Sleep Lab Titration Guide Table of Contents

Introduction ... 1
 S9 VPAP Tx Lab System .. 2-3
 ResMed Therapy Modes and Algorithms, Specifications 4
 S9 VPAP Tx Accessories .. 4

Getting Started .. 5
 VPAP Tx Control Panel ... 6
 At the Bedside .. 7
 Setting Up the S9 VPAP Tx 8
 Filling the H5i Water Tub .. 8
 Navigating the Menus .. 9
 Mask Type and Tube Settings 9
 Mask Fit ... 10
 Viewing the Treatment Screens 10
 In the Control Room .. 11
 Starting a Session .. 12
 Manual Connection to a Tx Link 12
 EasyCare Tx Toolbar Overview 13
 Configuring Mask and Humidifier Settings 14
 Adjusting Therapy Settings 14
 Detailed Settings Report ... 15
 Running and Printing a Prescription Report 16

Technologies ... 17
 CPAP and AutoSet Technology 19
 VPAP Technology .. 21
 iVAPS Technology .. 25
 ASV Technology .. 27

Titration Protocols ... 31
 CPAP and AutoSet Titration 33
 VPAP Auto and VPAP S Titration 35
 VPAP ST Titration .. 37
 iVAPS Titration .. 39
 ResMed’s VPAP Adapt Titration 41

Reimbursement .. 43
 VPAP Adapt Reimbursement Coding 45
 Medicare Policy for Treatment of OSA 46-47
 Respiratory Assist Device (RAD) Qualifying Guidelines 48-49
S9 VPAP™ Tx Lab System

ResMed’s award-winning sleep lab titration system is designed with the patient’s comfort in mind. A truly all-in-one lab system, the S9 VPAP™ Tx delivers comfortable therapy and caters to all patient types, allowing them to fall asleep and stay asleep, so your titrations are an overnight success.

The S9 VPAP Tx provides continuous positive airway pressure (CPAP) and bilevel therapy.

The S9 VPAP Tx is a component of the S9 VPAP Tx Lab System. The S9 VPAP Tx Lab System provides remote PC control of a positive airway pressure therapy device (therapy device) capable of delivering multiple therapy modes. The system comprises:

EasyCare Tx software
- On-screen remote control of the therapy device
- Highly customized for the clinical environment to help manage a wide range of patients from one system
- Creates summary reports and prescriptions

Tx Link
- Provides connectivity between the software and therapy device
- Seamlessly integrates with all existing major PSG systems, relaying real-time signals measured by the therapy device directly to the polysomnography (PSG) equipment

S9 VPAP Tx therapy device
- Built on the award-winning S9™ platform — small, sleek, silent
- Makes treating a wide range of patients possible with adult and pediatric therapy titration applications
- Uses Climate Control, ResMed’s most advanced humidification technology, to maximize patient comfort and minimize overall titration pressure
Delivering Efficient, Consistent Results

Patient comfort features

Climate Control humidification technology intelligently adapts to environmental conditions and delivers optimal temperature and humidity right to the mask via ClimateLine™ tubing. Our Climate Control technology simplifies titration while significantly reducing rainout and dryness issues, which can lead to an average increase in usage of 30 minutes.¹

Working together with the whisper-quiet motor, Easy-Breathe waveform and user-friendly design, the S9 VPAP Tx enables technicians to provide patients a comfortable, easy-going experience for their first night on therapy.

Whisper-quiet operation minimizes therapy disruptions — as one of the quietest home therapy devices on the market — now available in our all-in-one lab titration device (26dBA).

Sleep lab efficiency features

ResMed’s award-winning S9 platform makes patient therapy acceptance simple with all of ResMed’s essential and advanced modes, now on the award-winning S9 platform.

Intuitive and easily customizable software reduces training time and allows navigation and control of all settings at the bedside and control room, enabling technicians to manage multiple patients across a spectrum of disorders in the same night for increased efficiency.

Mask Fit feature displays real-time leak when fitting the mask at the bedside and ensures the selected mask has a proper seal before starting titration.

Color LCD provides quick access to therapy settings for easy device navigation at the patient’s bedside.

Guided mode transitions eliminate sudden changes in pressure and enable a smooth transition from one mode or pressure to another.

Customizable default settings enable customization of therapy settings according to your lab protocols.

Prescription and Detailed Settings reports capture all changes made to therapy pressures and settings during the night and can be easily generated and edited, minimizing study turnaround times by incorporating final mask and device settings into a script.

True Leak reporting automatically displays accurate mask leak data, eliminating the need to reference charts to calculate appropriate leak values.

EasyCare Tx software has a user-friendly toolbar that allows remote control of a therapy device while displaying current therapy settings.

¹ Wimms AJ, Richards GN, Benjafield et al. Adherence comparison of a new CPAP system in sleep disordered breathing. Sleep 2011
ResMed Therapy Modes and Clinically Superior Algorithms

The S9 VPAP Tx puts access to all of our advanced titration modes at your fingertips to provide complete care across the full range of sleep disorders.

ResMed technologies like iVAPS and ASVAuto—our unique bilevel modes—combine with innovative features like TiControl™ to make it easy and efficient to achieve comfortable, quality patient care.

Adult and pediatric therapy titration applications like CPAP, VPAP S, ST, T and PAC therapy modes are FDA cleared to treat patients weighing 30 lb (>13 kg) and above regardless of age, allowing sleep labs to provide titration for a wider range of patients—including pediatrics.

- **CPAP** — Fixed pressure delivered with optional expiratory pressure relief (EPR™)
- **AutoSet™** — Automatically adjusts pressure in response to snore, flow limitation and obstructive sleep apneas with no pressure support
- **VPAP (Bilevel)** — Delivers two treatment pressures—one for inspiration (IPAP) and one for expiration (EPAP)—and provides control over the following bilevel therapy modes:
 - **S (Spontaneous)** — Follows the natural breathing pattern, allowing patients to breathe at their regular respiratory rate and rhythm
 - **S/T (Spontaneous/Timed)** — Augments any breaths initiated by the patient, but will also supply additional breaths if the breath rate falls below the clinician’s set “backup” respiratory rate
 - **PAC (Pressure Assist Control)** — The inspiration time is preset in the PAC mode. There is no spontaneous/flow cycling. The inspiration can be triggered by the patient when respiratory rate is above a preset value, or time-triggered breath will be delivered at the backup breath rate.
 - **T (Timed)** — The fixed respiratory rate and the fixed inspiration/expiration time set by the clinician are supplied regardless of patient effort
 - **VAuto** — Automatically adjusts pressure in response to flow limitation, snore and apneas; pressure support (PS) is fixed throughout the night and can be set by the clinician
 - **Adaptive Servo-Ventilation (ASV and ASVAuto)** — Treats the spectrum of central breathing disorders, including mixed sleep apnea, complex sleep apnea (CompSA) and periodic breathing such as Cheyne–Stokes respiration (CSR)
 - **iVAPS** — Treats hypercapnic respiratory insufficiency, including obesity hypoventilation, chronic obstructive pulmonary disease, neuromuscular disease and restrictive conditions

Technical Specifications

Pressure Ranges

- **CPAP** 4–20 cm H₂O (EPR 0-3)
- **AutoSet™** APAP 4–20 cm H₂O (EPR 0-3)
- **Bilevel (S, S/T, T, PAC)** EPAP 3–25 cm H₂O, IPAP 4–30 cm H₂O
- **VAuto** EPAP 4–25 cm H₂O, IPAP 4–25 cm H₂O
- **ASV and ASVAuto** EPAP 4–15 cm H₂O, Pressure Support 0–20 cm H₂O
- **iVAPS** EPAP 3–25 cm H₂O, Pressure Support 0–27 cm H₂O

Filter

- Two-layered, powder-bonded, polyester non-woven fiber

Altitude Compensation

Automatic

Electrical Requirements

- 100–240 V
- DC Power
 - Direct connect cord

EasyCare Tx Software

Minimum Hardware and Software Requirements

- PC (Mac not supported)
- Pentium 1 GHz CPU
- 1 GB RAM
- 1024 x 768 display resolution
- 10/100 Mbps Ethernet Port
- Microsoft Windows Vista, Windows XP ≥ SP2 or Windows 2007
- Microsoft .NET Framework 2.0
- Cat5 cable or available network port between patient room and control room

