Fully Integrated Proximity Sensor with Infrared Emitter, I²C Interface, and Interrupt Function

DESCRIPTION

The VCNL3020 is a fully integrated proximity sensor. Fully integrated means that the infrared emitter is included in the package. It has 16 bit resolution. It includes a signal processing IC and features standard I²C communication interface. It features an interrupt function.

APPLICATIONS

- Proximity sensor for mobile devices (e.g. smart phones, touch phones, PDA, GPS) for touch screen locking, power saving, etc.
- Proximity / optical switch for consumer, computing and industrial devices and displays

FEATURES

- Package type: surface mount
- Dimensions (L x W x H in mm): 4.90 x 2.40 x 0.83
- Integrated modules: infrared emitter (IRED), proximity sensor (PD), and signal conditioning IC
- Interrupt function
- Supply voltage range V_DD: 2.5 V to 3.6 V
- Supply voltage range IR anode: 2.5 V to 5 V
- Communication via I²C interface
- I²C bus H-level range: 1.7 V to 5 V
- Floor life: 72 h, MSL 4, acc. J-STD-020
- Low stand by current consumption: 1.5 μA
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

PROXIMITY FUNCTION

- Built-in infrared emitter and photo-pin-diode for proximity function
- 16 bit effective resolution for proximity detection range ensures excellent cross talk immunity
- Programmable LED drive current from 10 mA to 200 mA in 10 mA steps
- Excellent ambient light suppression by signal modulation
- Proximity distance up to 200 mm

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>OPERATING RANGE (mm)</th>
<th>OPERATING VOLTAGE RANGE (V)</th>
<th>I²C BUS VOLTAGE RANGE (V)</th>
<th>LED PULSE CURRENT (1) (mA)</th>
<th>OUTPUT CODE</th>
<th>ADC RESOLUTION</th>
<th>PROXIMITY / AMBIENT LIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCNL3020</td>
<td>1 to 200</td>
<td>2.5 to 3.6</td>
<td>1.7 to 5</td>
<td>10 to 200</td>
<td>16 bit, I²C</td>
<td>16 bit / -</td>
<td></td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>VOLUME (1)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCNL3020-GS08</td>
<td>Tape and reel</td>
<td>MOQ: 3300 pcs</td>
<td>4.90 mm x 2.40 mm x 0.83 mm</td>
</tr>
<tr>
<td>VCNL3020-GS18</td>
<td>-</td>
<td>MOQ: 13 300 pcs</td>
<td></td>
</tr>
</tbody>
</table>

Sensor starter kit (2)

- MOQ: 1 pc

Notes

1. MOQ: minimum order quantity
2. A sensor starter kit is available, along with an add-on demo board for each of the sensors.

Please visit www.vishay.com/moreinfo/vcnldemokit/ for more information.

Contact any catalog distributor or a local Vishay sales representative to purchase the sensor starter kit and contact sensorstechsupport@vishay.com to receive an add-on sensor board.
ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td></td>
<td>V_{DD}</td>
<td>-0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Operation temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-25</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>-25</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>T_{amb} ≤ 25 °C</td>
<td>P_{tot}</td>
<td></td>
<td>50</td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>T_{j}</td>
<td></td>
<td>100</td>
<td>°C</td>
</tr>
</tbody>
</table>

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage V_{DD}</td>
<td></td>
<td></td>
<td>2.5</td>
<td>3.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply voltage IR anode</td>
<td></td>
<td></td>
<td>2.5</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I^2C Bus H-level range</td>
<td></td>
<td></td>
<td>1.7</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>INT H-level range</td>
<td></td>
<td></td>
<td>1.7</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>INT low voltage</td>
<td></td>
<td></td>
<td>3 mA</td>
<td>0.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
<td></td>
<td>Standby current, no IRED-operation</td>
<td>1.5</td>
<td>2</td>
<td>μA</td>
</tr>
<tr>
<td>Current consumption proximity mode incl. IRED (averaged)</td>
<td>2 measurements per second, IRED current 20 mA</td>
<td>5</td>
<td>μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 measurements per second, IRED current 20 mA</td>
<td>520</td>
<td>μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 measurements per second, IRED current 200 mA</td>
<td>35</td>
<td>μA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 measurements per second, IRED current 200 mA</td>
<td>4</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I^2C clock rate range</td>
<td></td>
<td>f_{SCL}</td>
<td></td>
<td>3400</td>
<td>kHz</td>
<td></td>
</tr>
</tbody>
</table>

