Occupational Cancer in Great Britain

Contents

Summary 2

Introduction 3

Estimated cases of occupational cancer 3
Estimated current cases 3
Estimated future cases 4

Known carcinogens 5
Newly classified occupational carcinogens 5

Other statistical information on occupational cancers 6
Number of occupational cancers compensated under the Industrial Injuries Disablement Benefit (IIDB) scheme 6
Number of occupational cancers reported by consultant chest physicians and dermatologists 6

References 7
Summary


Many work and non-work related factors can cause cancer. Furthermore, cancer cases often present themselves many years after the relevant exposure took place. Therefore, it is usually difficult to know whether workplace exposures have caused particular cases of cancer. However, it is possible to estimate in a large population the approximate number of cancer cases that could be due to work, in other words, would not have occurred in the absence of workplace exposure.

By looking at the number of workers who had been exposed to cancer causing agents in the past and the risk of cancer from these exposures, the research study on the burden of occupational cancer in Great Britain has estimated the proportion of all new cancer cases in the national statistics that could be due to past work exposures. Then, based on the estimated proportion, the study calculated the approximate number of occupational cancer registrations in 2004 and cancer deaths in 2005 in Great Britain.

The researchers have also developed methods to estimate the number of occupational cancer cases in the future for a range of intervention scenarios. This will enable us to compare the potential impacts of different interventions on occupational cancer reduction. Further information on occupational cancer burden research can be found at: www.hse.gov.uk/cancer/research.htm

Key points

- Past occupational exposure to known and probable carcinogens is estimated to account for about 5% of cancer deaths and 4% of cancer registrations currently occurring each year in Great Britain.
- This equates to about 8,000 cancer deaths and 13,500 new cancer registrations each year.
- Past asbestos exposure is the leading cause of deaths from occupational cancer today. Other major causes of occupational cancer include silica, solar radiation, mineral oils and shift work.
- The construction industry has the largest estimate of occupational cancer cases, with 3,500 cancer deaths and 5,500 cancer registrations each year from this industry.
- Exposure to silica, Diesel Engine Exhaust, solar radiation, shift work and working as painters and welders might become the main causes of occupational cancer in the future, according to the estimate of the research study.

Figure 1: Estimated occupational cancer deaths by cause in Great Britain, 2005

These are based on many assumptions and subject to considerable uncertainty. Both known and probable occupational carcinogens have been included in the estimates.
Introduction

Cancer starts when abnormal cells in the body grow out of control. There are different types of body cells that can become abnormal and develop into different types of cancers. Many risk factors can cause cancer, including ageing, exposure to radiation, chemicals and other substances at work and in the environment, family history of cancer, and many behaviours and lifestyle factors such as tobacco smoking, poor diet, lack of physical activities and being overweight. Very often, it is difficult to assess the role of occupational exposure in the development of cancer. Furthermore, many cancer cases present themselves many years after the relevant exposures took place (usually at least 10, but in some cases over 35 years). This makes it particularly difficult to link individual cases of cancer to the associated work exposures. As a result, the national cancer registrations and other data sources such as cancer cases reported by specialist physicians as part of occupation ill health surveillance system or cancer cases assessed for Industrial Injuries Disablement Benefit scheme, do not allow an accurate assessment of the overall number of occupational cancers. However, it is possible to estimate the proportion of all cancer cases in a population that are due to work, and use this to estimate the number of occupational cancer cases currently occurring.

In 1981, in their report to the US Congress, Doll & Peto estimated that 4% of cancer deaths in the US were attributable to occupation\textsuperscript{1}. For over 25 years since the report, this occupational proportion had been used as the basis to estimate the burden of occupational cancer in Great Britain. In order to obtain an updated estimate to inform the development and prioritisation of occupational cancer control, the Health and Safety Executive commissioned a research study in 2005 to estimate the burden of occupational cancer in Great Britain. The study was led by Dr Lesley Rushton from the Imperial College, London, in consultation with national and international experts in epidemiology, cancer and occupational hygiene.