S9 VPAP Tx Accessories

- H5i™ Cleanable Tub 36800
- H5i Standard Tub 36803
- ClimateLine™ 36995
- ClimateLine™Oxy 36996
- Filter (1 Pack) 36850
- Filter (2 Pack) 36851
- Filter (12 pack) 36852
- Filter (50 pack) 36853

1 EPR available in CPAP and AutoSet modes

ResMed.com
Getting Started
S9 VPAP™ Tx Control Panel

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start/Stop button</td>
<td>Starts or stops treatment. Power Save mode—hold for three seconds.</td>
</tr>
<tr>
<td>Info menu button</td>
<td>Allows you to view the device service information or to exit from the menu.</td>
</tr>
<tr>
<td>Setup menu button</td>
<td>Allows you to make changes to settings or to exit from the menu.</td>
</tr>
<tr>
<td>Push dial</td>
<td>Turning the dial allows you to scroll through the menu and change settings. Pushing the dial allows you to enter into a menu and confirm your choice.</td>
</tr>
<tr>
<td>Alarm mute button</td>
<td>Press once to mute alarms. Press a second time to un-mute. If the problem is still present, the alarm will sound again after two minutes.</td>
</tr>
<tr>
<td>LCD screen</td>
<td>Displays the menus, treatment screens and reminders.</td>
</tr>
<tr>
<td>LCD screen backlight</td>
<td>When treatment is being delivered, the backlight (including the Start/Stop button) automatically turns off after 30 seconds, otherwise it turns off after three minutes.</td>
</tr>
<tr>
<td>Alarm LED</td>
<td>Yellow LED—flashes during an alarm.</td>
</tr>
<tr>
<td>Therapy LED</td>
<td>Blue LED—always on during therapy (if enabled in the Options menu).</td>
</tr>
</tbody>
</table>
At the Bedside
Setting Up the S9 VPAP Tx

1. Align the H5i with the S9 VPAP Tx and push them together until they click into place.
2. Connect the DC plug of the power supply unit to the rear of the S9 VPAP Tx.
3. Connect the power cord to the power supply unit.
4. Plug the USB Module into the Module/Adaptor port at the rear of the S9 VPAP Tx.
5. Connect the S9 VPAP Tx to the Tx Link via the USB serial cable.
6. Plug the other end of the power cord into the power outlet.
7. Connect one end of the air tubing firmly onto the air outlet.
8. Connect the assembled mask system to the free end of air tubing.

Filling the H5i Water Tub

The S9 VPAP Tx is compatible with the integrated H5i heated humidifier. For further information on using this humidifier refer to the H5i user guide.

1. Slide the silver latch on the front of the device and lift open the flip lid. Remove the water tub.
2. Through the center hole, fill the water tub with room temperature (do not use hot or cold) distilled water up to the max water level mark (380 mL).
3. Return the water tub to the H5i.
4. Close the flip lid, ensuring that it clicks into place.

Filling water tub while still in humidifier may damage unit.
Overfilling the water tub may result in water splashing through the tubing.
Navigating the Menus

1. Turn until the parameter you require is displayed in blue.
2. Press . The selection is highlighted in orange.
3. Turn until you see the setting that you require.
4. Press to confirm your choice. The screen returns to blue.

Mask Type and Tube Type Settings

Use the following settings below for each mask type:

<table>
<thead>
<tr>
<th>Mask type</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Face</td>
<td>Full Face</td>
</tr>
<tr>
<td>Pillows</td>
<td>Pillows</td>
</tr>
<tr>
<td>Nasal</td>
<td>Nasal (for Ultra Mirage mask, use ‘Nasal Ultra’)</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Pediatric</td>
</tr>
</tbody>
</table>

The S9 VPAP Tx is compatible with the following air tubing:

<table>
<thead>
<tr>
<th>Air tubing</th>
<th>Specifications</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClimateLine</td>
<td>Heated Length: 6’6” (2 m) Inner diameter: 0.6” (15 mm)</td>
<td>Automatically detected</td>
</tr>
<tr>
<td>ClimateLine MAX Oxy</td>
<td>Heated Length: 6’3” (1.9 m) Inner diameter: 0.75” (19 mm)</td>
<td>Automatically detected</td>
</tr>
<tr>
<td>ClimateLine MAX</td>
<td>Heated Length: 6’3” (1.9 m) Inner diameter: 0.75” (19 mm)</td>
<td>Automatically detected</td>
</tr>
<tr>
<td>SlimLine</td>
<td>Length: 6’ (1.8 m) Inner diameter: 0.6” (15 mm)</td>
<td>If using the SlimLine, Standard or 3 m air tubing, adjust the tube setting via the Setup menu.</td>
</tr>
<tr>
<td>Standard</td>
<td>Length: 6’6” (2 m) Inner diameter: 0.75” (19 mm)</td>
<td></td>
</tr>
<tr>
<td>3 m</td>
<td>Length: 9’10” (3 m) Inner diameter: 0.75” (19 mm)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- For more information on assembling the mask, see the mask user guide.
- For a complete list of recommended masks and their settings go to www.resmed.com on the Products page under Service & Support. If you do not have Internet access, please contact your ResMed representative.

Note:
The ClimateLine, ClimateLine MAX and ClimateLine MAX Oxy are designed only for use with the H5i.
Mask Fit

Mask Fit is designed to help fit the mask properly to the patient.

The Mask Fit feature delivers CPAP pressure for a three-minute period, prior to starting treatment. During this time, the mask can be adjusted to minimize leaks.

To use Mask Fit:
- Fit the mask as described in the mask user guide.
- Press \ for at least three seconds. One of the MASK FIT screens is displayed (as shown on the right).
- If necessary, adjust the mask, mask cushion and headgear until there is a secure and comfortable fit. After three minutes, the pressure reverts to the set pressure and treatment will begin. You can end Mask Fit at any time by pressing \.

Viewing the Treatment Screens

Depending on how the system has been configured and what mode has been selected, you will see one of the following example screens (shown in iVAPS mode below) when the device is running:

- **H5i humidifier**
- **Climate Line/Climate Line Max**
- **Climate Control – Auto**
- **Climate Control – Manual**
- **Therapy data**

To toggle between the treatment screens, press \ from your HOME screen.

Pressure bar:
In bilevel modes, the pressure bar is marked with fixed vertical lines indicating the expiratory and inspiratory pressures. In CPAP and AutoSet modes, only a set pressure is shown.
In the Control Room
Starting a Session

Before you start titrating a patient, you need to start EasyCare Tx and then start a titration session.

To start a titration session:

1. Double-click the EasyCare Tx icon on the Desktop. The EasyCare Tx toolbar is displayed and the default Tx Link is automatically connected. (If the Tx Link is not automatically connected, connect to a Tx Link.)

2. Configure Mask and Humidifier Settings.

3. Click the Therapy Start/Stop® icon. Titration begins and the therapy indicator turns green.

Note:
The Therapy ON/OFF indicator turns green during therapy and gray when therapy is off.

Manual Connection to a Tx Link

Connecting to a Tx Link

If you do not specify a default Tx Link in User Preferences, the following window is displayed every time you launch EasyCare Tx. From this window you can connect to any Tx Link on the network.

To connect to Tx Link:

1. From the Menu drop-down, click Connect. The Select Device window is displayed.

2. Select the required Tx Link from the Connect To drop-down list.

3. Click OK. A window indicating that EasyCare Tx is establishing a connection with Tx Link is displayed.

Within a few seconds, EasyCare Tx will connect to the Tx Link.

Connectivity issues

You may experience connectivity issues in the following circumstances:

• EasyCare Tx is unable to connect to the Tx Link;

• EasyCare Tx loses connectivity with the Tx Link;

• Tx Link is unable to connect to the therapy device; or

• Tx Link loses connectivity with the therapy device.

