outlets and file manhole with water to height determined by the Village. Bypass pump wastewater as required.

2. Where practical, a manhole may be filled 24 hours prior to the time of testing, if desired, to permit normal adsorption into the pipe walls to take place.

3. The leakage allowance in each manhole shall not exceed 0.1 gallon/hour per foot diameter of the manhole per foot of head above the invert.

4. Defective manholes shall be repaired based on plan submitted and approved by the Village. Retest as specified.

14.6 Infiltration Testing under Buildings

All building sewers which are installed in permeable material subject to high water tables from adjacent bodies of water may be tested by the infiltration test when allowed. Decisions in all cased shall be made by the Village.
Infiltration for each 100 feet of pipe shall not exceed the following:

<table>
<thead>
<tr>
<th>Sewer Pipe Size (in)</th>
<th>Maximum Allowable Infiltration (Gals/100-ft of Bldg Sewer/Hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>8</td>
<td>3.2</td>
</tr>
</tbody>
</table>

All equipment required to conduct the foregoing tests, including, but not limited to, plugs, hoses, blocking, air pumps, water and any other necessary equipment, shall be furnished by the Owner/Contractor.

The Contractor shall make a trial test of the installation and shall satisfy himself that the testing is acceptable before calling for an inspection. If an inspection fails to meet test requirements, then the Contractor shall locate and repair or replace all defective materials and workmanship. The type of repair and extent of repair which may be allowed shall be subject to the approval of the Village Building Department. After replacement or repairs have been made, the installation shall be retested until acceptable.

14.7 Salinity Testing

The section outlines the requirements for salinity testing and procedures for salinity testing.

1. Conduct field testing for salinity and submit documentation in accordance with the Florida Department of Environmental Protection (FDEP) FT 1300- Field Measurement of Salinity, dated March 31, 2008

2. Salinity testing shall be conducted at the pump station wet well.

3. Acceptable salinity concentration shall be less than 1 part per thousand (ppt).

4. Reporting of salinity testing shall include the following information:
 a. Date and time of testing
 b. Location(s) of testing
 c. Make and model of instrumentation used for salinity measurements
 d. Reference current date and method of calibration used for instrumentation
 e. Report results of salinity measurements taken

An example Certification Testing Letter and Report are provided as an Attachment at the end of this section.
14.7 Sequence of Testing

This section outlines the sequence of testing to be utilized for Village inspections. The sequence of testing shall be as follows:

1. Construction completed and all backfill and superimposed loads in place;
2. All landscaping over and around sewer appurtenances completed;
3. Manholes completed;
4. Lines thoroughly cleaned;
5. Visual inspections and testing ("flashing");
6. Mandrel testing;
7. Pressure testing;
8. Leakage testing – Pipe & Manhole; and
9. Salinity testing.

14.8 Reporting Requirements

1. A Condition Report, signed and sealed by an engineer licensed in the State of Florida, must be accepted by the Village before the final tie-in is completed.

2. The Condition Report shall include the following:
 a. A description of the facility’s buildings and ancillary facilities which are connected (or plan to be connected) to the Village wastewater collection system. Describe the location and the type of facilities located at the site.
 b. A written evaluation of the condition of the existing collection and transmission facilities located at the site – include all gravity mains, laterals, manholes, pump stations, treatment facilities, force mains, valving, control panels, etc. Include materials of construction, age, and general condition of each system component. Describe the condition of manhole(s) and wet well interiors.
 c. Note if any of the following were observed:
 i. Standing water
 ii. Inflow and/or infiltration
 iii. Evidence of root intrusion
 iv. Roof drains, yard drains and/or storm drains tied into the system
 v. Incorrectly sized, clogged or non-functional grease traps
 vi. Other noticeable or apparent problems and/or abnormalities
d. A drawing or sketch of the collection and/or transmission system tested; include all pipe lengths and pipe diameters. Include a typical cross section of existing manholes.

e. A testing report that identifies personnel present at the time of testing; times and dates of testing; the testing and inspection procedures conducted; results of the tests; and any calculations.

f. Results of testing conducted in accordance with Village testing requirements, indicating whether the test passed or failed. For sections of the system which failed, describe the course of action to correct deficiencies, and include the results of retesting. Include calculations and salinity testing results, include make and model of field instrumentation used, testing procedures referenced, and method of calibration used with field instrumentation.
January 17, 2014

Mr. Greg Tindle
Wastewater Program Manager
Village of Islamorada
86800 Overseas Highway
Islamorada, Florida 33609

Subject: Beacon Reef Condominium – 83201 Old Highway Islamorada, Florida 33036

Salinity Certification Letter

Dear Greg,

This letter was prepared in accordance to KLWTD Collection and Transmission System Testing & Reporting Requirements for salinity values.

AEC performed a salinity test at the above referenced location on January 16, 2014. The device used was YSI Eco-Sense EC300 hand held instrument specifically designed for the salinity measurement. This instrument is presently being utilized by your KLWTD.

The readings registered were 0.09 ppt at the Master Lift Station. The observed readings are within the acceptable range of salinity.

Please feel free to call us with any questions.

Sincerely,
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Inspection Type</th>
<th>Inspection Details</th>
<th>Initials</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[Test Item 1]</td>
<td>[Inspection Method 1]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>2</td>
<td>[Test Item 2]</td>
<td>[Inspection Method 2]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>3</td>
<td>[Test Item 3]</td>
<td>[Inspection Method 3]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>4</td>
<td>[Test Item 4]</td>
<td>[Inspection Method 4]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>5</td>
<td>[Test Item 5]</td>
<td>[Inspection Method 5]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>6</td>
<td>[Test Item 6]</td>
<td>[Inspection Method 6]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>7</td>
<td>[Test Item 7]</td>
<td>[Inspection Method 7]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>8</td>
<td>[Test Item 8]</td>
<td>[Inspection Method 8]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>9</td>
<td>[Test Item 9]</td>
<td>[Inspection Method 9]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>10</td>
<td>[Test Item 10]</td>
<td>[Inspection Method 10]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>11</td>
<td>[Test Item 11]</td>
<td>[Inspection Method 11]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>12</td>
<td>[Test Item 12]</td>
<td>[Inspection Method 12]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>13</td>
<td>[Test Item 13]</td>
<td>[Inspection Method 13]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>14</td>
<td>[Test Item 14]</td>
<td>[Inspection Method 14]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
<tr>
<td>15</td>
<td>[Test Item 15]</td>
<td>[Inspection Method 15]</td>
<td>[Details]</td>
<td>[Initials]</td>
<td>[Comments]</td>
</tr>
</tbody>
</table>

Overall Summary:
- All inspections were completed as per the specified methods.
- Initials are noted for each inspection to verify compliance.
- Comments section is left blank for future reference.
15.0 GREASE INTERCEPTOR POLICY

15.1 Introduction
Grease, oil and sand can pose a serious problem for any wastewater collection system if not properly and adequately handled. When discharged into a collection system, grease can result in operational and maintenance problems inside the collection system as well as in the downstream lift stations and force mains. Additionally, grease inhibits the biological processes at the wastewater treatment facility.

Consideration of frequent and adequate cleaning of interceptors is important. Interceptors shall be provided when the resulting discharge from a commercial building contains excessive amounts of grease, oil, lint, sand or other solids and substances that are harmful or hazardous when discharged into wastewater, or in the opinion of the Village Engineer the resultant discharge from such an occupancy will be detrimental to Village facilities and/or the KLWTD treatment facilities.

15.2 Contact Information
Questions regarding this program can be directed to wastewater@islamorada.fl.us or contact the Village Utility Department at 305-664-6455.

Written notifications must be delivered or mailed to the Village. Mailing information for the Village is as follows:

Islamorada, Village of Islands
Attn: Village Engineer
86800 Overseas Highway, 3rd Floor
Islamorada, Florida 33036

15.3 Policies Regarding FOG Removal Devices and Operation
1. Facilities generating fats, oils or grease (FOG) as a result of food manufacturing, processing, preparation or food service shall install, utilize and maintain grease interceptors. These facilities include but are not limited to restaurants, food manufacturers, food processors, hospitals, hotels, schools, nursing homes, and any other facility preparing, serving, or otherwise making food items for consumption. Interceptors shall not be required for residential users.

2. Facilities that have potential to discharge waste containing residual petroleum based oil and grease, but not limited to car washes, boat yards, automotive repair facilities shall install and maintain an approved oil/water separator.

3. Other facilities may be required by the Village to install an approved FOG removal device, as appropriate, for the handling and disposal of wastes containing fats, oils, or greases.
4. Garbage or food grinders are not permitted in any establishment that discharges to the wastewater collection system.

5. Grease, oil and sand interceptors shall be provided when, in the opinion of the Village, they are necessary for the proper handling of wastewater containing excessive amounts of grease, oil or sand, except that such interceptors shall not be required for residential users.

6. All interceptor units shall be of the type and capacity approved by the Village and shall be located in such a manner to be easily accessible for inspection, sampling, sludge measurements, cleaning and proper maintenance. FOG removal devices shall function properly and be maintained in good operating condition according to the Minimum Design Standards specified herein, the manufacturer’s guidelines, applicable codes, rules and regulations.

7. Grease interceptors shall be located in the facility’s wastewater service lateral between all fixtures which may introduce oil and/or grease into the collection system and connection with the wastewater collection system. The location of any newly installed interceptors or FOG removal device must be approved by the Village (or its representative) and the property Owner.