The cancer burden study considered both the known and the probable carcinogens classified by the International Agency for Research on Cancer (IARC)\textsuperscript{2}. For example, the study included shift work, a probable carcinogen, even though its causal link to female breast cancer has not yet been confirmed. Forty-one carcinogens relevant to occupational exposures in Great Britain were included in the burden estimates\textsuperscript{3}. The study has also developed methods to estimate the possible number of occupational cancer cases in the future and to compare the potential impacts of different interventions on occupational cancer reduction\textsuperscript{4}. The number of occupational cancers occurring now is the result of past exposures to cancer causing agents in the workplaces whereas future cases of occupational cancer will be the consequences of current and future exposure situations.

Estimated cases of occupational cancer

Estimated current cases

The updated estimates have shown that about 8,000 cancer deaths and around 13,500 cancer registrations per year in Great Britain could be attributed to past occupational exposure. These represented 5.3% (8.2% for men and 2.3% for women) of all cancer deaths in 2005 and 4.0% (5.7% for men and 2.1% for women) of all newly diagnosed cancers in 2004 in Great Britain national cancer statistics\textsuperscript{5}, see Table CAN01A (www.hse.gov.uk/statistics/tables/can01A.xlsx). This estimate has included both established and probable carcinogens and has been used in most of the published results. However, if the estimate were restricted only to the established carcinogens, the occupational attributable proportion would moderately reduce to 4% for all cancer deaths and 3.4% for all cancer registrations, see Table CAN01B (www.hse.gov.uk/statistics/tables/can01B.xlsx).

The cancer burden study has shown that past occupational exposure to asbestos is the leading occupational carcinogen, accounting for about half of all occupational cancer deaths and a third of occupational cancer registrations (based on data for 2005 and 2004 respectively). Trends in mesothelioma deaths suggest the burden of asbestos-related cancer caused by the past occupational exposure is continuing to increase. Other major occupational carcinogens include silica, diesel engine exhausts (DEEs), mineral oils in terms of their contribution to cancer deaths (Figure 1); and shift working, mineral oils and solar radiation in terms of their contribution to cancer registrations\textsuperscript{5}, see Tables CAN02 (www.hse.gov.uk/statistics/tables/can02.xlsx) and CAN03 (www.hse.gov.uk/statistics/tables/can03.xlsx).
Of all industry sectors, exposures in the construction industry accounted for the largest proportion (over 40%) of the occupational cancer deaths and cancer registrations. In total, about 3,500 cancer registrations per year in this industry are attributed to past exposure to asbestos and silica, mostly causing lung cancer and mesothelioma. An additional 1,300 cancer registrations per year in this industry are attributed to solar radiation, coal tars and pitches, mostly causing non-melanoma skin cancer (NMSCs), see Tables CAN04 (www.hse.gov.uk/statistics/tables/can04.xlsx) and CAN05 (www.hse.gov.uk/statistics/tables/can05.xlsx).

**Estimated future cases**

Estimates of the current burden can only be a starting point for the consideration of priorities for prevention activity. The cancer burden research study has also developed methods to estimate the number of occupational cancer cases that may occur in the future based on what is known about the current exposed population, the exposure level and the associated risk of cancer. It assumes that current exposure and employment trends continue without additional intervention to actively reduce particular risks. Due to the lack of information on the current exposure situation and the uncertainties caused by the many assumptions used, it is difficult to know with any reliability the estimated number of occupational cancer cases in 2060. However, the statistical model that has been developed may allow us to test out the possible impact of future interventions. The research provides a framework for refining and improving these assessments in the light of new information about interventions and workplace exposures as it becomes available.

The research study has shown that the number of occupational cancers associated with asbestos exposure would probably drop by more than 90% and the numbers associated with silica exposure are estimated to halve by 2060. On the other hand, the numbers associated with Diesel Engine Exhaust (DEE) are estimated to remain the same, and the numbers associated with solar radiation, shift work, PAHs and working as painters might increase.

A ranking of the estimated future cases attributed to the leading carcinogens by industry suggests that the construction industry will probably continue to account for the largest number of occupational cancer cases in the future, though the total number is estimated to reduce by a third by 2060, See Tables CAN06 (www.hse.gov.uk/statistics/tables/can06.xlsx). Occupational exposures to silica, DEEs, solar radiation, shift work and working as painters and welders are estimated to become the main causes of occupational cancers in the future, see Tables CAN07 (www.hse.gov.uk/statistics/tables/can07.xlsx).