In such instances, a window indicating the connectivity status is displayed and this helps you to take the appropriate action to restore connectivity. For instructions on resolving these issues, refer to troubleshooting in the S9 VPAP Tx Clinical Manual.
EasyCare Tx Toolbar Overview

EasyCare Tx is designed as a user-friendly toolbar and allows remote control of a therapy device while displaying current therapy settings.

The Humidifier icon is only displayed if the connected therapy device has a humidifier that can be remotely controlled.
Configuring Mask and Humidifier Settings

Configuring circuit settings

Before starting therapy, select the mask type used by the patient and review the humidifier settings.

- **Mask Settings**
 Mask Settings can be specified either at the bedside from the therapy device, or remotely using EasyCare Tx.

- **Humidifier Settings**
 EasyCare Tx automatically provides humidifier controls relevant to the therapy device and H5i humidifier connected. Refer to the clinical guides provided with the therapy device and humidifier.

To configure circuit settings:

1. From the **Menu** drop-down, click **Mask and Humidifier Settings**. The Mask and Humidifier Settings window is displayed.
2. Select the required mask type from the **Mask** drop-down list.
3. Select the desired humidifier option from the **Humidifier** drop-down list, or the desired temperature setting from the **Temperature** drop-down list.
4. Click **OK**. The mask and humidifier settings are applied to EasyCare Tx.

Adjusting Therapy Settings

Therapy settings

Therapy settings can be controlled in two ways:

- By adjusting individual parameters displayed on the toolbar
- Using the Therapy Settings window

When adjusting individual parameters displayed on the toolbar, the changes are applied instantly. If a confirmation is not sent from the therapy device within two seconds, the parameter will revert to the original value. Alternatively, using the Therapy Settings window, changes are made to one or more parameters related to a therapy and on clicking **OK**.

To adjust therapy settings from the Therapy Settings window:

1. From the **Menu** drop-down, select **Therapy Settings**. The current therapy settings window is displayed.
2. Change the appropriate therapy settings as required.
3. Click **OK**. The updated therapy settings are applied to EasyCare Tx.
Detailed Settings Report

An easy and efficient way to capture and display all pressure, mode and settings changes made during a session.

1. **Record the session prior to starting therapy**
 a. From the *Menu* drop-down, select *Session > Record*

 ![Record session](image1.png)

 b. Populate the patient details in the pop-up window and click *Browse* to pull up the “Save Session Data” dialog box

 ![Patient Details](image2.png)

 c. Choose a location to save the file, enter the file name and click *Save*

 Note: EasyCare Tx will remember and load the previous location selected by the user as default.

 d. Click *OK* to begin recording. To stop the recording, select *Session > Stop* from the *Menu* drop-down

2. **Run and print the Detailed Settings Report**
 a. From the *Menu* drop-down, select *Reports > Detailed Settings Report*

 ![Select report](image3.png)

 b. Click *Browse* and select the saved patient file

 c. Click *Open*, and click *OK* to display the report

 ![Open file](image4.png)

 d. Click the *Print* icon to print the report

 ![Print report](image5.png)
Running and Printing a Prescription Report

1. From the Menu drop-down, select Reports > Prescription Report. This will open a separate window for the report.

2. Use the print, or save, report button at the top of the screen. Follow standard procedures for your computer.
Notes
CPAP and AutoSet™ Technology

ResMed’s AutoSet technology

Using a multiple-breath moving average, the AutoSet algorithm continuously monitors breathing and responds immediately to any airway changes, such as flow limitation, snoring and apneas.

Event detection and response

ResMed’s AutoSet assesses the severity of the event—whether it is limited flow, snoring or an apnea—determines the best pressure solution, and applies it without delay.

CSA detection

ResMed’s S9 AutoSet uses the forced oscillation technique (FOT) to determine the state of the airway during an apnea. When an apnea is detected, small oscillations are added to the pressure to measure airway patency. The CSA algorithm uses the resulting flow and pressure to measure airway patency and differentiate central and obstructive events.
EPR™ and Easy-Breathe

EPR is designed to maintain optimal treatment for the patient during inhalation and reduce the delivered mask pressure during exhalation in the CPAP or AutoSet mode. The desired result of EPR is to decrease the pressure the patient must breathe out against, making the overall therapy more comfortable.

Comfort levels

EPR provides three comfort settings. Each comfort setting correlates to an exact drop in pressure relief:

- EPR Level 1: Mild reduction (1 cm H₂O)
- EPR Level 2: Medium reduction (2 cm H₂O)
- EPR Level 3: Maximum reduction (3 cm H₂O)

Notes:

The numeric value (1, 2 or 3 cm H₂O) for each EPR setting represents the maximum pressure drop during CPAP therapy expiration. Therapy pressure will never drop below 4 cm H₂O. So, for example, if therapy pressure during Ramp Time is 5 cm H₂O and EPR is set at level 3, then the pressure will only reduce to 4 cm H₂O.

For this reason, EPR is a unique comfort feature that ensures therapy effectiveness at all times. EPR allows patient comfort without compromise because the selected setting offers a defined pressure drop value that never exceeds the set value.
VPAP™ Technology

Proven technology, effective treatment

ResMed’s VPAP technologies ensure comfortable therapy and enable the clinician to fine-tune settings to a degree not possible in competing products.

Backup rate, all ResMed Bilevel modes
(not available on VPAP S)

All bilevel modes on S9 VPAP Tx provide a programmable backup rate. The backup rate is manually set in ST, T, PAC and iVAPS modes. It is automatically set in ASV mode.

TiControl™

A number of sophisticated features provide easy access to quality therapy

• Accommodate patients’ unique needs with TiControl. Ti Max enables you to set a maximum inspiratory time to reduce the risk of intrinsic PEEP and missed patient effort. Ti Min ensures adequate time for gas exchange without having to increase the pressure setting.

• Better synchrony. Setting a rapid rise time and high cycle sensitivity can help decrease the inspiratory time and extend the expiratory time, resulting in improved patient–ventilator synchrony for patients who are prone to intrinsic PEEP. A slower rise time and lower cycle sensitivity, along with an adequate Ti Min, ensure that patients with weak inspiratory effort have adequate time for gas exchange.

• Adjustable trigger and cycle.

• Adjustable trigger sensitivity supports patients with a weak inspiratory effort, increasing the sensitivity to every patient effort. Adjustable cycle sensitivity is crucial for those at risk for intrinsic PEEP or premature breath cycling.

• Vsync leak compensation. Vsync constantly monitors the flow so that if an unintentional mask leak occurs, the device can quickly compensate for the leak and maintain breathing synchrony.
Patient Setups

These settings are provided as a guideline for initial settings. Individual patients may require further adjustments based on their own conditions. Existing protocols within your facility should always supersede these baseline recommendations.

Please reference the TiControl guide on page 24 for correlating Ti Max/Ti Min settings appropriate for each disease state and adjust based on patient’s resting respiratory rate.

Obstructive lung disease

Patients with obstructive lung disease have chronic airflow limitation. These patients have particular difficulty exhaling air, which leads to air trapping and hyperinflation. These patients require a longer exhalation, which often leads to asynchrony with standard bilevel settings.

The recommended settings use a faster rise time to ensure that the lungs are filled quickly, and a high cycle sensitivity to provide an earlier cycle to exhalation. The rapid inhalation and prolonged exhalation will help to prevent auto-PEEP and preserve synchrony.

<table>
<thead>
<tr>
<th>Recommended Settings</th>
<th>Obstructive Lung Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAP [cm H₂O]</td>
<td>13</td>
</tr>
<tr>
<td>EPAP [cm H₂O]</td>
<td>5</td>
</tr>
<tr>
<td>Ti Max [sec]</td>
<td>1.0</td>
</tr>
<tr>
<td>Ti Min [sec]</td>
<td>0.3</td>
</tr>
<tr>
<td>Rise time [ms]</td>
<td>150</td>
</tr>
<tr>
<td>Trigger sensitivity</td>
<td>Medium</td>
</tr>
<tr>
<td>Cycle sensitivity</td>
<td>High</td>
</tr>
<tr>
<td>PS [cm H₂O]</td>
<td>8</td>
</tr>
</tbody>
</table>

Restrictive lung disease

Patients with restrictive lung disease have a difficult time maintaining the inhalation phase long enough to ensure adequate tidal volume and gas exchange. This can be caused by a physical restriction of the lungs or by neuromuscular weakness.