8. Interceptors or FOG removal devices shall be installed at the Owner's expense. Proper operation, maintenance and repair shall also be the Owner’s expense.

9. Interceptors shall be cleaned, and repaired regularly, as needed, by the Owner at the Owner’s expense.

10. Wastewater from sanitary facilities shall not be introduced into the FOG removal device.

11. In the maintaining of these interceptors, the Owner shall be responsible for the proper removal and disposal by appropriate means of the captured material and shall maintain records of the dates and means of disposal which are subject to review by the Village (or its representative). Any removal and hauling of the collected materials not performed by the Owner must be performed by a licensed waste disposal firm.

12. Existing food service establishments which do not have a grease interceptor or grease trap shall be required to install an interceptor or trap in compliance with the design specifications found in this policy within 90 days of approval of this program.

13. Existing food service establishments which have a grease interceptor or grease trap which is not in compliance with the design specifications found in this policy shall be required to upgrade or replace the existing interceptor or trap upon a significant change in the determinative factors for grease interceptor or grease trap sizing, including seating capacity increases, as stated in this policy and/or in the most current...
135

All interceptor units shall be of the type and capacity specified by a plumbing contractor or design professional as required by the Florida Building Code - Plumbing, Chapter 10 and approved by the Village Building Department. All existing food service establishments shall notify the Village of any changes in the grease interceptor or grease trap sizing factors described above within 60 days of the change(s). Interceptor upgrades may also be required if a grease waste discharge causes the accumulation of grease downstream of the food service establishment, reduces the capacity of the Village’s wastewater collection system, or causes adverse impacts on the operation of the wastewater collection system.

14. New food service establishments shall have a grease interceptor or grease trap of the type and capacity specified by the project design professional and approved by the plumbing official. Interceptors shall be located and designed to be easily accessible for inspection and maintenance and to assure compliance with (reference the section on maintenance). Grease traps are prohibited in new construction except where specifically authorized by the plumbing official.

15. Liquid wastes shall be discharged to the FOG removal device through the inlet pipe only and in accordance with the guidelines of this document, the manufacturer’s guidelines, and applicable codes.

16. No chemical, enzyme, live bacteria, or other grease cutter or additive may be introduced to the FOG removal device or to the food service facility for the purpose of emulsifying fats, oils or greases. Systems or additives that dissolved fats, oils or greases are prohibited.

17. No user may intentionally allow the direct discharge of fats, oils or grease into the wastewater collection system.

18. No person shall modify or use a FOG removal device for anything other than its intended use as defined in the guidelines of this document, the manufacturer’s guidelines, and applicable codes, rules, and regulations.

15.4 Design and Capacity
The requirements in this section supplement those provided in the Florida Building Code - Plumbing, Chapter 10 – Traps, Interceptors, and Separators.

Grease interceptors will be required on all food service establishments where any kind of food is prepared on site, or in the opinion of the Village Engineer the resultant discharge from such an occupancy will be detrimental to the Village wastewater collection and/or treatment facilities. Examples of business that will be required to have a grease interceptor include restaurants, delis, bakeries, sandwich shops, bars, clubs, hotel kitchens, schools, hospitals, etc.
When multiple interceptors are required, they must be installed in series. This requirement also applies to pre-existing restaurants (or any facility) that requires additional capacity to augment their existing interceptors. Any existing tanks plumbed in parallel must be modified to be routed in series, where possible.

Interceptors shall not be shared by multiple business locations. Each business locations shall be required to have its’ own interceptor(s) and its’ own separate plumbing to the interceptor(s). When the same establishment has multiple discharge points that require installation of interceptors at different locations, such as an institutional facility with a kitchen and a laundry, each use shall be provided with a separate plumbing and the require interceptor(s).

All equipment and plumbing fixtures in a food service facility that may introduce fats, oil or grease into the Village wastewater facilities must be connected through the grease interceptor, including but not limited to:

a) Scullery sinks (two or three compartment)
b) Pots and pan sinks
c) Floor drains in kitchens, walk-in coolers, and washing areas (not including public restrooms)
d) Pre-wash sinks
e) Dishwashers and other washing machines
f) Automatic hood wash units
g) Indoor garbage can washes

Grease interceptors shall be sized according to the formulas found in Table 1003.5.1 in the most current edition of the Florida Building Code - Plumbing, Chapter 10 – Traps, Interceptors, and Separators.

Use of the sizing formula for restaurants must include four (4) hours of additional time added to the time that the restaurant is open to the public to account for flow generated during preparation time and cleanup.

The minimum sized grease interceptor shall be 750 gallons, which will also apply to businesses where the sizing formula may not directly apply. The maximum capacity of a single grease interceptor shall be 1,250 gallons.

Oil/Water interceptors are required for all car washes and establishments where automobiles are services, greased, or repaired of where gasoline is dispensed.

Engine oil, transmission oil, coolant, solvents, additives, brake fluid and any other fluid collected in the process of serving vehicles/mechanical equipment shall not be discharged into the interceptor or other plumbing; the handling and disposal of these fluids shall be in compliance with the FDEP and Village rules and regulations.

Oil/Water interceptors are also required for outdoor hydraulic elevators where sump pumps and/or drains are proposed to discharge to the Village’s wastewater collection system. Indoor elevators may discharge to the Village wastewater collection system, only if an
approved alarm is installed that meets the most current edition of the Florida Building Code.

Oil/Water separators shall be sized based on the most current version of the *Florida Building Code Plumbing, Chapter 10 – Traps, Interceptors, and Separators, Section 1003.4.2.2*. The minimum sized oil separator shall be **750 gallons**.

Lint interceptors are required for all launder mats and all apartment complexes with a central laundry room with at least five (5) washing machines or more. Interceptors shall be equipped with a wire basket or similar device that’s removable for cleaning and prevents passage of solids ½-inch or larger in size, strings, rags, buttons, or other materials detrimental to the wastewater facilities. Lint interceptors shall be sized based on the following formula:

\[
\text{(number of washers)} \times \text{(cycles per hour)} \times (20 \text{ gallons per cycle}) \times (2.0 \text{ hours retention time}) \times (1.5 \text{ storage factor})
\]

The minimum sized lint interceptor shall be **750 gallons**.

All interceptor construction shall be concrete and its construction shall meet all applicable standards found in Chapter 64E-6, Florida Administrative Code.

All interceptors shall be provided with two (2) access manholes: one (1) over the inlet and one (1) over the outlet. Village approved traffic rated lids shall be installed with manhole covers to finished grade. For tanks sized 1,250 gallons or less, manhole frame and covers and inside openings in the top slab shall be manufactured by U.S. Foundry with a 24-inch minimum clear opening. For tanks larger than 1,250 gallons, manhole frame and covers and inside openings in the top slab shall be manufactured by U.S. Foundry, Model 230-AB-M, double ring and cover, and with a 30-inch minimum clear opening.

All manhole covers shall be marked with the lettering “GREASE”, “OIL” or “LINT”, as applicable.

Under the counter (flow-based) grease traps are not allowed.

15.5 Interceptors – Schedule of Pumping and Upgrades

All grease interceptors shall be pumped out at a minimum frequency of once every 30 days to ensure that sediment and floating materials do not accumulate and impair the efficiency of the interceptor. Some establishments may find it necessary to clean their interceptors more than once a month.

The Owner is responsible to ensure submittal to and receipt of all records by the Village. This responsibility may be handled by the Owner or a designated representative, such as property manager or ground lessee.

At a minimum, all grease interceptors must be cleaned at least quarterly. The standard pumping and cleaning requirements for a quarterly cleaning schedule are identified below:
a) The 1st quarterly cycle begins January 1st and runs through the last day of March of the same year. The records for the 1st quarter (January through the end of March) are required to be submitted to the Village Engineer within two (2) weeks from the last day of the month of March of the same year.

b) The 2nd quarterly cycle begins April 1st of the respective year and runs through the last day of June of the same year. The records for the 2nd quarter (April through the end of June) are required to be submitted to the Village Engineer within two (2) weeks from the last day of the month of June of the same year.

c) The 3rd quarterly cycle begins July 1st of the respective year and runs through the last day of September of the same year. The records for the 3rd quarter (July through September) are required to be submitted to the Village Engineer within two (2) weeks from the last day of the month of September of the same year.

d) The 4th quarterly cycle begins October 1st and runs through the last day of December of the same year. The records for the 4th quarter (October through December) are required to be submitted to the Village Engineer within two (2) weeks from the last day of December of the same year.

15.6 Interceptors – Schedule of Deep Cleaning
Grease interceptors shall be deep cleaned at least once a year or at a greater frequency as required to ensure proper operation. Pressure washing or craping walls, baffles, inlet and outlet tees are acceptable methods for deep cleaning.

Deep cleaning records shall be submitted to the Village Engineer (or designated representative) within two (2) weeks from the last day of the month of the quarter when the deep cleaning activity was performed.

In lieu of the deep cleaning requirements, a facility manager or property owner may submit information to the Village Engineer (or designated representative) for the purpose of demonstrating that deep cleaning of the interceptor is not required. Acceptable information to be considered for review by the Engineer shall include: photographs, actual measured depths of floatable materials, and measured depths of solid materials that have collected on the tank bottom. The deep cleaning requirement may only be waived by the Village Engineer or his designated representative. The waiver may only apply for the year in which the waiver was submitted and the deep cleaning requirement for the following year will be waived (if approved by the Village Engineer). Facilities may re-apply for annual waiver.