Intervention scenarios have been used to test out their possible impact on reducing occupational cancer cases in the research study, see Tables CAN08 (www.hse.gov.uk/statistics/tables/can08.xlsx). However, the types of the interventions tested, for example lowering the exposure standards, have demonstrated only limited impacts on further reducing the number of cancer cases associated with asbestos and DEEs. This is because the research study estimates that most of the future occupational cancers due to these causes will be attributed to large numbers of exposed workers at low levels of exposure.

The study to estimate the future occupational cancer cases included only the 14 leading carcinogens and work activities that contributed more than 100 occupational cancer registrations per year. Together, they account for 86% of the total number of occupational cancer cases currently occurring. Other carcinogens, including mineral oils, chromium VI, wood dust, benzene and rubber manufacturing, were not included in the estimate, but are potentially important for cancer prevention.

The number of future cases is estimated based on the assumptions that the current trends of exposure and employment will continue up to 2030 and remain constant thereafter. The estimate is a combined effect of predicted falling occupational exposures, which largely contributes to the reduction of the overall cancer numbers, and the aging population and population growth, which, on the other hand, contribute to the rising cancer numbers. The future burden estimation did not consider the potential impacts of lifestyle changes on cancer risk in the population.

The estimated figures on the current and future number of occupational cancers should be used with care because they are based on many assumptions and subject to considerable uncertainty. The model to estimate future cases may be more useful for comparing the effects of different interventions for particular
carcinogens rather than across different carcinogens. The major sources of uncertainty in estimating the occupational cancer cases include the choices of risk estimates from literature for an occupational exposure, the imprecision of the risk estimates, the misclassification of workers in different exposure categories, the lack of reliable information on both the exposure levels and the exposure trends in the GB workforce. More information on the statistical methods used to estimate the future cancer cases is available from previous publications.

**Known carcinogens**

The International Agency for Research on Cancer (IARC) is part of the World Health Organization. IARC runs a monograph programme evaluating evidence of the carcinogenicity of specific exposures in order to identify environmental factors that can increase the risk of cancer in humans. The monographs published by IARC are recognised as an authoritative source of information on the carcinogenicity of a wide range of human exposures, including chemicals, complex mixtures, occupational exposures, physical and biological agents and lifestyle factors.

Since 1971, the carcinogenicity of more than 900 agents has been evaluated. According to the updated information published by IARC in June 2015,

- 117 agents have been identified as established human carcinogens (IARC Group 1)
- 74 agents were probable (IARC Group 2A), and
- 287 agents were possible (IARC Group 2B) human carcinogens.

There are several new Group 1 and Group 2A classifications in the past year that have been linked to occupational exposure.

The IARC categories of Group 1, 2A and 2B are to measure the strength of the evidence on whether an agent is carcinogenic to human. The categories do not indicate the level of the cancer risk of an agent. For example, the term “probably” carcinogenic represents a higher level of evidence of human carcinogenicity than the term “possibly”.

**Newly classified occupational carcinogens**

- **Paint stripping chemical**

  In June 2014, IARC classified 1,2-dichloropropane (1,2-DCP) as established human carcinogen (Group 1) on the basis of sufficient evidence in humans that exposure to this solvent causes cholangiocarcinoma (a biliary-tract cancer). 1,2-DCP is used mainly as a chemical intermediate in the production of other organic chemicals and in paint stripping. Preliminary consultation did not find clear evidence of workplace exposure to this chemical in GB.