The recommended settings use a low cycle sensitivity and a longer Ti Min time to provide a longer inhalation time to help increase tidal volume and gas exchange.

<table>
<thead>
<tr>
<th>Recommended Settings</th>
<th>Restrictive Lung Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAP [cm H₂O]</td>
<td>11</td>
</tr>
<tr>
<td>EPAP [cm H₂O]</td>
<td>5</td>
</tr>
<tr>
<td>Ti Max [sec]</td>
<td>1.5</td>
</tr>
<tr>
<td>Ti Min [sec]</td>
<td>0.8</td>
</tr>
<tr>
<td>Rise time [ms]</td>
<td>300</td>
</tr>
<tr>
<td>Trigger sensitivity</td>
<td>High</td>
</tr>
<tr>
<td>Cycle sensitivity</td>
<td>Low</td>
</tr>
<tr>
<td>PS [cm H₂O]</td>
<td>6</td>
</tr>
</tbody>
</table>
Obesity hypoventilation syndrome (OHS)

Obesity hypoventilation patients often have reduced tidal volumes due to the additional weight pressing down on the chest and abdomen. Additionally, these patients may also have obstructive sleep apnea (OSA) caused by excess tissue in the upper airway and a high body mass index (BMI).

The recommended settings use a higher EPAP pressure to keep the airway open and a higher IPAP to provide additional pressure support and ventilatory assistance.

<table>
<thead>
<tr>
<th>Recommended Settings</th>
<th>Obesity Hypoventilation Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAP [cm H₂O]</td>
<td>15</td>
</tr>
<tr>
<td>EPAP [cm H₂O]</td>
<td>7</td>
</tr>
<tr>
<td>Ti Max [sec]¹</td>
<td>1.5</td>
</tr>
<tr>
<td>Ti Min [sec]¹</td>
<td>0.8</td>
</tr>
<tr>
<td>Rise time [ms]²</td>
<td>300</td>
</tr>
<tr>
<td>Trigger sensitivity</td>
<td>Medium</td>
</tr>
<tr>
<td>Cycle sensitivity</td>
<td>Medium</td>
</tr>
<tr>
<td>PS [cm H₂O]</td>
<td>8</td>
</tr>
</tbody>
</table>

Normal lungs

Patients with normal lungs may use NIV in an institutional environment post surgery or to treat sleep apnea.

The recommended settings provide basic settings for patients with normal lung mechanics.

<table>
<thead>
<tr>
<th>Recommended Settings</th>
<th>Normal Lung Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAP [cm H₂O]</td>
<td>11</td>
</tr>
<tr>
<td>EPAP [cm H₂O]</td>
<td>5</td>
</tr>
<tr>
<td>Ti Max [sec]¹</td>
<td>2.0</td>
</tr>
<tr>
<td>Ti Min [sec]¹</td>
<td>0.3</td>
</tr>
<tr>
<td>Rise time [ms]²</td>
<td>300</td>
</tr>
<tr>
<td>Trigger sensitivity</td>
<td>Medium</td>
</tr>
<tr>
<td>Cycle sensitivity</td>
<td>Medium</td>
</tr>
<tr>
<td>PS [cm H₂O]</td>
<td>6</td>
</tr>
</tbody>
</table>

¹ Ti settings based on an observed respiratory rate of 20 lpm.
² The rise time milliseconds scale is approximate.
Setting TiMax and TiMin using the respiratory rate table:

1. Instruct the patient to breathe normally while comfortably sitting or lying down.
2. Count the patient’s respiratory rate (breaths/minute).
3. Considering the patient’s respiratory disease, refer to the appropriate range of settings in the table below (restrictive, COPD or normal) to set TiMax and TiMin.
4. In the case of COPD or normal lungs, use the TiMin default setting.

What does the trigger threshold do?
The trigger threshold is the flow in liters/min used by the Vsync™ algorithm to determine the patient’s readiness to receive a breath from VPAP (change from EPAP to IPAP). In essence, as you change from Low to High, you’re increasing the sensitivity of VPAP to the patient’s effort as detected by measuring flow in the breathing circuit.

When should I adjust the trigger sensitivity threshold?
The Medium (default) setting will be ideal for most patients. Recommend the Low (or Very Low) trigger sensitivity setting for the following conditions:

- Abnormally strong heartbeat, may cause cardiac oscillation and subsequent auto-triggering (triggers before the patient inhales)
- Any time the patient complains that breaths are starting before inhaling

Recommend the High (or Very High) trigger sensitivity setting for the following conditions:

- Patients with very weak respiratory effort (eg, neuromuscular diseases)
- Any time the patient complains or there is evidence that the device doesn’t seem to respond to inspiratory effort

What does the cycle threshold do?
The cycle threshold is used by the Vsync algorithm to determine the patient’s readiness to begin exhaling (change from IPAP to EPAP). VPAP targets a percent of the peak flow used in each breath. For instance, the Medium setting targets 25% of the peak flow as the point where the patient is ready to begin exhalation. The High setting targets 35% and the Low setting targets 15%. As you adjust this setting, the patient may notice a change in the time spent at IPAP.

When should I adjust the cycle sensitivity threshold?
The Medium (default) setting will be ideal for most patients. Recommend the High (or Very High) cycle sensitivity setting for the following conditions:

- In situations where a shorter inspiratory time is desirable (eg, COPD), whereby a shorter inspiratory time is essential in order to preserve an adequate expiratory time. TiMax can also be used to shorten inspiratory time
- Any time the patient complains that breaths are too long

Recommend the Low (or Very Low) cycle sensitivity setting for the following conditions:

- In situations where a longer inspiratory time is desirable (eg, neuromuscular diseases or patients with a very weak respiratory effort). TiMin can also be used to lengthen inspiratory time
- Any time the patient complains that the device seems to switch from IPAP to EPAP too quickly

ResMed.com
iVAPS Technology (intelligent Volume-Assured Pressure Support)

For hypercapnic, hypoventilating patients

iVAPS is intelligent air

iVAPS is ResMed’s intelligent Volume-Assured Pressure Support, a unique technology that simplifies the process of ensuring appropriate ventilation for the patient and reduces the need for frequent adjustments to therapy over time.

The iVAPS advantage

Intelligent.
Unlike other ventilation modes that only target tidal volume, iVAPS targets alveolar ventilation, accounting for anatomical dead space to ventilate the patient more effectively. iVAPS provides an Intelligent Backup Rate (iBR) when necessary while maximizing the patient’s opportunity to spontaneously trigger the device.

Personalized.
The Learn Targets feature learns the patient’s alveolar ventilation and then sets targets accordingly, giving you a simpler, time-saving option to set up NIV patients. Whether you choose this feature or prefer to set targets directly, iVAPS makes it easy to customize therapy for each patient (Learn Targets not available on S9 VPAP Tx).

Automatic.
iVAPS automatically adjusts the level of pressure support to achieve and maintain the target alveolar ventilation while minimizing sleep disruption.

iVAPS is suitable for adults with respiratory insufficiency conditions, including:

- **Neuromuscular disease and restrictive conditions**
iVAPS can maintain stable ventilation when respiratory effort fluctuates, especially during sleep.

- **Chronic obstructive pulmonary disease (COPD)**
iVAPS may reduce the risk of hyperinflation associated with increased respiratory rate, as compared to therapy targeting tidal volume.

- **Obesity hypoventilation**
When compared to standard pressure support therapy, iVAPS can compensate for changes in respiratory mechanics, such as during nocturnal position changes.

iVAPS Settings

<table>
<thead>
<tr>
<th>Recommended Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient height [inches]</td>
</tr>
<tr>
<td>Target patient rate [bpm]</td>
</tr>
<tr>
<td>Target Va [6ml/kg IBW]</td>
</tr>
<tr>
<td>Restrictive lung disease</td>
</tr>
<tr>
<td>Obstructive lung disease</td>
</tr>
<tr>
<td>Obesity hypoventilation syndrome</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>Min PS [cm H₂O]</td>
</tr>
<tr>
<td>Max PS [cm H₂O]</td>
</tr>
<tr>
<td>Ramp time</td>
</tr>
</tbody>
</table>

Notes:

Ensure Ti Max, Ti Min, Rise Time, Trigger and Cycle are set appropriately to maintain patient–device synchrony.