CIRCUIT BLOCK DIAGRAM

![Circuit Block Diagram](image)

Note
- nc must not be electrically connected
- Pads 6 and 7 are only considered as solder pads

TEST CIRCUIT

![Test Circuit Diagram](image)

Kodak gray card (18 % reflectivity)

VCNL3020 IRED Proxi-PD

30 mm x 30 mm

d > 20 mm
BASIC CHARACTERISTICS (T_{\text{amb}} = 25 \, ^{\circ}\text{C}, \text{unless otherwise specified})

Fig. 1 - Idle Current vs. Ambient Temperature

![Graph showing idle current vs. ambient temperature](image1)

Fig. 2 - Idle Current vs. V_{DD}

![Graph showing idle current vs. V_{DD}](image2)

Fig. 3 - Proximity Value vs. Distance

![Graph showing proximity value vs. distance](image3)

Fig. 4 - Forward Current vs. Temperature

![Graph showing forward current vs. temperature](image4)

Fig. 5 - Relative Radiant Intensity vs. Wavelength

![Graph showing relative radiant intensity vs. wavelength](image5)

Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

![Graph showing relative radiant intensity vs. angular displacement](image6)
APPLICATION INFORMATION

VCNL3020 is a cost effective solution of proximity sensor with I²C bus interface. The standard serial digital interface is easy to access “Proximity Signal” without complex calculation and programming by external controller. Beside the digital output also a flexible programmable interrupt pin is available.

1. Application Circuit

![Application Circuit Diagram]

Notes

- The interrupt pin is an open drain output. The needed pull-up resistor may be connected to the same supply voltage as the application controller and the pull-up resistors at SDA/SCL. Proposed value R2 should be >1 kΩ, e.g. 10 kΩ to 100 kΩ. Proposed value for R3 and R4, e.g. 2.2 kΩ to 4.7 kΩ, depend also on the I²C bus speed.
 For detailed description about set-up and use of the interrupt as well as more application related information see AN: “Designing VCNL3020 into an Application”.
- IR_Cathode needs no external connection. The needed connection to the driver is done internally.
2. I2C Interface

The VCNL3020 contains seventeen 8 bit registers for operation control, parameter setup and result buffering. All registers are accessible via I2C communication. Figure 13 shows the basic I2C communication with VCNL3020.

The built in I2C interface is compatible with all I2C modes (standard, fast, and high speed).

I2C H-level range = 1.7 V to 5 V.

Please refer to the I2C specification from NXP for details.

Receive Byte

<table>
<thead>
<tr>
<th>S</th>
<th>Slave address</th>
<th>Wr</th>
<th>Register address</th>
<th>A</th>
<th>Data byte</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
</table>

Send Byte

| S | Slave address | Wr | Register address | A | Data byte | A | P |

Device Address

The VCNL3020 has a fix slave address for the host programming and accessing selection. The predefined 7 bit I2C bus address is set to 0010 011 = 13h. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to 0010 011x = 26h for write, 27h for read.

Register Addresses

VCNL3020 has seventeen user accessible 8 bit registers. The register addresses are 80h (register #0) to 90h (register #16).

Register Functions

Register #0 Command Register

Register address = 80h

The register #0 is for starting proximity measurements. This register contains a flag bit for data ready indication.

TABLE 1 - COMMAND REGISTER #0

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>config_lock</td>
<td>n/a</td>
<td>prox_data_rdy</td>
<td>n/a</td>
<td>prox_od</td>
<td>n/a</td>
<td>prox_en</td>
<td>selftimed_en</td>
</tr>
</tbody>
</table>

Description

- **config_lock**: Read only bit. Value = 1
- **prox_data_rdy**: Read only bit. Value = 1 when proximity measurement data is available in the result registers. This bit will be reset when one of the corresponding result registers (reg #7, reg #8) is read.
- **prox_od**: R/W bit. Starts a single on-demand measurement for proximity. Result is available at the end of conversion for reading in the registers #7(HB) and #8(LB).
- **prox_en**: R/W bit. Enables periodic proximity measurement
- **selftimed_en**: R/W bit. Enables state machine and LP oscillator for self timed measurements; no measurement is performed until the corresponding bit is set