15.7 Grease Traps – Schedule of Cleaning
All grease traps shall be cleaned by a licensed liquid waste hauler prior to connecting with the Village’s wastewater system and regularly thereafter to maintain at least 50 percent of retention capacity. For properties with less than 12 EDUs, the cleaning interval shall be
every 180 days and for all other properties the cleaning interval shall be every 90 days, unless waived by the Village Engineer.

Existing under the sink grease traps must be cleaned twice weekly (at a minimum), or as frequently as required, to prevent the pass through of fats, oils, and grease into the wastewater collection system.

Cleaning records for these devices shall be maintained by the facility manager or the Owner and submitted on a monthly basis to the Village Engineer. Cleaning records must be received by the Village Engineer within two (2) weeks from the last day of the month reporting.

15.8 Pumping and Maintenance General Requirements

All food service establishments are required to utilize a grease waste hauler licensed by the Village to pump out the grease interceptor. The facility manager or designee must sign a service record provided by the grease waste hauler, verifying that the grease interceptor was serviced in accordance with the requirements of these regulations. The service record shall also document the condition of the grease interceptor. The food service establishment shall provide proof of ongoing service by a licensed grease waste hauler upon request by the Village.

Grease interceptor cleaning and maintenance shall include pumping the interceptor until empty, and cleaning the side walls, baffle walls and cross-pipes, and inlet and outlet pipes. Decanting, skimming, or back flushing is prohibited. A full pump-out is required. Pipes shall be immediately restored to their original design configuration should any damage occur. No emulsifiers, grease cutters, or other chemicals which can cause grease to pass through the interceptor may be used in the maintenance of grease interceptors or drain lines.

Grease interceptors shall be pumped at a frequency to maintain a grease layer of less than 6 inches on the top of the interceptor and a solids layer of less than 8 inches on the bottom of the interceptor. The measurement point for determination of the grease and solids layer shall be adjacent to the outlet pipe.

All grease interceptors shall be pumped at a minimum frequency of once every 30 days. More frequent pumping may be required to meet the article requirements above. The Village may also mandate more frequency pumping based on inspection results and the wastewater collection system capacity.

15.9 Disposal of Grease Waste and Solids

Fats, oils, grease, and solids removed from any fats, oil and grease removal device shall be disposed of at a County-approved facility authorized to accept such materials and dispose of said materials in accordance with the requirements of all federal, state and local regulations.
15.10 Spill Reporting
Upon knowledge or awareness of any accident, spill or other discharge of grease waste in excess of 20 gallons which has occurred within the Village, the grease waste hauler shall notify the Village within 24 hours, following procedures contained in the approved waste hauler’s permit.

The hauler shall be responsible for all clean-up activities for any spill which he was responsible.

All cleanup activities shall be performed in a manner approved by federal, state, and local agencies have jurisdiction.

15.11 Recordkeeping and Reporting
Records pertaining to interceptor maintenance and grease disposal shall be maintained by the responsible party for a period of at least three (3) years. Written records of inspections, pumping and disposal, cleaning, and maintenance activities shall be made available to the Village (or its designated representative) during normal working hours.

15.12 Non-Compliance
The Village may issue, but shall not be required, a written notice of violation and non-compliance to Owner and/or Customer stating the nature of the violation. The Owner and/or Customer shall have five (5) business days to schedule corrective action and the corrective action shall be completed within fifteen (15) days after date of the written notice. The Owner and/or Customer shall submit confirmation to the Village (or its authorized representative) that demonstrates compliance within five (5) business days of the date of the corrective action. The schedule shall govern unless an alternate schedule is approved by the Village or its authorized representative. The Village may have any pumping, cleaning, repairs, upgrades and/or device installations performed on behalf of a non-compliant Owner and/or Customer and charge all applicable costs and fees to an Owner and/or Customer, and shall have all rights and remedies for enforcement of this Grease Interceptor Policy as set forth in the Wastewater Utility Policy.

An Owner and/or Customer shall be considered in violation and out of compliance if any of the following occur:

a) The grease or solids collector/reservoir in a grease trap is more than 80 percent full.
b) The top layer of oil and grease exceeds 12 inches or the solids layer on the bottom of the interceptor exceeds 12 inches.
c) For a FOG removal device, if the retained oil leaks into the discharge, the captured oil reservoir is full or overflowing, or the containment area or vault is flooded with oil or water.
d) A facility is found to be contributing oil or grease in quantities sufficient to cause stoppages, overflows, or require increased maintenance in the wastewater collection system.
e) A facility is found to have discharge concentration of fats, oil and grease that exceeds 100 mg/L.

f) Any failure to properly maintain or repair the FOG removal device in accordance with the provisions stipulated herein.

g) Failure to complete, sign, and submit pumping activity reports, manifest forms, logs, receipts, or records within the established timeframe required by the Village.

h) Failure to maintain and provide access to logs, files, receipts, and records for inspection or monitoring as required by the Village or its designated representative during normal business hours.

i) Failure to provide the Village or its representative access to the FOG removal device for compliance inspections.

j) A facility that generates fats, oil and grease and does not have an approved FOG removal device.

15.13 Exemptions
It is Village's objective to avoid the introduction of fats, oils and grease into the wastewater collection system. However, there are conditions of occupancy where a grease interceptor may not be necessary. To qualify to an exemption from being required to install a grease interceptor, the following minimum criteria must be met:

a) No food preparation on-site;

b) The following equipment is prohibited from being on-site: oven, dishwasher, stove top cooking surfaces/griddle, fryers, ranges or any equipment used to cook food.
 1. Only pre-made food will be allowed to be heated onsite using the following equipment: toasters, microwaves, or sandwich presses.
 2. If serving food on-site, all food is served on paper/plastic plates using disposable utensils or in the pre-packaging which it was brought in on-site;
 3. All condiments are pre-packaged in individual servings.

If the above criteria cannot be initially met or if it is found that after an exemption has been given and subsequently observed that the above criteria are no longer being complied with, then a Village-approved grease interceptor shall be installed. Failure to install the interceptor will result in a violation of the Village’s Waste Water Utility Policy outlined in the Florida Administrative Code and may result in fines issued against the property.

Any exemptions provided are permanent, as long as these requirements are continually met.

15.14 Best Management Practices
Best management practices (BMPs) are standards which have been established and proven to be beneficial in the removal and reduction of grease and oil. Employees should be instructed in using BMPs with periodic training sessions to enhance their knowledge of oil and grease management. Training courses and exams for voluntary certification in industrial pretreatment are offered through the Florida Industrial Pretreatment Association (FIPA). These courses are open to industrial pretreatment professionals, laboratory
personnel, and water/wastewater operators. For upcoming dates on training courses, go to http://fipaonline.com/training.htm.

15.15 Definitions

Fats, Oils and Greases (FOG) – Organic polar compounds derived from animal and/or plant sources that contain multiple carbon chain triglyceride molecules. These substances are detectable and measurable using analytical test procedures outlined in 40 CFR 136, as may be amended from time to time. All are sometimes referred to herein as “grease” or “greases”.

FOG Removal Device – Inclusive of all devices constructed for the removal of fats, oils and grease, including, but not limited to, grease interceptors, grease traps, and oil/water separators.

Food Service Establishment – Establishments which prepare and/or package food for beverages for sale or consumption, on or off-site, with the exception of private residences. Food service establishments shall include, but are not limited to, food manufacturers, food packagers, restaurants, grocery stores, bakeries, lounges, hospitals, nursing homes, churches, schools and all other food service establishments not listed above.

Grease Interceptor, Grease Trap, or Grease Removal Device – An appurtenance designed to separate grease, oils and fats from wastewater flow with a containment area designed to collect, contain, or remove food wastes prior to discharge to the wastewater collection system.

a) **Grease Interceptor** – a vault with a rated flow of more than 50 gallons per minute (gpm), a minimum capacity of 750 gallons, and a maximum capacity of 1,250 gallons, normally installed underground, outside of a food service establishment. The capacity of the interceptor provides adequate residence time so that the wastewater has time to cool, allowing time for any grease to congeal and rise to the surface where it accumulates until the interceptor is cleaned.

b) **Grease Trap** – a smaller separator/containment box with a rated flow of 50 gpm or less located inside or outside the food service establishment. These are sometimes called under sink interceptors or under-the-counter grease traps.

c) **Grease Removal Device** – a grease trap than has an automatic mechanism to remove the separated grease, oils and fats.

Grease Waste Hauler – a business which collects and transports grease waste to a disposal facility that is in compliance with all applicable federal, state, and local laws and ordinances. A grease waste hauler may also provide other services to a food service establishment related to grease interceptor or grease trap maintenance.

Oil/Water Separator – a device used to separate oil from wastewater before being discharged into the wastewater collection system. This device shall be utilized at, but not limited to, mechanical repair and maintenance shops, boat yards, car washes and facilities.
where floor drains collect motor oil, transmission fluid, lubricating oil, grease, hydraulic oil, etc.