Please reference the attached TiControl™ guide for correlating Ti Max/Ti Min settings appropriate for each disease state and adjust based on patient’s respiratory rate.
iVAPS Technology Q&A

Which patients is iVAPS suitable for?
iVAPS is suitable for adults with respiratory insufficiency. It is ideal for patients whose condition is likely to change and is characterized by hypoventilation (day/night hypercapnia). Patient conditions may include:

- Neuromuscular disease and restrictive conditions — iVAPS can maintain stable ventilation when respiratory effort fluctuates
- Obesity hypoventilation — When compared to standard Pressure Support therapy, iVAPS can compensate for changes in respiratory mechanics, such as during nocturnal changes in the patient’s body position
- Chronic obstructive pulmonary disease — iVAPS may reduce the risk of hyperinflation associated with increased respiratory rate, as compared to therapy targeting tidal volume

What does iVAPS target?
iVAPS targets alveolar ventilation to deliver required ventilation at the alveoli, where gas exchange occurs. Unlike other volume-assurance modes, iVAPS maintains the alveolar target even when respiratory rate changes.

Why is alveolar ventilation important?
Setting alveolar ventilation targets the patient’s true ventilation requirements and represents a more accurate approach. It’s able to deliver the required ventilation at the alveoli, where gas exchange occurs, by taking into account and compensating for the portion of air that travels through the conducting airways.

What are the goals of therapy with iVAPS?
- Optimizing therapy by delivering a set alveolar ventilation with the right pressure at the right time
- Enhancing patient-ventilator synchrony with an intelligent Backup Rate (iBR) to enhance patient comfort
- Minimizing sleep disruption with its rapid, yet gentle response that is quick enough to maintain stable alveolar ventilation, yet smooth enough to maintain sleep quality during nocturnal therapy
- Increased adherence to therapy with iVAPS

ResMed.com
ASV Technology

For normo/hypocapnic, hyperventilating patients

ResMed’s ASV is the most clinically studied adaptive servo-ventilation therapy and has been shown to provide effective and comfortable treatment for a range of breathing disorders including obstructive, central and mixed apnea, periodic breathing such as CSR, and CompSA.

ResMed’s ASV therapies are available on the VPAP Adapt. Users have the choice of auto-adjusting EPAP in ASVAuto mode or fixed EPAP in ASV mode.

ASVAuto mode adapts to a patient’s ventilatory and upper airway stability needs on a breath-by-breath basis. By treating central breathing disorders with auto-adjusting Pressure Support and upper airway obstruction with auto-adjusting EPAP, it rapidly stabilizes breathing to improve blood gases faster and reduce stress on the heart. Simplified patient care is provided through therapy that learns, responds, predicts and optimizes pressures to suit each patient’s own unique breathing pattern.

The following summarizes the therapy provided by the ASV mode:

- **Learning continuously for personalized therapy:**
 The only ASV technology to target the patient’s own recent minute ventilation, ResMed’s ASV continuously learns the patient’s own breathing and sets ventilation targets accordingly.

- **Responding rapidly for effective therapy:**
 ResMed’s ASV responds within the breath, adjusting Pressure Support to stabilize breathing. In ASVAuto mode, it also stabilizes the upper airway by adjusting EPAP when needed.

- **Predicting each patient’s unique needs for ease-of-care:**
 Treating challenging patients has never been easier. ResMed’s ASV predictive algorithm learns the patient’s unique respiratory rate and delivers pressure matched to the patient’s breathing, adapting dynamically to his or her changing needs.

- **Optimizing comfort and synchrony for compliance:**
 Patient comfort is the underlying goal of ResMed’s ASV. Proven comfort features such as “ramping” pressure that eases the patient gently into therapy, advanced leak management and ResMed’s unique Easy-Breathe pressure waveform provide natural breathing comfort — boosting patient compliance.

1 Hastings et al. Int J Cardiol 2010
The Most Responsive Algorithm

ResMed’s ASV targets minute ventilation for optimal therapy outcomes

ResMed’s unique ASV algorithm continuously monitors and learns the patient’s recent minute ventilation (tidal volume × breathing rate) and sets a target at 90% of this calculation. The Pressure Support then continuously adjusts to reflect the patient’s changing needs, reliably and steadily keeping patients on target all through the night. In ASVAuto mode, the EPAP also responds to flow limitation, snore and obstructive apneas on the next breath, in proportion to the severity of the event.

EPAP response based on AutoSet™ algorithm

- In ASVAuto mode, the auto-adjusting Pressure Support functionality works hand-in-hand with auto-adjusting EPAP, continuously monitoring minute ventilation and respiratory flow to protect breathing.
- The algorithm predicts the onset of airway collapse, assessing the flow shape of each breath. The technology responds to flow limitation and snore, automatically adjusting EPAP in proportion to the severity of the event, to maintain an open upper airway.

- If ventilation decreases away from target, the algorithm increases Pressure Support and monitors how that affects minute ventilation.
- If there is little or no flow during this period, the advanced technology can deduce that the airway is obstructed. Once breathing resumes, it then increases EPAP to prevent further apneas from occurring.
- Once breathing is stabilized, the EPAP gradually decreases towards the minimum EPAP setting for comfort, over a 20–40 minute period, depending on the type of event that occurred.
Pressure Support response based on minute ventilation

To successfully treat central and mixed apneas, minute ventilation should be stabilized. This is best achieved by constant monitoring of the patient’s breathing pattern, minute ventilation and nimble adjustment of Pressure Support to break the cycle of hyperventilation and central apneas that occur during CSA.

The algorithm achieves this by detecting such apneic events and quickly changing the Pressure Support to control events and normalize tidal volume, thereby normalizing breathing.

Other ASV devices estimate the tidal volume based solely on the peak flow. This can work if every breath is shaped the same, but many breaths have a different flow profile.

As seen in the figures below, ventilation can change substantially without any change to the peak flow of each breath. For this reason, measuring minute ventilation directly enables the most timely and effective pressure changes and, therefore, the best therapy.

Patient comfort through synchrony

Advanced, predictive technology maximizes comfort and synchrony over a wide range of breath rates

The ASV algorithm continuously learns the patient’s own respiratory rate through high-resolution breath phase mapping, maintaining accuracy even at lower breath rates. The algorithm maintains synchrony with the patient’s respiratory pattern by learning the rate at which the patient progresses through each breath and dynamically predicting inspiratory and expiratory durations. This enables the VPAP Adapt to deliver pressure that reaches its therapy peak at end-inspiration and its nadir by end-expiration, continuously and smoothly. Additionally, the ResMed leak management feature ensures greater synchrony by offsetting variations and inconsistency due to leak.

Easy-Breathe for the most natural breathing comfort

Unique to ResMed, the patented Easy-Breathe waveform delivers a smoother, more comfortable breathing experience by replicating the natural wave shape of normal breathing.

Ease of titration

Market-leading simplicity

Minimal settings with empirically selected default parameters are designed to cover the broadest range of patient setups. Unlike competing devices that require setting extra parameters such as Rise Time, ResMed’s ASV reduces the need for complicated customization during titration.
Which patients is ASV suitable for?

This extensively studied therapy provides demonstrated results across the spectrum of central breathing disorders including:

- Periodic breathing such as Cheyne–Stokes respiration (CSR), both normocapnic and hypocapnic
- Other forms of central and concomitant obstructive events¹ (mixed sleep apnea)
- Complex sleep apnea (CompSA)²

ResMed’s ASV should also be considered for central sleep apnea (CSA) and ataxic breathing, which is sometimes seen in opioid³ neurological and heart failure patients.

What are the goals of therapy with ASV?