- **Acheson process and silicon carbide (SiC) fibres**

  In October 2014, IARC classified occupational exposures associated with the Acheson process as carcinogenic to humans (Group 1), causing lung cancer. This was based on sufficient evidence from human studies which were conducted in Canada and Norway. The Acheson process is mainly used for manufacture of silicon carbide (SiC) which is mostly used as industrial abrasive. There are multiple exposures associated with this process, including exposures to SiC fibres, quartz, cristobalite and non-fibrous SiC. The existing human studies have not been able to disentangle the independent health effects of SiC fibres and cristobalite. Therefore, IARC has classified SiC fibres as a possible human carcinogen (Group 2B). At the same time, IARC also classified SiC whiskers as a probable human carcinogen (Group 2A) on the basis that the physical properties of the whiskers resemble those of asbestos and erionite fibres, which are known carcinogens. Animal studies have also provided sufficient evidence for the carcinogenicity of SiC whiskers causing mesotheliomas.

- **Some pesticides**
In March 2015, IARC classified two insecticides, malathion and diazinon, and one herbicide, glyphosate, as probable human carcinogens (Group 2A). These were based on limited evidence from human studies. The type of cancers found to be associated with the exposures varied from study to study. From 2008, the use of pesticide products containing malathion or diazinon has been banned in the UK. However, glyphosate are produced and used continuously in large volumes.

In June 2015, IARC classified the insecticide lindane as a human carcinogen (Group 1). This was based on sufficient evidence both in humans and in experimental animals. Occupational exposures could have occurred among agriculture workers and pesticide applicators but, since 2002, the use of lindane has been banned within EU.

These newly classified carcinogens are not currently included in our cancer burden estimates. More information is required on the use (current or in the past) of these substances in the GB workplaces and the potential level of their exposures.

Other statistical information on occupational cancers

Number of occupational cancers compensated under the Industrial Injuries Disablement Benefit (IIDB) scheme

There are specific forms of occupational cancer that are currently compensable under the Department for Work and Pensions Industrial Injuries and Disablement Benefit (IIDB) scheme. The numbers of people who have been compensated in the past 12 years (2003-2014) are presented in IIDB tables (www.hse.gov.uk/statistics/tables/index.htm#iidb).

On average, around 2,000 new occupational cancer cases per year were compensated over the last 12 years. The majority of these were asbestos related cancers, such as mesothelioma (1,759 per year on average and 2,215 in 2014) and other asbestos related lung cancer (256 per year on average and 285 in 2014). The number of people compensated for non-asbestos related cancers was small at 25 cases per year on average. In 2014 10 cases of non-asbestos related cancers were compensated. They were all carcinoma of the urinary tract.

Number of occupational cancers reported by consultant chest physicians and dermatologists

Specialist physicians in the UK have been reporting work-related ill health, including occupational cancer to The Health and Occupation Research Network (THOR www.medicine.manchester.ac.uk/oeh/research/thor/). The number of cases reported during 1998-2014 are presented in the THOR tables www.hse.gov.uk/statistics/tables/#thor.

In 2014, consultant chest physicians reported 369 cases of mesothelioma and 96 cases of lung cancer. The number of mesothelioma cases reported in 2014 was much lower than the annual average of 711 in the past 17 years (1998-2014). There has been an observed decrease in the number of mesothelioma cases reported by chest physicians in the past decade. It is possible that the number of mesothelioma cases referred to chest physicians have reduced over time.

In addition, consultant dermatologists reported an annual average 429 cases of skin cancer in the past 17 years but only reported 229 skin cancer cases in 2014. Once again, there has been an observed decrease in the number of skin cancer cases reported by dermatologists since 2010. However, this may reflect systematic changes in the reporting system rather than trends in the cancer occurrence.

For most types of cancer, the number of occupational cases reported by physicians or assessed for compensation purposes is much lower than the estimates from the cancer burden study. This reflects the difficulty in attributing individual cases to occupational exposures. However, comparison of new cases across different data sources has indicated that the reporting and assessment of mesothelioma cases are more complete than other occupational cancer cases due to the strong work attribution of this disease.
References


Other links in the HSE website:

This web page is to provide key statistics on occupational cancer in Great Britain. Please visit www.hse.gov.uk/cancer/ to find out more on how cancer causing hazardous substances can be controlled. Further information on the tackling the 10 priority areas of occupational cancer can be found in www.hse.gov.uk/aboutus/occupational-disease/

Epidemiologist: Yiqun Chen  
Contact: yiqun.chen@hse.gsi.gov.uk

Last updated: October 2015  
Next update: October 2016.