Wastewater Treatment Facility (WWTF) – a “treatment works” as defined by Section 212 of the Act (33 U.S.C. _ 1292). This definition includes any devices or systems used in the collection, storage, treatment, recycling, and reclamation of wastewater or industrial wastes of a liquid nature and any conveyances which convey wastewater to a treatment plant.
Appendix 15 – Forms and Logs

FATS, OILS AND GREASE WASTE DISPOSAL MANIFEST

Hauler Information
Name: ____________________________________ Telephone: ________________
Address: __________________________________
Vehicle Tag #: __________________________ Decal #: ________________
Tank Capacity (gals): _______________________

Generator Information
Owner Name: __
Business Name: __
Physical Address: __
Telephone: __
Device Type: __

Grease Trap/Interceptor Condition
1. Baffle intact and unobstructed? [] Yes [] Needs Repair ________________
2. Cover secure, accessible and in good condition? [] Yes [] Needs Repair ________________
3. Inlet/outlet pipes intake? [] Yes [] Needs Repair ________________
4. Wall & bottom in good condition? [] Yes [] Needs Repair ________________

Estimated Waste Thickness and Volume Removed from Trap/Interceptor Device:
Grease/Oil Cap: _______ Inches Bottom Solids: _______ Inches
Total Device Depth: _______ Inches Volume Pumped: ____________ Gallons

Certification: I certify that the above information is true and accurate. I further certify that the said device was completely pumped out and cleaned and materials were pumped back into the device. I understand that the falsification of this information may be a violation of the local code and ordinances and that I may be subject to enforcement action in accordance with the provisions set forth herein.

Customer Signature: ___________________________________ Date: ______________
Print Customer Name: __
Driver Signature: ___________________________________ Date: ______________
Print Driver Name: __
Discharge Approval: On the dates and times provided below, the wastes listed in this manifest were approved for discharged and were disposed by the hauler at the following permitted wastewater treatment facilities:

Facility #1
Facility Name: __
Waste Receipt Date: _______________ Waste Received Time: _______________
Invoice/Ticket #: ____________________
Operator Signature: __________________________________ Date: ______________
Print Operator Name: __

Facility #2
Facility Name: __
Waste Receipt Date: _______________ Waste Received Time: _______________
Invoice/Ticket #: ____________________
Operator Signature: __________________________________ Date: ______________
Print Operator Name: __

Comments: __
__
__
__
Appendix 15 – Forms and Logs

GREASE TRAP CLEANING AND MAINTENANCE REPORT

FACILITY NAME: ____________________________ **TELEPHONE:** ____________________________ **SUBMITTAL DATE:** ____________

FACILITY ADDRESS: __ **CONTACT NAME:** ____________________________

UTILITY ACCOUNT #: ____________________________ **GREASE REMOVAL DEVICE SIZE:** ____________________________

CLEANING COMPANY: ____________________________ **ADDRESS:** ____________________________ **TELEPHONE:** ____________

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>EMPLOYEE OR COMPANY</th>
<th>GALLONS REMOVED (Qty & Material Type)</th>
<th>METHOD OF DISPOSAL</th>
<th>COMMENTS/NOTED DEFECTS</th>
<th>WITNESS (Initials)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FATS, OILS AND GREASE REMOVAL DEVICE PROGRAM REGISTRATION FORM

<table>
<thead>
<tr>
<th>Utility Account #:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name:</td>
<td></td>
</tr>
<tr>
<td>Facility Address:</td>
<td></td>
</tr>
<tr>
<td>Contact Name:</td>
<td></td>
</tr>
<tr>
<td>Telephone #:</td>
<td>Alternate Phone#:</td>
</tr>
</tbody>
</table>

Mailing Address (if different from above)

Initial ONLY if your facility DOES NOT generate Fats, Oils, and Grease as described in the Village’s Minimum Design Standards, Section 15. PLEASE NOTE, YOU ARE STILL REQUIRED TO SIGN PAGE 2 OF THIS FORM.

<table>
<thead>
<tr>
<th>Seating Capacity (if applicable):</th>
<th>0-50:</th>
<th>51-100:</th>
<th>101-250:</th>
<th>>250:</th>
</tr>
</thead>
</table>

1. Chose the description that best described your facility type:
 - Fast Food Restaurant
 - Full Service Restaurant
 - Drive Thru Restaurant
 - Coffee Shop/Cafe
 - Bakery
 - Supermarket
 - Hospital
 - Hotel
 - Office
 - Marine Service
 - Marina
 - Auto Repair
 - Other (If Other please describe:)

2. Check each day your business is open:
 - Monday
 - Tuesday
 - Wednesday
 - Thursday
 - Friday
 - Saturday
 - Sunday

3. Check the meals served at your facility (if applicable);
 - Breakfast:
 - Lunch:
 - Dinner:
 - Snack/Coffee:
 - Food Prep Only:

4. Does this business have a grease removal device? Yes: No:
 If ‘No’, go to Question #6

5. Complete the following for EACH grease removal device at your business (If more than 1 device exists at your business, use additional sheets as necessary)

 FOG REMOVAL DEVICE INFORMATION
 - Indoor or Outdoor:
 - Size (gallons):
 - Location (underneath sink, in-ground, etc.):
 - Manufacturer:
 - How frequently is your FOG device cleaned and/or pumped?
 - How is grease disposed of?
 - If a Contractor or Pumper is utilized, please complete the following:
 - Company Name:
 - Address:
 - Telephone #:
6. Chose each of the items listed below that are present at your facility:

<table>
<thead>
<tr>
<th>Item</th>
<th>How many?</th>
<th>Item</th>
<th>How many?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fryer</td>
<td></td>
<td>Grill</td>
<td></td>
</tr>
<tr>
<td>Oven</td>
<td></td>
<td>Tilt Kettle</td>
<td></td>
</tr>
<tr>
<td>3-Bay Pot Sink</td>
<td></td>
<td>2-Bay Pot Sink</td>
<td></td>
</tr>
<tr>
<td>Single Bay Pot Sink</td>
<td></td>
<td>Pre-Rinse Sink</td>
<td></td>
</tr>
<tr>
<td>Dishwasher</td>
<td></td>
<td>Mop Sink</td>
<td></td>
</tr>
<tr>
<td>Work Station</td>
<td></td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

If “Other” is selected, please describe:

7. If your facility has grills/ovens, which type of exhaust cleaning system is used to clean the filters:

<table>
<thead>
<tr>
<th>Automatic Cleaning System:</th>
<th>Manual Cleaning System:</th>
</tr>
</thead>
</table>

8. If you manually clean hood filters, where are they cleaned?

Onsite

Offsite (by a contractor)

9. If cleaning hood filters on-site, described the process in detail, e.g. location, method, frequency, etc.

10. If fats, oils and grease are stored on the premises, described where materials is stored:

11. Do you use additives associated with your grease containment device, floor drains, sewer lines, etc. to assist with cleaning them:

Yes

No

12. If you answered “yes” to Question #11, please describe the additives used:

13. If you answered “yes” to Question #11, please describe where additives are used:

By signing below you acknowledge that the information that is provided herein is factual to the best of your knowledge. You also acknowledge that you have read and understand the Village’s Grease Interceptor Policy that is available to down at www.islamorada.fl.us. You are also aware that you must notify the Village Building Department within 30 days if any of the information provided on this Registration Form changes. Questions regarding the program and its requirements should be directed to the Village Building Department at 305-664-6434.

Signature: Date:

Print Name:

Please complete this form in its entirety and forward via email, fax or mail to:
Islamorada, Village of Islands
Utility Department
Attention: Grease Trap Maintenance Program
86800 Overseas Highway
Islamorada, Florida 33036
Fax: 305-664-6464
Email: sandy.skeel@islamorada.fl.us
SECTION 16

NOTIFICATION/APPLICATION FOR CONSTRUCTING A DOMESTIC WASTEWATER COLLECTION/TRANSMISSION SYSTEM

DEP FORM 62-602.300(8)(a)
NOTIFICATION/APPLICATION FOR CONSTRUCTING A DOMESTIC WASTEWATER COLLECTION/TRANSMISSION SYSTEM

PART I—GENERAL

Subpart A: Permit Application Type

<table>
<thead>
<tr>
<th>Permit Application Type (mark one only)</th>
<th>EDUs Served</th>
<th>Application Fee*</th>
<th>“X”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you applying for an individual permit for a domestic wastewater collection/transmission system? Note: an EDU is equal to 3.5 persons. Criteria for an individual permit are contained in Rule 01-504.000(7), F.A.C.</td>
<td>≥ 10</td>
<td>$500</td>
<td>☐</td>
</tr>
<tr>
<td>< 10</td>
<td>$300</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>Is this a Notice of Intent to use the general permit for wastewater collection/transmission systems? Criteria for qualifying for a general permit are contained in Rule 02-004.000(9), F.A.C. Projects not meeting the criteria in Rule 02-004.000(9), F.A.C., must apply for an individual permit</td>
<td>N/A</td>
<td>$250</td>
<td>☐</td>
</tr>
</tbody>
</table>

*Note: Each non-contiguous project (i.e., projects that are not interconnected or are not located on adjacent streets or in the same neighborhood) requires a separate application and fee.

Subpart B: Instructions

(1) This form shall be completed for all domestic wastewater collection/transmission system construction projects as follows:
 • If this is a Notice of Intent to use the general permit, this notification shall be submitted to the Department at least 30 days prior to initiating construction.
 • If this is an application for an individual permit, the permit must be obtained prior to initiating construction.

(2) One copy of the completed form shall be submitted to the appropriate DEP district office or delegated local program along with the appropriate fee, and one copy of the following supporting documents. Checks should be made payable to the Florida Department of Environmental Protection, or the name of the appropriate delegated local program.
 • If this is a Notice of Intent to use the general permit, attach a site plan or sketch showing the size and approximate location of new or altered gravity sewers, pump stations and force mains; showing the approximate location of manholes and isolation valves; and showing how the proposed project ties into the existing or proposed wastewater facilities. The site plan or sketch shall be signed and sealed by a professional engineer registered in Florida.
 • If this is an application for an individual permit, one set of plans and specifications shall be submitted with this application, or alternatively an engineering report shall be submitted. Plans and specifications and engineering report shall be prepared in accordance with the applicable provisions of Chapters 10 and 20 of Recommended Standards for Wastewater Facilities. The plans and specifications or engineering report shall be signed and sealed by a Professional Engineer registered in Florida.