- Rapidly stabilizing breathing to stabilize blood gases⁴: The primary goal of ASV therapy is to stabilize ventilation, resulting in normalized PaCO₂ levels to encourage stable breathing
- Improving sleep quality and minimizing daytime sleepiness by reducing respiratory-related events
- Improving quality of life⁵ through treatment outcomes, ASV helps improve physical performance⁶, increase energy and vitality⁶
- Treating complex sleep apnea by adapting automatically to treat both obstructive and central events (in ASVAuto mode)

What does ASV target?

ResMed’s ASV therapy continuously learns and adapts targets to reduce short-term oscillations in breathing, keeping ventilation stable. It is the only ASV therapy to target the patient’s own recent minute ventilation (MV) and respiratory rate (RR), adapting to changing needs through various sleep stages.

Titration Protocols
CPAP and AutoSet Therapy Sample Prescription

CPAP Therapy
- **S9 Elite™**
 - Pressure: _____ cm H2O (4–20 cm H2O)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - EPR: [] 1 [] 2 [] 3

APAP Therapy
- **S9 AutoSet™**
 - AutoSet Mode
 - Default Mode Settings
 - Min. Pressure: _____ cm H2O (4 cm H2O–IPAP)
 - Max. Pressure: _____ cm H2O (20 cm H2O–IPAP)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - EPR: [] 1 [] 2 [] 3
 - CPAP Mode
 - Pressure: _____ cm H2O (4–20 cm H2O)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - EPR: [] 1 [] 2 [] 3

Bilevel Therapy
- **S9 VPAP™ Auto**
 - Auto Mode
 - Default Mode Settings
 - Max. IPAP: _____ cm H2O (4–25 cm H2O)
 - Min. EPAP: _____ cm H2O (4 cm H2O–IPAP)
 - PS: _____ cm H2O (0–10 cm H2O)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - Spont Mode
 - IPAP: _____ cm H2O (4–25 cm H2O)
 - EPAP: _____ cm H2O (3 cm H2O–IPAP)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - EasyBreathe ON

Bilevel with Backup Rate Therapy
- **S9 VPAP Adapt**
 - ASV Mode
 - Default Mode Settings
 - EPAP: _____ cm H2O (4–15 cm H2O)
 - Min. PS: _____ cm H2O (0–6 cm H2O)
 - Max. PS: _____ cm H2O (5–20 cm H2O)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)
 - ASV Auto Mode
 - Default Mode Settings
 - Min. EPAP: _____ cm H2O (4–15 cm H2O)
 - Max. EPAP: _____ cm H2O (4–15 cm H2O)
 - Min. PS: _____ cm H2O (0–6 cm H2O)
 - Max. PS: _____ cm H2O (5–20 cm H2O)
 - Ramp Time: _____ min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)

- **S9 VPAP ST**
 - Spont/Timed Mode
 - IPAP: _____ cm H2O (4–30 cm H2O)
 - EPAP: _____ cm H2O (3–25 cm H2O)
 - Rate: _____ BPM (5–50 BPM)

- **S9 VPAP ST-A**
 - Spont/Timed Mode
 - IPAP: _____ cm H2O (4–30 cm H2O)
 - EPAP: _____ cm H2O (3–25 cm H2O)
 - Rate: _____ BPM (5–50 BPM)
 - Ti: _____ sec. (0.1–4 sec.)
 - iVAPS Mode
 - Height: _____ in. (44–100 in.)
 - Target Patient Rate: _____ BPM (0–30 BPM)
 - Target Vt: _____ L/min. (1–10 L/min.)
 - Vt (Tidal Volume): _____ mL
 - Vt/kg: _____ mL/kg
 - EPAP: _____ cm H2O (3–25 cm H2O)
 - Min. PS: _____ cm H2O (0–20 cm H2O)
 - Max. PS: _____ cm H2O (0–27 cm H2O)
 - Settings to be determined via Learn Targets

©2013 ResMed. 1015938/2 2013-03

ResMed.com
Indications for CPAP therapy

- Obstructive Sleep Apnea
- Upper Airway Resistance Syndrome

Set mode to CPAP

Initial pressure: 4–5 cm H₂O

A higher pressure may be required for re-titrations, patients with a higher BMI or patients complaining of air hunger or suffocating sensations.

For re-titrations, it is recommended that the pressure be started 2–3 cm H₂O below the patient’s current pressure.

EPR comfort setting

- Set to patient comfort (1, 2 or 3)

Monitor patient

- Is the patient having obstructive events?

 - **YES**
 - Increase CPAP ≥1 cm H₂O every ≥5 mins for obstructive apneas, hypopneas, RERAs and at least 3 min of loud or unambiguous snoring

 - **NO**
 - Continue monitoring patient

Are events central?

 - **YES**
 - Decrease CPAP by 1 cm H₂O and wait 20 mins. Consider ResMed’s ASV if centrals persist and patient meets criteria

 - **NO**
 - Consider trial of bilevel if obstructive events persist at a pressure of 15 cm H₂O

Observe patient and document final settings; be sure to document the final CPAP pressure, EPR setting (if any) and ramp time
VPAP Auto and VPAP S Sample Prescription

ResMed

CPAP Therapy
- **S9 Elite**
- Default Mode Settings
 - Min. Pressure: \(____\) cm H2O (4–20 cm H2O)
 - Max. Pressure: \(____\) cm H2O (20 cm H2O)
 - Ramp Time: \(____\) min(s) (OFF–45 min.)
 - EPR: \(____\)

APAP Therapy
- **S9 AutoSet**
- Default Mode Settings
 - Min. Pressure: \(____\) cm H2O (4 cm H2O)
 - Max. Pressure: \(____\) cm H2O (20 cm H2O)
 - Ramp Time: \(____\) min(s) (OFF–45 min.)
 - EPR: \(____\)

Bilevel Therapy
- **S9 VPAP**
 - Auto Mode
 - Default Mode Settings
 - Max. IPAP: \(25\) cm H2O (4–25 cm H2O)
 - Min. EPAP: \(4\) cm H2O (4 cm H2O–IPAP)
 - PS: \(6\) cm H2O (0–10 cm H2O)
 - Ramp Time: \(15\) min(s) (OFF–45 min.)
 - Spont Mode
 - IPAP: \(____\) cm H2O (4–25 cm H2O)
 - EPAP: \(____\) cm H2O (3 cm H2O–IPAP)
 - Ramp Time: \(____\) min(s) (OFF–45 min.)
 - EasyBreathe ON

- **S9 VPAP S**
 - Spont Mode
 - IPAP: \(____\) cm H2O (4–25 cm H2O)
 - EPAP: \(____\) cm H2O (3–25 cm H2O–IPAP)
 - Ramp Time: \(____\) min(s) (OFF–45 min.)
 - EasyBreathe ON

Bilevel with Backup Rate Therapy
- **S9 VPAP Adapt**
 - Default Mode Settings
 - ASV Mode
 - Min. EPAP: \(____\) cm H2O (4–15 cm H2O)
 - Max. EPAP: \(____\) cm H2O (4–15 cm H2O)
 - Min. PS: \(____\) cm H2O (0–6 cm H2O)
 - Max. PS: \(____\) cm H2O (5–20 cm H2O)
 - Ramp Time: \(____\) min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)
 - Auto Mode
 - Min. EPAP: \(____\) cm H2O (4–15 cm H2O)
 - Max. EPAP: \(____\) cm H2O (4–15 cm H2O)
 - Min. PS: \(____\) cm H2O (0–6 cm H2O)
 - Max. PS: \(____\) cm H2O (5–20 cm H2O)
 - Ramp Time: \(____\) min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)

- **S9 VPAP ST**
 - Spont/Timed Mode
 - IPAP: \(____\) cm H2O (4–30 cm H2O)
 - EPAP: \(____\) cm H2O (3–25 cm H2O)
 - Rate: \(____\) BPM (5–30 BPM)