Note

- Beside **prox_en** first **selftimed_en** needs to be set. On-demand measurement mode is disabled if **selftimed_en** bit is set. For the **selftimed_en** mode changes in reading rates (reg #2) can be made only when b0 (**selftimed_en** bit) = 0.
Register #1 Product ID Revision Register
Register address = 81h. This register contains information about product ID and product revision.
Register data value of current revision = 21h.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product ID</td>
<td>Revision ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product ID</td>
<td>Read only bits. Value = 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revision ID</td>
<td>Read only bits. Value = 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Register #2 Rate of Proximity Measurement
Register address = 82h.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>Rate of Proximity Measurement (no. of measurements per second)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximity rate</td>
<td>R/W bits.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>000 - 1.95 measurements/s (DEFAULT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>001 - 3.90625 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 - 7.8125 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011 - 16.625 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 - 31.25 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - 62.5 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 - 125 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 - 250 measurements/s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
- If self_timed measurement is running, any new value written in this register will not be taken over until the mode is actually cycled.

Register #3 LED Current Setting for Proximity Mode
Register address = 83h. This register is to set the LED current value for proximity measurement.
The value is adjustable in steps of 10 mA from 0 mA to 200 mA.
This register also contains information about the used device fuse program ID.

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuse prog ID</td>
<td>IR LED current value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuse prog ID</td>
<td>Read only bits. Information about fuse program revision used for initial setup/calibration of the device.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR LED current value</td>
<td>R/W bits. IR LED current = Value (dec.) x 10 mA. Valid Range = 0 to 20d. e.g. 0 = 0 mA, 1 = 10 mA, ..., 20 = 200 mA (2 = 20 mA = DEFAULT) LED Current is limited to 200 mA for values higher as 20d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Register #7 and #8 Proximity Measurement Result Register
Register address = 87h and 88h. These registers are the result registers for proximity measurement readings. The result is a 16 bit value. The high byte is stored in register #7 and the low byte in register #8.

TABLE 5 - PROXIMITY RESULT REGISTER #7

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
Read only bits. High byte (15:8) of proximity measurement result

TABLE 6 - PROXIMITY RESULT REGISTER #8

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
Read only bits. Low byte (7:0) of proximity measurement result

Register #9 Interrupt Control Register
Register address = 89h.

TABLE 7 - INTERRUPT CONTROL REGISTER #9

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int count exceed</td>
<td>n/a</td>
<td>INT_PROX_ready_EN</td>
<td>n/a</td>
<td>INT_THRES_EN</td>
<td>INT_THRES_SEL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

- **Int count exceed**: R/W bits. These bits contain the number of consecutive measurements needed above/below the threshold
 - 000 - 1 count = DEFAULT
 - 001 - 2 count
 - 010 - 4 count
 - 011 - 8 count
 - 100 -16 count
 - 101 - 32 count
 - 110 - 64 count
 - 111 - 128 count

- **INT_PROX_ready_EN**: R/W bit. Enables interrupt generation at proximity data ready
- **INT_THRES_EN**: R/W bit. Enables interrupt generation when high or low threshold is exceeded
- **INT_THRES_SEL**: R/W bit. 0: thresholds are applied to proximity measurements
Register #10 and #11 Low Threshold
Register address = 8Ah and 8Bh. These registers contain the low threshold value. The value is a 16 bit word. The high byte is stored in register #10 and the low byte in register #11.

| TABLE 8 - LOW THRESHOLD REGISTER #10 |
|-----------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Description | | | | | | | |
| R/W bits. High byte (15:8) of low threshold value |

Register #12 and #13 High Threshold
Register address = 8Ch and 8Dh. These registers contain the high threshold value. The value is a 16 bit word. The high byte is stored in register #12 and the low byte in register #13.

| TABLE 10 - HIGH THRESHOLD REGISTER #12 |
|-----------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Description | | | | | | | |
| R/W bits. High byte (15:8) of high threshold value |

| TABLE 11 - HIGH THRESHOLD REGISTER #13 |
|-----------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| Description | | | | | | | |
| R/W bits. Low byte (7:0) of high threshold value |

Register #14 Interrupt Status Register
Register address = 8Eh. This register contains information about the interrupt status indicates if high or low going threshold exceeded.

| TABLE 12 - INTERRUPT STATUS REGISTER #14 |
|-----------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| n/a | | n/a | int_prox_ready | n/a | int_th_low | int_th_hi |
| Description | | | R/W bit. Indicates a generated interrupt for proximity | | R/W bit. Indicates a low threshold exceed | R/W bit. Indicates a high threshold exceed |

Note
• Once an interrupt is generated the corresponding status bit goes to 1 and stays there unless it is cleared by writing a 1 in the corresponding bit. The int pad will be pulled down while at least one of the status bit is 1.
Register #15 Proximity Modulator Timing Adjustment
Register address = 8Fh.