(3) All information shall be typed or printed in ink. Where attached sheets (or other technical documentation) are utilized in lieu of the blanks provided, indicate appropriate cross references on the form. For Items (1) through (4) of Part II of this application form, if an item is not applicable to your project, indicate “NA” in the appropriate space provided.
PART II – PROJECT DOCUMENTATION

(1) Collection/Transmission System Permittee

<table>
<thead>
<tr>
<th>Name:</th>
<th>Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company Name:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>City:</th>
<th>State:</th>
<th>Zip:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telephone:</th>
<th>Fax:</th>
<th>Email:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) General Project Information

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Location: County:</th>
<th>City:</th>
<th>Section:</th>
<th>Township:</th>
<th>Range:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project Description and Purpose (including pipe length, range of pipe diameter, total number of manholes, and total number of pump stations):

Estimated date for: Start of construction: Completion of construction:

Connections to existing system or treatment plant:

(3) Project Capacity

A = Type of Unit

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B = Number of Units

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C = Population per Unit

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D = Total Population

<table>
<thead>
<tr>
<th>(Columns B × C)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E = Per Capital Flow

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = Total Average Daily Flow

<table>
<thead>
<tr>
<th>(Columns D × E)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G = Peak hour flow

(4) Pump Station Data (attached additional sheets as necessary)

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Maximum</th>
<th>Average</th>
<th>Minimum</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Flow to the Station (GPD)

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Average</th>
<th>Minimum</th>
<th>Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5) Collection/Transmission System Design Information

A. This information must be completed for all projects by the applicant’s professional engineer, and if applicable, those professional engineers in other disciplines who assisted with the design of the project.

If this project has been designed to comply with the standards and criteria listed below, the engineer shall initial in ink before the standards or criteria. If any of the standards or criteria do not apply to this project or if this project has not been designed to comply with the standards or criteria, mark “X” before the appropriate standard or criteria and provide an explanation, including any applicable rule references, in (5)B. below.
Note, if the project has not been designed in accordance with the standards and criteria set forth in Rules 62-604.400(1) and (2), F.A.C., an application for an individual permit shall be submitted. However, if Rules 62-604.400(1) and (2), F.A.C., specifically allow for another alternative that will result in an equivalent level of reliability and public health protection, the project can be constructed using the general permit.

General Requirements:

1. The project is designed based on an average daily flow of 100 gallons per capita plus wastewater flow from industrial plants and major institutional and commercial facilities unless water use data or other justification is used to better estimate the flow. The design includes an appropriate peaking factor, which covers I/I contributions and non-wastewater connections to those service lines. [RSFW 11.243]

2. Procedures are specified for operation of the collection/transportation system during construction. [RSFW 20.15]

3. The project is designed to be located on public right-of-ways, land owned by the permittee, or easements and to be located no closer than 100 feet from a public drinking water supply well and no closer than 75 feet from a private drinking water supply well; or documentation is provided in Part II.(5)B., showing that another alternative will result in an equivalent level of reliability and public health protection. [62-604.400(1)(b) and (c), F.A.C.]

4. The project is designed with no physical connections between a public or private potable water supply system and a sewer or force main and with no water pipes passing through or coming into contact with any part of a sewer manhole. [RSFW 38.1 and 48.5]

5. The project is designed to preclude the deliberate introduction of storm water, surface water, groundwater, roof runoff, subsurface drainage, swimming pool drainage, air conditioning system condensate water, non-contact cooling water except as provided by Rule 62-610.668(1), F.A.C., and sources of uncontaminated wastewater, except to augment the supply of reclaimed water in accordance with Rule 62-610.472(3)(c), F.A.C. [62-604.400(1)(d), F.A.C.]

6. The project is designed so that all new or relocated, buried sewers and force mains, are located in accordance with the separation requirements from water mains and reclaimed water lines of Rules 62-604.400(2)(g)(h) and (i) and (3), F.A.C. Note, if the criteria of Rules 62-604.400(2)(g) 4. or (c)(3), F.A.C., are used, describe in Part II.C. alternative construction features that will be provided to afford a similar level of reliability and public health protection. [62-604.400(2)(g), (h), and (i) and (3), F.A.C.]

Gravity Sewers:

7. The project is designed with no public gravity sewer conveying raw wastewater less than 8 inches in diameter. [RSFW 33.1]

8. The design considers buoyancy of sewers, and appropriate construction techniques are specified to prevent flotation of the pipe where high groundwater conditions are anticipated. [RSFW 33.3]

9. All sewers are designed with slopes to give mean velocities, when flowing full, of not less than 2.0 feet per second, based on Manning’s formula using an “n” value of 0.015; or if it is not practicable to maintain these minimum slopes and the depth of flow will be 0.3 of the diameter or greater for design average flow, the owner of the system has been notified that additional sewer maintenance will be required. The pipe diameter and slope are selected to obtain the greatest practical velocities to minimize solids deposition problems. Oversized sewers are not specified to justify flatter slopes. [RSFW 33.41, 33.42, and 33.43]

10. Sewers are designed with uniform slope between manholes. [KWSF 33.44]

11. Where velocities greater than 15 fps are designed, provisions to protect against displacement by erosion and impact are specified. [RSFW 33.45]

12. Sewers on 20% slopes or greater are designed to be anchored securely with concrete, or equal, anchors spaced as follows: not over 36 feet center to center on grades 20% and up to 35%; not over 24 feet center to center on grades 35% and up to 50%; and not over 16 feet center to center on grades 50% and over. [RSFW 33.46]

DEF Form 62-604.400(a)
Effective: November 6, 2003

Page 3 of 11

December 2, 2014
13. Sewers: 24 inches or less are designed with straight alignment between manholes. Where curvilinear sewers are proposed for sewers greater than 24 inches, the design specifies compression joints; ASTM or specific pipe manufacturer’s maximum allowable pipe joint deflection limits are not exceeded; and curvilinear sewers are limited to simple curves which start and end at manholes. [RSWF 33.5]

14. Suitable couplings complying with ASTM specifications are required for joining dissimilar materials. [RSWF 33.7]

15. Sewers are designed to prevent damage from superimposed loads. [RSWF 33.7]

16. Appropriate specifications for the pipe and methods of bedding and backfilling are provided so as not to damage the pipe or its joints, impede cleaning operations and reduce future tapping, nor create excessive side fill pressures and evaluation of the pipe, nor seriously impair flow capacity. [RSWF 33.81]

17. Appropriate deflection tests are specified for all flexible pipe. Testing is required after the final backfill has been in place for at least 30 days to permit stabilization of the soil-pipe system. Testing requirements specify: 1) no pipe shall exceed a deflection of 5%, 2) using a rigid ball or mandrel for the deflection test with a diameter not less than 95% of the base inside diameter or average inside diameter of the pipe, depending on which is specified in the ASTM specification, including the appendix, to which the pipe is manufactured; and 1) performing the test without mechanical pulling devices. [RSWF 33.85]

18. Leakage tests are specified requiring that: 1) the leakage infiltration or infiltration does not exceed 200 gallons per inch of pipe diameter per mile per day for any section of the system; 2) infiltration or infiltration tests be performed with a minimum positive head of 2 feet; and 3) air tests, as a minimum, conform to the test procedure described in ASTM C-828 for clay pipe, ASTM C-824 for concrete pipe, ASTM F-1417 for plastic pipe, and for other materials appropriate test procedures. [RSWF 33.93, 33.94, and 33.95]

19. If an inverted siphon is proposed, documentation of its need is provided in Part II.C. Inverted siphons are designed with: 1) at least two barrels, 2) a minimum pipe size of 6 inches, 3) necessary appurtenances for maintenance, convenient flushing, and cleaning equipment; and 4) inlet and discharge structures having adequate clearances for cleaning equipment, inspection, and flushing. Design provides sufficient head and appropriate pipe sizes to secure velocities of at least 3.0 fps for design average flows. The inlet and outlet are designed so that the design average flow may be diverted to one barrel, and that either barrel may be cut out of service for cleaning. [RSWF 35]

Manholes

20. The project is designed with manholes at the end of each line, at all changes in grade, size, or alignment; at all intersections; and at distances not greater than 400 feet for sewers 15 inches or less and 500 feet for sewers 18 inches to 30 inches, except in the case where adequate modern cleaning equipment is available at distances not greater than 600 feet. [RSWF 34.1]

21. Design requires drop pipes to be provided for sewers entering manholes at elevations of 24 inches or more above the manhole invert. Where the difference in elevation between the incoming sewer and the manhole invert is less than 24 inches, the invert is designed with a fillet to prevent solids deposition. Inside drop connections (when necessary) are designed to be secured to the interior wall of the manhole and provide access for cleaning. Design requires the entire outside drop connection be encased in concrete. [RSWF 34.2]

22. Manholes are designed with a minimum diameter of 48 inches and a minimum access diameter of 22 inches. [RSWF 34.3]

23. Design requires that a bench be provided on each side of any manhole channel when the pipe diameter(s) are less than the manhole diameter and that no lateral sewer, service connection, or drop manhole pipe discharges onto the surface of the bench. [RSWF 34.5]

24. Design requires: 1) manhole lift holes and grade adjustment rings be sealed with non-shrinking mortar or other appropriate material; 2) inlet and outlet pipes be joined to the manhole with a gasketed flexible watertight connection or another watertight connection arrangement that allows differential settlement of the pipe and manhole wall; and 3) watertight manhole covers be used wherever the manhole tops may be flooded by street runoff or high water. [RSWF 34.6]

25. Manhole inspection and testing for watertightness or damage prior to placing into service are specified. Air testing, if specified for concrete sewer manholes, conforms to the test procedures described in ASTM C-1344. [RSWF 34.7]
26. Electrical equipment specified for use in manholes is consistent with Item 46 of this checklist. [RSWF 34.9]

Stream Crossings

27. Sewers and force mains entering or crossing streams are designed to be constructed of ductile iron pipe with mechanical joints or so they will remain watertight and free from changes in alignment or grade. Appropriate materials which will not readily erode, cause siltation, damage pipe during placement, or corrode the pipe are specified to backfill the trench. [RSWF 36.21 and 48.5]

28. Stream crossings are designed to incorporate valves or other flow regulating devices (which may include pump stations) on the shoreline or at such distances from the shoreline to prevent discharge in the event the line is damaged. [62-604.400(2)(h)5., F.A.C.]