- **S9 VPAP ST-A**
 - Note: Ensure Ti Max, Ti Min, Rise Time, Trigger and Cycle are set appropriately to maintain patient-device synchrony
 - Spont/Timed Mode
 - IPAP: \(____\) cm H2O (4–30 cm H2O)
 - EPAP: \(____\) cm H2O (3–25 cm H2O)
 - Rate: \(____\) BPM (5–50 BPM)
 - PAC Mode
 - Timed Mode
 - IPAP: \(____\) cm H2O (4–30 cm H2O)
 - EPAP: \(____\) cm H2O (3–25 cm H2O)
 - Rate: \(____\) BPM (5–50 BPM)
 - Ti: \(____\) sec. (0.1–4 sec.)
 - iVAPS Mode
 - Height: \(____\) in. (44–100 in.)
 - Target Patient Rate: \(____\) BPM (8–30 BPM)
 - Target Va: \(____\) L/min. (1–30 L/min.)
 - VT (Tidal Volume): \(____\) mL
 - Vt/kg: \(____\) mL/kg
 - EPAP: \(____\) cm H2O (3–25 cm H2O)
 - Min. PS: \(____\) cm H2O (0–20 cm H2O)
 - Max. PS: \(____\) cm H2O (0–27 cm H2O)
 - Settings to be determined via Learn Targets

©2013 ResMed. 1015938/2 2013-03

ResMed.com
VPAP S Therapy Titration Protocol
(bilevel spontaneous)

Indications for S therapy
- CPAP intolerance
- Continued obstructive events at higher pressures
- Hypoventilation with \(\text{SpO}_2 < 90\% \)
- COPD

Has patient been on CPAP therapy?

Initial settings:
- IPAP = CPAP settings
- EPAP = 4 cm H\(_2\)O below IPAP setting

For obstructive apneas:
- Increase EPAP by \(\geq 1 \) cm H\(_2\)O every \(\geq 5 \) min
- Increase IPAP to maintain 4 cm H\(_2\)O difference between IPAP/EPAP

Initial settings:
- IPAP = 8 cm H\(_2\)O
- EPAP = 4 cm H\(_2\)O

For obstructive hypopneas and snoring:
- Increase IPAP \(\geq 1 \) cm H\(_2\)O every \(\geq 5 \) min until resolved

Are events central?

For \(\text{SpO}_2 < 90\% \) with all respiratory events eliminated:
- Increase IPAP by \(\geq 1 \) cm H\(_2\)O every \(\geq 15 \) min until \(\geq 90\% \) \(\text{SpO}_2 \) is reached
- Follow sleep lab protocols for adding \(\text{O}_2 \)

Decrease pressure to previous setting, observe for 20 min

If centrals persist, consider adaptive servo-ventilation

Observe patient and document final settings, including IPAP/EPAP pressures and TiControl settings if altered from default
VPAP ST Sample Prescription

CPAP Therapy
- **S9 Elite**
- Pressure: ____ cm H₂O (4–20 cm H₂O)
- Ramp Time: ____ min(s) (OFF–45 min.)
- EPR: 1 2 3

APAP Therapy
- **S9 AutoSet**
- **AutoSet Mode**
 - Default Mode Settings
 - Min. Pressure: ____ cm H₂O (4 cm H₂O)
 - Max. Pressure: ____ cm H₂O (20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EPR: 1 2 3
- **CPAP Mode**
 - Pressure: ____ cm H₂O (4–20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EPR: 1 2 3

Bilevel Therapy
- **S9 VPAP™ Auto**
- **Auto Mode**
 - Default Mode Settings
 - Max. IPAP: ____ cm H₂O (4–25 cm H₂O)
 - Min. EPAP: ____ cm H₂O (4 cm H₂O–IPAP)
 - PS: ____ cm H₂O (0–10 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
- **Spont Mode**
 - IPAP: ____ cm H₂O (4–25 cm H₂O)
 - EPAP: ____ cm H₂O (3 cm H₂O–IPAP)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EasyBreathe ON

Bilevel with Backup Rate Therapy
- **S9 VPAP Adapt**
 - **ASV Mode**
 - Default Mode Settings
 - EPAP: ____ cm H₂O (4–15 cm H₂O)
 - Min. PS: ____ cm H₂O (0–6 cm H₂O)
 - Max. PS: ____ cm H₂O (5–20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)
- **ASV Auto Mode**
 - Default Mode Settings
 - Min. EPAP: ____ cm H₂O (4–15 cm H₂O)
 - Max. EPAP: ____ cm H₂O (4–15 cm H₂O)
 - Min. PS: ____ cm H₂O (0–6 cm H₂O)
 - Max. PS: ____ cm H₂O (5–20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)

S9 VPAP ST
- **Spont/Timed Mode**
 - IPAP: ____ cm H₂O (4–25 cm H₂O)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Rate: ____ BPM (5–30 BPM)

S9 VPAP ST-A
- **Note:** Ensure Ti Max, Ti Min, Rise Time, Trigger and Cycle are set appropriately to maintain patient-device synchrony
- **Spont/Timed Mode**
 - IPAP: ____ cm H₂O (4–30 cm H₂O)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Rate: ____ BPM (5–50 BPM)

PAC Mode
- **Timed Mode**
 - IPAP: ____ cm H₂O (4–30 cm H₂O)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Rate: ____ BPM (5–50 BPM)
 - Ti: ____ sec. (0.1–4 sec.)

iVAPS Mode
- **Height:** ____ in. (44–100 in.)
- **Target Patient Rate:** ____ BPM (8–30 BPM)
- **Target Va:** ____ L/min. (1–30 L/min.)
- **Vt (Tidal Volume):** ____ mL
- **Vt/kg:** ____ mL/kg
- **EPAP:** ____ cm H₂O (3–25 cm H₂O)
- **Min. PS:** ____ cm H₂O (0–20 cm H₂O)
- **Max. PS:** ____ cm H₂O (0–27 cm H₂O)
- **Settings to be determined via Learn Targets**
VPAP ST Therapy Titration Protocol
(bilevel spontaneous, timed)

Initial settings:
- IPAP = 8 cm H₂O settings
- EPAP = 4 cm H₂O
- Set backup rate at 2–4 below resting respiratory rate

Evaluate and titrate:
- Based on VT, rate, SpO₂ and CO₂ compared to baseline

For obstructive apneas:
- Increase EPAP by ≥1 cm H₂O every ≥5 min
- Increase IPAP to maintain 4 cm H₂O difference between IPAP/EPAP

For residual snoring, hypopneas and/or O₂ desats:
- Increase IPAP ≥1 cm H₂O every ≥ 5 min until resolved

For SpO₂ < 90% with all respiratory events eliminated:
- Increase IPAP by > 1 cm H₂O every ≥15 min until SpO₂ > 90% is reached
- Follow sleep lab protocol for adding O₂

Evaluate VT (tidal volume) if too small:
- Maintain EPAP raise IPAP by 1 cm H₂O every ≥15 min until SpO₂ ≥ 90%

 "Exploratory" pressure increase should not exceed 5 cm H₂O

Evaluate if backup rate is adequate:
- Increase backup rate by 1-2 BPM every 20 min as needed

Indications for ST therapy
- Neuromuscular/restrictive disorders
- COPD
- Obesity hypoventilation

Continuously monitor sleep and blood gas parameters (including CO₂).

Ensure patient’s ventilation levels stay consistent with initial levels, including tidal volume (IPAP–EPAP) and patient respiratory rate versus device backup rate.