TABLE 13 - PROXIMITY MODULATOR TIMING ADJUSTMENT #15

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation delay time</td>
<td>Proximity frequency</td>
<td>Modulation dead time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
- **Modulation delay time**: R/W bits. Setting a delay time between IR LED signal and IR input signal evaluation. This function is for compensation of delays from IR LED and IR photo diode. Also in respect to the possibility for setting different proximity signal frequency. Correct adjustment is optimizing measurement signal level. (DEFAULT = 0)
- **Proximity frequency**: R/W bits. Setting the proximity IR test signal frequency. The proximity measurement is using a square IR signal as measurement signal. Four different values are possible:
 - 00 = 390.625 kHz (DEFAULT)
 - 01 = 781.25 kHz
 - 10 = 1.5625 MHz
 - 11 = 3.125 MHz
- **Modulation dead time**: R/W bits. Setting a dead time in evaluation of IR signal at the slopes of the IR signal. (DEFAULT = 1)
 - This function is for reducing of possible disturbance effects.
 - This function is reducing signal level and should be used carefully.

Note
- The settings for best performance will be provided by Vishay. With first samples this is evaluated to:
 - delay time = 0; dead time = 1 and proximity frequency = 0. With that register#15 should be programmed with 1 (= default value).

Register #16 Ambient IR Light Level Register
Register address = 90h.
This register is not intended to be used by customer.

3. IMPORTANT APPLICATION HINTS AND EXAMPLES

3.1 Receiver standby mode
In standby mode the receiver has the lowest current consumption of about 1.5 μA. In this mode only the I²C interface is active. This is always valid, when there are no proximity measurement demands executed. Also the current sink for the IR-LED is inactive, so there is no need for changing register #3 (IR LED current).

3.2 Data Read
In order to get a certain register value, the register has to be addressed without data like shown in the following scheme. After this register addressing, the data from the addressed register is written after a subsequent read command.

![Send Byte/Receive Byte Protocol](Fig. 11 - Send Byte/Receive Byte Protocol)

The stop condition between these write and read sequences is not mandatory. It works also with a repeated start condition.

Note
- For reading out 2 (or more) subsequent registers like the result registers, it is not necessary to address each of the registers separately. After one read command the internal register counter is increased automatically and any subsequent read command is accessing the next register.
Example: read register “Proximity Result Register” #7 and #8:
Addressing: command: 26h, 87h (VCNL3020_I2C_Bus_Write_Adr., Proximity Result Register #7 [87])
Read register #7: command: 27h, data (VCNL3020_I2C_Bus_Read_Adr., {High Byte Data of Proximity Result register #7 [87]})
Read register #8: command: 27h, data (VCNL3020_I2C_Bus_Read_Adr., {Low Byte Data of Proximity Result register #8 [88]})

PACKAGE DIMENSIONS in millimeters

![Package Dimensions Diagram]

Drawing refers to following types: VCNL3020

Not indicated tolerances ± 0.1
TAPE AND REEL DIMENSIONS in millimeters

Reel size “Y”
GS 08 φ180±2 = 3300 Pcs.
GS 18 φ330±2 = 13000 Pcs.

Unreel direction
Tape position coming out from reel

Dimensions in mm
Not indicated tolerances ±0.1

Label posted here

Parts mounted
Empty Leader 400mm min.
100mm min. with cover tape

Leader and trailer tape:
Empty Trailer 200mm min.

Direction of pulling out

X 2:1

1.05
0.3

175

2.6
2
4
4

φ1.5

5.1

12.0±3
5.5

Drawing-No.: 9.700-5387.01-4
Issue: prel; 22.11.11

For technical questions, contact: sensorstechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 72 h

Conditions: $T_{\text{amb}} < 30 \, ^\circ\text{C}$, RH < 60 %

Moisture sensitivity level 4, acc. to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+5 °C), RH < 5 %.

Fig. 12 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

- **Temperature (°C)**: 255 °C, 240 °C, 217 °C, max. 260 °C
- **Time (s)**: max. 120 s, max. 30 s, max. 100 s
- **Temperature ramp**: up 3 °C/s, down 6 °C/s
- **Temperature limits**: max. 245 °C, max. ramp up 3 °C/s, max. ramp down 6 °C/s
- **Floor life**: 72 h
- **Moisture sensitivity level**: 4
- **Conditions**: $T_{\text{amb}} < 30 \, ^\circ\text{C}$, RH < 60 %
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.