29. Sewers and force mains entering or crossing streams are designed at a sufficient depth below the natural bottom of the stream bed to protect the line. At a minimum, the project is designed with subaqueous lines to be buried at least three feet below the design or actual bottom, whichever is deeper, of a canal and other dredged waterway or the natural bottom of streams, rivers, estuaries, bays, and other natural water bodies; or if it is not practicable to design the project with less than three-foot minimum cover, alternative construction features (e.g. a concrete apron, sleeve, or some other properly engineered device to ensure adequate protection of the line) are described in Part II.C. [62-604.400(2)(h)1., F.A.C., and RSWF 36.11]

30. Specifications require permanent warning signs be placed on the banks of canals, streams, and rivers clearly identifying the nature and location (including depth below design or natural bottom) of subaqueous crossings and suitable fixed signs be placed at the shore, for subaqueous crossings of lakes, bays, and other large bodies of water, and in any area where anchoring is normally expected. [62-604.400(2)(k)2., F.A.C.]

31. Provisions for testing the integrity of subaqueous lines are specified. [62-604.400(2)(k)4., F.A.C.]

32. Supports are designed for all joints in pipes utilized for aerial crossings and to prevent overturning and settlement. Expansion jointing is specified between above ground and below ground sewers and force mains. The design considers the impact of floodwaters and debris. [RSWF 37 and 48.5]

33. Aerial crossings are designed to maintain existing or required navigational capabilities within the waterway and to reserve riparian rights of adjacent property owners. [62-604.400(2)(k)3., F.A.C.]

Pump Stations

34. In areas with high water tables, pump stations are designed to withstand flotation forces when empty. When citing the pump station, the design considers the potential for damage or interruption of operation because of flooding. Pump station structures and electrical and mechanical equipment are designed to be protected from physical damage by the 100-year flood. Pump stations are designed to remain fully operational and accessible during the 25-year flood unless lesser flood levels are appropriate based on local considerations, but not less than the 10-year flood. [62-604.400(2)(a), F.A.C.]

35. Pump stations are designed to be readily accessible by maintenance vehicles during all weather conditions. [RSWF 41.2]

36. Wet well and pump station piping is designed to avoid operational problems from the accumulation of grit. [RSWF 41.3]

37. Dry wells, including their superstructure, are designed to be completely separated from the wet well. Common walls are designed to be gas tight. [RSWF 42.21]

38. The design includes provisions to facilitate removing pumps, motors, and other mechanical and electrical equipment. [RSWF 42.22]
39. The design includes provisions for: 1) suitable and safe means of access for persons wearing self-contained breathing apparatus are provided to dry wells, and to wet wells; 2) stairway access to wet wells more than 4 feet deep containing either bar screens or mechanical equipment requiring inspection or maintenance; 3) for built-in-place pump stations, a stairway to the dry well with rest landings at vertical intervals not to exceed 12 feet; 4) for factory-built pump stations over 15 feet deep, a rigidly fixed landing at vertical intervals not to exceed 10 feet unless a manlift or elevator is provided; and 5) where a landing is used, a suitable and rigidly fixed barrier to prevent an individual from falling past the intermediate landing to a lower level. If a manlift or elevator is provided, emergency access is included in the design. [RSWF 42.25]

40. Specified construction materials are appropriate under conditions of exposure to hydrogen sulfide and other corrosive gases, greases, oils, and other constituents frequently present in wastewater. [RSWF 42.25]

41. Except for low-pressure grinder or STEP systems, multiple pumps are specified, and each pump has an individual intake. Where only two units are specified, they are of the same size. Specified units have capacity such that, with any unit out of service, the remaining units will have capacity to handle the design peak hourly flow. [RSWF 42.31 and 42.36]

42. Bar racks are specified for pumps handling wastewater from 30 inch or larger diameter sewers. Where a bar rack is specified, a mechanical host is also provided. The design includes provisions for appropriate protection from clogging for small pump stations. [RSWF 42.322]

43. Pumps handling raw wastewater are designed to pass spheres of at least 3 inches in diameter. Pump suction and discharge openings are designed to be at least 4 inches in diameter. [RSWF 42.33] (Note: this provision is not applicable to grinder pumps.)

44. The design requires pumps be placed such that under normal operating conditions they will operate under a positive suction head, unless pumps are suction-lift pumps. [RSWF 42.34]

45. The design requires: 1) pump stations be protected from lightning and transient voltage surges; and 2) pump stations be equipped with lightning arrestors, surge capacitors, or other similar protection devices and phase protection. Note, pump stations serving a single building are not required to provide surge protection devices if not necessary to protect the pump station. [62-604.400(2)(b), F.A.C.]

46. The design requires: 1) electrical systems and components (e.g., motors, lights, cables, conduits, switch boxes, control circuits, etc.) in raw wastewater wet wells, or in enclosed or partially enclosed spaces where hazardous concentrations of flammable gases or vapors may be present, comply with the National Electrical Code requirements for Class I Group D, Division 1 locations; 2) electrical equipment located in wet wells be suitable for use under corrosive conditions; 3) each flexible cable be provided with a watertight seal and separate strain relief; 4) a fixed disconnect switch located above ground be provided for the main power feed for all pump stations; 5) electrical equipment exposed to weather to meet the requirements of weatherproof equipment NEMA 3R or 4; 6) a 110 volt power receptacle to facilitate maintenance be provided inside the control panel for pump stations that have control panels outdoors, and 7) ground fault interruption protection be provided for all outdoor outlets. [RSWF 42.35]

47. The design requires a pump pump equipped with dual check valves be provided in dry wells to remove leakage or drainage with discharge above the maximum high water level of the wet well. [RSWF 42.37]

48. Pump station design capacities are based on the peak hourly flow and are adequate to maintain a minimum velocity of 2 feet per second in the force main. [RSWF 42.38]

49. The design includes provisions to automatically alternate the pumps in use. [RSWF 42.4]

50. The design requires: 1) suitable shut-off valves be placed on the suction line of dry pit pumps; 2) suitable shut-off and check valves be placed on the discharge line of each pump (except on screw pumps); 3) a check valve be located between the shut-off valve and the pump; 4) check valves be suitable for the material being handled; 5) check valves be placed on the horizontal portion of discharge piping (except for ball checks, which may be placed in the vertical run); 6) all valves be capable of withstanding normal pressure and water hammer, and 7) all shut-off and check valves be accessible from the floor level and accessible for maintenance. [RSWF 42.5]

51. The effective volume of wet wells is based on design average flows and a filling time not to exceed 30 minutes unless the facility is designed to provide flow equalization. The pump manufacturer’s duty cycle recommendations were utilized in selecting the minimum cycle time. [RSWF 42.62]

52. The design requires wet well floors have a minimum slope of 1 to 1 to the hopper bottom and the horizontal area of hopper bottoms be no greater than necessary for proper installation and function of the inlet. [RSWF 42.63]
53. For covered wet wells, the design provides for air displacement to the atmosphere, such as an inverted "j" tube or other means. [RSWF 42.64]

54. The design provides for adequate ventilation all pump stations; mechanical ventilation where the dry well is below the ground surface, permanently installed ventilation if screens; or mechanical equipment requiring maintenance or inspection are located in the wet well. Pump stations are designed with no interconnection between the wet well and dry well ventilation systems. [RSWF 42.71]

55. The design requires all intermittently operated ventilation equipment to be interconnected with the respective pit lighting system and the manual lighting/ventilation switch to override the automatic controls. [RSWF 42.73]

56. The design requires the fan wheels of ventilation systems be fabricated from non-sparking material and automatic heating and dehumidification equipment be provided in all dry wells. [RSWF 42.74]

57. If wet well ventilation is continuous, design provides for at least 12 complete 100% fresh air changes per hour; if wet well ventilation is intermittent, design provides for at least 10 complete 100% fresh air changes per hour; and design requires air to be forced into wet wells by mechanical means rather than solely exhausted from the wet well. [RSWF 42.75]

58. If dry well ventilation is continuous, design provides at least 8 complete 100% fresh air changes per hour; and dry well ventilation is intermittent, design provides for at least 5 complete 100% fresh air changes per hour, unless a system of two speed ventilation with an initial ventilation rate of 30 changes per hour for 10 minutes and automatic switch over to 6 changes per hour is used to conserve heat. [RSWF 42.76]

59. Pump stations are designed and located on the site to minimize adverse effects from odors, noise, and lighting. [62-604.400(2)(c), F.A.C.]

60. The design requires pump stations be enclosed with a fence or otherwise designed with appropriate features to discourage the entry of animals and unauthorized persons. Posting of an unobstructed sign made of durable weather resistant material at a location visible to the public with a telephone number for a point of contact in case of emergency is specified. [62-604.400(2)(d), F.A.C.]

61. The design requires suitable devices for measuring wastewater flow at all pump stations. Indicating, totalizing, and recording flow measurement are specified for pump stations with a 1200 gpm or greater design peak flow. [RSWF 42.8]

62. The project is designed with no physical connections between any potable water supplies and pump stations. If a potable water supply is brought to a station, reduced-pressure principle backflow-prevention assemblies are specified. [RSWF 42.9 and 62-555.30(4), F.A.C.]

Additional Items to be Completed for Suction-Lift Pump Stations:

63. The design requires all suction-lift pumps to be either self-priming or vacuum-priming and the combined total of dynamic suction-lift at the "pump off" elevation and required net positive suction head at design operating conditions not to exceed 22 feet. For self-priming pumps, the design requires: 1) pumps be capable of rapid priming and repriming at the "lead pump on" elevation with self-priming and repriming accomplished automatically under design operating conditions; 2) suction piping not to exceed the size of the pump suction or 25 feet in total length; and 3) priming lift at the "lead pump on" elevation to include a safety factor of at least 4 feet from the maximum allowable priming lift for the specific equipment at design operating conditions. For vacuum-priming pump stations, the design requires dual vacuum pumps capable of automatically and completely removing air from the suction-lift pumps and the vacuum pumps be adequately protected from damage due to wastewater. [RSWF 43.1]

64. The design requires: 1) suction-lift pump equipment compartments to be above grade or offset and to be effectively isolated from the wet well to prevent a hazardous and corrosive sewer atmosphere from entering the equipment compartment; 2) wet well access not to be through the equipment compartment and to be at least 24 inches in diameter; 3) gasketed replacement plates be provided to cover the opening to the wet well for pump units to be removed for service; and 4) no valving be located in the wet well. [RSWF 43.2]
Additional Items to be Completed for Submersible Pump Stations

65. Submersible pumps and motors are designed specifically for raw wastewater use, including totally submerged operation during a portion of each pump cycle and to meet the requirements of the National Electrical Code for such units. Provisions for detecting shaft seal failure or potential seal failure are included in the design. [RSWF 44.1]

66. The design requires submersible pumps be readily removable and replaceable without dewatering the wet well or disconnecting any piping in the wet well. [RSWF 44.2]

67. In submersible pump stations, electrical supply, control, and alarm circuits are designed to provide strain relief; to allow disconnection from outside the wet well; and to protect terminals and connectors from corrosion by location outside the wet well or through use of watertight seals. [RSWF 44.31]

68. In submersible pump stations, the design requires the motor control center to be located outside the wet well, readily accessible, and protected by a conduit seal or other appropriate measures meeting the requirements of the National Electrical Code, to prevent the atmosphere of the wet well from gaining access to the control center. If a seal is specified, the motor can be removed and electrically disconnected without disturbing the seal. The design requires control equipment exposed to weather to meet the requirements of weatherproof equipment NEMA 3R or 4. [RSWF 44.32]

69. In submersible pump stations, the design requires: 1) pump motor power cords be flexible and serviceable under conditions of extra hard usage and to meet the requirements of the National Electrical Code standards for flexible cords in wastewater pump stations; 2) ground fault interruption protection be used to de-energize the circuit in the event of any failure in the electrical integrity of the cable; and 3) power cord terminal fittings be corrosion-resistant and constructed in a manner to prevent the entry of moisture into the cable, provided with strain relief appurtenances, and designed to facilitate field connecting. [RSWF 44.33]

70. In submersible pump stations, the design requires all shut-off and check valves be located in a separate valve pit. Provisions to remove or drain accumulated water from the valve pit are included in the design. [RSWF 44.4]

Emergency Operations for Pump Stations

71. Pump stations are designed with an alarm system which activates in cases of power failure, pump pump failure, pump failure, unauthorized entry, or any cause of pump station malfunction. Pump station alarms are designed to be telemetered to a facility that is manned 24 hours a day. If such a facility is not available and a 24-hour holding capacity is not provided, the alarm is designed to be telemetered to utility offices during normal working hours and to the home of the responsible person(s) in charge of the lift station during off-duty hours. Note, if an audio-visual alarm system with a self-contained power supply is provided in lieu of a telemetered system, documentation is provided in Part II.C showing an equivalent level of reliability and public health protection. [RSWF 45]

72. The design requires emergency pumping capability be provided for all pump stations. For pump stations that receive flow from one or more pump stations through a force main or pump stations discharging through pipes 12 inches or larger, the design requires unattended pumping capability be provided, including an in-place emergency generator. Where portable pumping and/or generating equipment or manual transfer is used, the design includes sufficient storage capacity with an alarm system to allow time for detection of pump station failure and transportation and connection of emergency equipment. [62-604.400(2)(a)(1) and 2., F.A.C., and RSWF 46.423 and 46.433]

73. The design requires: 1) emergency standby systems to have sufficient capacity to start up and maintain the total rated running capacity of the station, including lighting, ventilation, and other auxiliary equipment necessary for safety and proper operation; 2) special sequencing controls be provided to start pump motors unless the generating equipment has capacity to start all pumps simultaneously with auxiliary equipment operating; 3) a airer from the force main with rapid connection capabilities and appropriate valving be provided for all pump stations to hook up portable pumps; and 4) all pump station reliability design features be compatible with the available temporary service power generating and pumping equipment of the authority responsible for operation and maintenance of the collection/transfer system. [62-604.400(2)(a)(3), F.A.C., and RSWF 46.431]

74. The design provides for emergency equipment to be protected from operation conditions that would result in damage to the equipment and from damage at the restoration of regular electrical power. [RSWF 46.411, 46.417, and 46.432]
75. For permanently-installed internal combustion engines, underground fuel storage and piping facilities are designed in accordance with applicable state and federal regulations, and the design requires engines to be located above grade with adequate ventilation of fuel vapor and exhaust gases. [RWSF 46.414 and 46.415]

76. For permanently-installed or portable engine-driven pumps are used, the design includes provisions for manual start-up. [RWSF 46.422]

77. Where independent substations are used for emergency power, each separate substation and its associated transmission lines is designed to be capable of starting and operating the pump station at its rated capacity. [RWSF 46.44]

Force Mains

78. Force mains are designed to maintain, at design pumping rates, a cleansing velocity of at least 2 feet per second. The minimum force main diameter specified for raw wastewater is not less than 4 inches. [RWSF 48.1]

79. The design requires: 1) branches of intersecting force mains be provided with appropriate valves such that one branch may be shut down for maintenance and repair without interrupting the flow of other branches; and 2) substations on force mains, placed in anticipation of future connections, be equipped with a valve to allow such connection without interruption of service. [62-604.440(2)(c), F.A.C.]

80. The design requires air relief valves be placed at high points in the force main to prevent air locking. [RWSF 48.2]

81. Specified force main pipe and joints are equal to water main strength materials suitable for design conditions. The force main, compression blocking, and station piping are designed to withstand water hammer pressures and stresses associated with the cycling of wastewater pump stations. [RWSF 48.4]

82. When the Hazen and Williams formula is used to calculate friction losses through force mains, the value for “C” is 100 for unlined iron or steel pipe for design. For other smooth pipe materials, such as PVC, polyethylene, lined ductile iron, the value for C does not exceed 110 for design. [RWSF 48.61]

83. Where force mains are constructed of material, which might cause the force main to be confused with potable water mains, specifications require the force main to be clearly identified. [RWSF 48.7]

84. Leakage tests for force mains are specified including testing methods and leakage limits. [RWSF 48.8]

* RWSF = Recommended Standards for Wastewater Facilities (1997) as adopted by rule 62-604.300(5)(c), F.A.C.

B. Explanation for Requirement or Standards Marked “X” in II(5)A. Above (Attach additional sheets if necessary)

PART III - CERTIFICATIONS

1. **Collection/Transmission System Permit**

 I, the undersigned owner or authorized representative of , am fully aware that the statements made in this application for a construction permit are true, correct and complete to the best of my knowledge and belief. I agree to furnish the design engineer or another professional engineer registered in Florida, to conduct on-site observation of construction, to prepare a certification of completion of construction, and to review record drawings for adequacy. Further, I agree to provide an appropriate operation and maintenance manual for the facilities pursuant to Rule 62-604.500(4), F.A.C., and to retain a professional engineer registered in Florida to examine (or to prepare if desired) the manual. I am fully aware that Department approval must be obtained before this project is placed into service for any purpose other than testing for leaks and testing equipment operation.

 Signed: ________________________________
 Date: ________________________________
 Name: ________________________________
 Title: ________________________________

 * Attach a letter of authorization.
(2) Owner of Collection/Transmission System

I, the undersigned owner or authorized representative* of ___________________________ certify that we will be the Owner of this project after it is placed into service. I agree that we will operate and maintain this project in a manner that will comply with applicable Department rules. Also I agree that we will promptly notify the Department if we sell or legally transfer ownership of this project.

Signed: ___________________________ Date: ___________________________
Name: ___________________________ Title: ___________________________
Company Name: ___________________________
Address: ___________________________
City: __________________ State: __________________ Zip: __________________
Telephone: __________________ Fax: __________________ Email: __________________

* Attach a letter of authorization.

(3) Wastewater Facility Serving Collection/Transmission System**

If this is a Notice of Intent to use a general permit, check here:

☐ The undersigned owner or authorized representative* of the ___________________________ wastewater facility hereby certifies that the above referenced facility has the capacity to receive the wastewater generated by the proposed collection system; is in compliance with the capacity analysis report requirements of Rule 62-600-405, F.A.C.; is not under a Department order associated with effluent violations or the ability to treat wastewater adequately; and will provide the necessary treatment and disposal as required by Chapter 403, F.S., and applicable Department rules.

If this is an application for an individual permit, check one:

☐ The undersigned owner or authorized representative* of the ___________________________ wastewater facility hereby certifies that the above referenced facility has and will have adequate reserve capacity to accept the flow from this project and will provide the necessary treatment and disposal as required by Chapter 403, F.S., and applicable Department rules.

☐ The undersigned owner or authorized representative* of the ___________________________ wastewater facility hereby certifies that the above referenced facility currently does not have, but will have prior to placing the proposed project into operation, adequate reserve capacity to accept the flow from this project and will provide the necessary treatment and disposal as required by Chapter 403, F.S., and applicable Department rules.

Name of Treatment Plant Serving Project: ___________________________
County: __________________ City: __________________
DEP permit number FL: __________________ Expiration Date: __________________
Maximum monthly average daily flow over the last 12 month period: __________ MGD Month(s) used: __________________
Maximum three-month average daily flow over the last 12 month period: __________ MGD Month(s) used: __________________
Current permitted capacity: __________ MGD □ AADF □ MADF □ TMADF
Current outstanding flow commitments (including this project) against treatment plant capacity: ___________________________

Signed: ___________________________ Date: ___________________________
Name: ___________________________ Title: ___________________________
Address: ___________________________
City: __________________ State: __________________ Zip: __________________
Telephone: __________________ Fax: __________________ Email: __________________

* Attach a letter of authorization.
** If there is an intermediate collection system, a letter shall be attached certifying that the intermediate downstream collection system has adequate reserve capacity to accept the flow from this project.
(d) Professional Engineer Registered in Florida

I, the undersigned professional engineer registered in Florida, certify that I am in responsible charge of the preparation and production of engineering documents for this project; that plans and specifications for this project have been completed; that I have expertise in the design of wastewater collection/transmission systems; and that, to the best of my knowledge and belief, the engineering design for this project complies with the requirements of Chapter 62-504, F.A.C.

<table>
<thead>
<tr>
<th>Name:</th>
<th>Florida Registration No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name:</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>City:</td>
<td>State:</td>
</tr>
<tr>
<td>Telephone:</td>
<td>Fax:</td>
</tr>
<tr>
<td>Portion of Project for Which Responsible:</td>
<td></td>
</tr>
</tbody>
</table>

(Affix Seal)
Signed:
Date:

Name:
Florida Registration No:
Company Name:
Address:
City: State: Zip:
Telephone: Fax: Email
Portion of Project for Which Responsible:

(Affix Seal)
Signed:
Date:

Name:
Florida Registration No:
Company Name:
Address:
City: State: Zip:
Telephone: Fax: Email
Portion of Project for Which Responsible:

(Affix Seal)
Signed:
Date:

Name:
Florida Registration No:
Company Name:
Address:
City: State: Zip:
Telephone: Fax: Email
Portion of Project for Which Responsible:

DIF Form 62-654.000(b)(a)
Effective November 6, 2014

Page 11 of 11
17.0 PACKAGE PLANT ABANDONMENT AND DECOMMISSIONING REQUIREMENTS

This section provides requirements and information pertaining to the abandonment and decommissioning of package treatment plants located in the Village. All testing, decommissioning procedures, demolition and abandonment of shall be performed by the Owner/Developer in the presence of Village inspection personnel and certified by the Owner/Developer’s Engineer. The Owner/Developer shall be responsible for furnishing all necessary labor, equipment, and water required for all testing and inspections.

17.1 General Decommissioning Protocol

1. The Owner shall contact the Village and its wastewater operator, Severn Trent Environmental Services (STES), to schedule a date and time to initiate the decommissioning of the package treatment plant facilities.

2. No sludge or solids from the package treatment plant facilities may be disposed of into the Village’s collection facilities. Only clear effluent liquids after solids (sludge) have settled to the tank bottom will be accepted.

3. The clear effluent liquid discharged into the Village’s collection system must meet a salinity standard of less than 1 part per thousand with a neutral pH (7.0).

4. Blowers at the package treatment plant shall be turned off at least 12 hours prior to the transfer of clear effluent into the Village’s collection system.

5. Once the maximum quantity of sludge has settled and a maximum depth of clear liquid effluent has been obtained, the Owner shall contact the Village and its wastewater operator (STES).

6. STES staff, with Village representatives present, will arrive onsite and perform the following tasks:
 a. Measure the clear liquid effluent level using a sludge judge and provide markings on the tank indicating the acceptable zone of clear liquid can be transferred into the Village’s collection system.
 b. Take a salinity measurement of the clear effluent.
 c. Take a pH measurement of the clear effluent.

7. STES representatives shall be on site to monitor the transfer operation and to verify that only clear liquids are being transferred to the Village’s collection system. The STES representative may stop the transfer operation if solids begin to appear in the clear effluent being transferred to the Village’s collection system.

8. The transfer operation shall occur in 8 hour increments between the working hours of 8:00 am and 5:00 pm, Monday through Friday, taking two or more days if required.

9. The Owner (or Designated Contractor) of the package treatment plant shall be responsible for disposal of settled plant solids and sludge at a licensed disposal facility.
17.2 Owner Responsibilities

1. The Owner of the package treatment plant facilities is responsible for submitting a Facility Abandonment Plan to FDEP 60 days prior to abandonment.
2. The Owner is required to obtain the FDEP permit to abandon Class V injection well(s). Abandonment of the injection wells shall be performed by a Florida licensed water well driller.
3. The Owner is required to properly abandon the package treatment plant facilities in accordance with the submitted Facility Abandonment Plan and ensuring public health and safety.
4. The Owner shall notify the Village of commencement of demolition prior to beginning construction.
5. The Owner shall notify the Village of completion of demolition at least 10 working days prior to the expected completion date to permit the scheduling of final inspection.
6. The Owner shall validate that the demolition conforms to the submitted Facility Abandonment Plan and all changes have been documented on as-built drawings submitted to the Village.
7. The Owner shall schedule and successfully pass a final inspection of the facility with the Village and its designated representatives.
8. The Owner shall provide any additional plan review documentation required by the Village to complete the review process.
9. The Owner shall provide the Village with a satisfactory response to all review comments issued by the Village to complete the plan and permit review process for the abandonment of the facilities within 30 days of the request for information or a connection permit to the Village’s collection system will be denied.
18.0 STANDARD NOTES FOR COMMERCIAL PERMIT PLAN SUBMITTALS

18.1 General Notes – the following general notes shall be included on commercial design plan submittals for the Village for permitting:

a. Existing and new collector system infrastructure shall be tested in accordance with Village’s Minimum Design Standards and the KLWTD testing requirements per the KLWTD/Village of Islamorada Inter-Local Agreement.

b. All final testing shall be made in the presence of a representative from the Village. A minimum 72-hour notice shall be provided to the Village and KLWTD prior to the initiation of all final system testing.

c. All testing required by the Village, KLWTD and FDEP shall be paid for by the Owner/Contractor.

d. Commercial service laterals with multiple connections shall be green 6-inch diameter or larger.

e. All gravity sanitary sewer lines shall be green PVC SDR 26, ASTM D-3034. In locations where a minimum cover of 3.0 feet cannot be maintained, AWWA C-900 or C-905 Green PVC DR-25, Class 100 or concrete encasement shall be used.

f. Minimum slope for gravity laterals 4-6 inches in diameter shall be 1/8-inch per foot (1.04%).

18.2 Low Pressure Sewers – the following notes shall be included on permit plan submittals including grinder pump stations and/or connections with the Village Low Pressure Force Main (LPFM) or the Conveyance Force Main (CFM):

a. All grinder pump stations shall be designed to prohibit inflow for the 10-year storm event and shall be designed to withstand the effects of buoyancy under submerged conditions (assuming the basin is empty). Ballast calculations shall be included with the Engineering Design Report submitted to the Village for review and approval.

b. All grinder pump service laterals shall be constructed with a minimum 24 inches of cover.

c. All grinder pump service laterals shall be tested after the grinder system is completely installed. Prior to the commencement of testing, service lateral pipe sections should first be flushed to remove any debris that may remain inside
the lateral. The flushing procedure should develop a water velocity of at least 2.5 feet per second and should result in at least 100% turnover of the water in the service lateral.

d. All testing must be witnessed and testing reports must be signed and sealed by a Florida licensed professional engineer.

e. All final testing shall be performed in the presence of a representative from the Village. The Village shall be notified at least 72 hours (not including holidays or weekends) in advance of any work which is to be inspected or tested. Tests performed in the absence of a Village representative shall be considered invalid and shall be repeated at the Owner's expense.