Note:
SpO₂, VT and backup rate should be reviewed/monitored throughout the night.
CPAP Therapy
- **S9 Elite**
 - Pressure: ____ cm H₂O (4–20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EPR: [] 1 [] 2 [] 3

APAP Therapy
- **S9 AutoSet**
 - Default Mode
 - Default Mode Settings
 - Min. Pressure: ____ cm H₂O (4 cm H₂O)
 - Max. Pressure: ____ cm H₂O (20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EPR: [] 1 [] 2 [] 3
 - CPAP Mode
 - Pressure: ____ cm H₂O (4–20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EPR: [] 1 [] 2 [] 3

Bilevel Therapy
- **S9 VPAP™ Auto**
 - Auto Mode
 - Default Mode Settings
 - Max. IPAP: ____ cm H₂O (4–25 cm H₂O)
 - Min. EPAP: ____ cm H₂O (4 cm H₂O–IPAP)
 - PS: ____ cm H₂O (0–10 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - Spont Mode
 - IPAP: ____ cm H₂O (4–25 cm H₂O)
 - EPAP: ____ cm H₂O (3 cm H₂O–IPAP)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - EasyBreathe ON

Bilevel with Backup Rate Therapy
- **S9 VPAP Adapt**
 - ASV Mode
 - Default Mode Settings
 - EPAP: ____ cm H₂O (4–15 cm H₂O)
 - Min. PS: ____ cm H₂O (0–6 cm H₂O)
 - Max. PS: ____ cm H₂O (5–20 cm H₂O)
 - Ramp Time: ____ min(s) (OFF–45 min.)
 - Backup Rate: automatic (15 BPM)

S9 VPAP ST
- Spont/Timed Mode
 - IPAP: ____ cm H₂O (4–30 cm H₂O)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Rate: ____ BPM (5–50 BPM)

S9 VPAP ST-A
- Note: Ensure Ti Max, Ti Min, Rise Time, Trigger and Cycle are set appropriately to maintain patient-device synchrony
 - Spont/Timed Mode
 - IPAP: ____ cm H₂O (4–30 cm H₂O)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Rate: ____ BPM (5–50 BPM)
 - Pac Mode
 - Timed Mode
 - IPAP: ____ cm H₂O (4–30 cm H₂O)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Rate: ____ BPM (5–50 BPM)
 - Ti: ____ sec. (0.1–4 sec.)
 - iVAPS Mode
 - Height: ____ in. (44–100 in.)
 - Target Patient Rate: ____ BPM (8–30 BPM)
 - Target Va: ____ L/min. (1–30 L/min.)
 - Vt (Tidal Volume): ____ (mL)
 - V/kg: ____ (mL/kg)
 - EPAP: ____ cm H₂O (3–25 cm H₂O)
 - Min. PS: ____ cm H₂O (0–20 cm H₂O)
 - Max. PS: ____ cm H₂O (0–27 cm H₂O)
 - Settings to be determined via Learn Targets

©2013 ResMed. 1015938/2 2013-03
Indications for iVAPS therapy

- Neuromuscular/restrictive disorders
- COPD
- Obesity hypoventilation

Once a patient is fitted with an appropriate mask, select the appropriate mask setting.
CPAP Therapy

- **S9 Elite™**
- **Pressure:** ______ cm H₂O (4–20 cm H₂O)
- **Ramp Time:** ______ min(s) (OFF–45 min.)
- **EPAP:** ______ cm H₂O (4–15 cm H₂O)
- **Min. PS:** ______ cm H₂O (0–6 cm H₂O)
- **Max. PS:** ______ cm H₂O (5–20 cm H₂O)
- **Ramp Time:** ______ min(s) (OFF–45 min.)
- **Backup Rate:** automatic (15 BPM)

APAP Therapy

- **S9 AutoSet™**
- **AutoSet Mode**
 - **Default Mode Settings**
 - **Min. Pressure:** ______ cm H₂O (4 cm H₂O)
 - **Max. Pressure:** ______ cm H₂O (20 cm H₂O)
 - **Ramp Time:** ______ min(s) (OFF–45 min.)
 - **EPR:** 1 2 3
- **CPAP Mode**
 - **Pressure:** ______ cm H₂O (4–20 cm H₂O)
 - **Ramp Time:** ______ min(s) (OFF–45 min.)
 - **EPR:** 1 2 3

Bilevel Therapy

- **S9 VPAP™ Auto**
 - **VAuto Mode**
 - **Default Mode Settings**
 - **Max. IPAP:** ______ cm H₂O (4–25 cm H₂O)
 - **Min. EPAP:** ______ cm H₂O (4 cm H₂O–IPAP)
 - **PS:** ______ cm H₂O (0–10 cm H₂O)
 - **Ramp Time:** ______ min(s) (OFF–45 min.)
 - **EasyBreathe ON**

- **S9 VPAP S**
 - **Spont Mode**
 - **IPAP:** ______ cm H₂O (4–25 cm H₂O)
 - **EPAP:** ______ cm H₂O (3 cm H₂O–IPAP)
 - **Ramp Time:** ______ min(s) (OFF–45 min.)
 - **EasyBreathe ON**

Bilevel with Backup Rate Therapy

- **S9 VPAP Adapt**
 - **ASV Mode**
 - **Default Mode Settings**
 - **EPAP:** ______ cm H₂O (4–15 cm H₂O)
 - **Min. PS:** ______ cm H₂O (0–6 cm H₂O)
 - **Max. PS:** ______ cm H₂O (5–20 cm H₂O)
 - **Ramp Time:** ______ min(s) (OFF–45 min.)
 - **Backup Rate:** automatic (15 BPM)

VPAP Adapt Sample Prescription

- **Note:** Ensure Ti Max, Ti Min, Rise Time, Trigger and Cycle are set appropriately to maintain patient-device synchrony.
VPAP Adapt Therapy Titration Protocol

Indications for ASV therapy
- Periodic breathing, both normocapnic and hypocapnic
- Other forms of central and concomitant obstructive events\(^1\) (mixed sleep apnea)
- Complex sleep apnea (CompSA)\(^2\)

The guidelines below can help to set up and treat patients with central breathing disorders using the standard ASV mode in ResMed’s adaptive servo-ventilation (ASV) devices. This guidance is intended for in-lab titration and should not supersede direction by a physician.

For more details on therapy settings and adjustments, please refer to the Clinical Guide for the specific therapy device.

ASV default settings
Only three therapy parameters to set

- **EPAP**: 5 cm H\(_2\)O
- **Min PS**: 3 cm H\(_2\)O
- **Max PS**: 15 cm H\(_2\)O
- **Ramp**: OFF

ASVAuto default settings
Only four therapy parameters to set

- **Min EPAP**: 4 cm H\(_2\)O
- **Max EPAP**: 15 cm H\(_2\)O
- **Min PS**: 3 cm H\(_2\)O
- **Max PS**: 15 cm H\(_2\)O
- **Ramp**: OFF

Notes
S9 VPAP Adapt Reimbursement Coding

MD – Primary care physician

ICD-9 Codes
Sleep-related breathing disorders, hypersomnias, circadian rhythm sleep disorders, parasomnias, sleep-related movement disorders (a listing of ICD-9 codes related to sleep disorders can be found in the ResMed Reimbursement Manual)
EXAMPLE: 780.54 Hypersomnia, unspecified
* It is important to note that Medicare will not recognize all codes as medically necessary for sleep disorder testing. Medicare most commonly accepts diagnoses of sleep-related breathing disorders, narcolepsy, parasomnias and impotence.

MD – sleep specialist

ICD-9 Codes

327.21 Primary CSA*
327.22 CSA due to high altitude periodic breathing
327.26 Sleep-related hyperventilation/hypoxemia in conditions classifiable elsewhere (requires underlying diagnosis code)
327.27 CSA in conditions classified elsewhere (requires underlying diagnosis code)
786.04 CSA due to CSR

* Most commonly used for complex sleep apnea patients. These are examples of diagnoses that may be associated with the above mentioned technology. Physicians must determine the appropriate ICD-9 diagnosis based on individual patient needs during the initial exam or through a history and physical.

CPT® Codes

95810 PSG; sleep staging with four or more additional parameters of sleep, attended by a technologist
95811 PSG; sleep staging with four or more additional parameters of sleep, with initiation of continuous positive airway pressure therapy or bilevel ventilation, attended by a technologist (94770 carbon dioxide, expired gas determination by infrared analyzer)

CPT® is a trademark of the American Medical Association

Definitions

Respiratory Insufficiency – Impairment in respiratory function severe enough to prohibit certain activities that the patient might normally pursue, and to interfere with daily living; occurring in association with measurements of respiratory mechanics and/or gas exchange that are markedly abnormal.

Complex sleep apnea (CompSA) is a form of CSA specifically identified by the persistence or emergence of central apneas or hypopneas upon exposure to CPAP or an E0470 device when obstructive events have disappeared. These patients have predominantly obstructive or mixed apneas during the diagnostic sleep study occurring at greater than or equal to five times per hour. With use of a CPAP or E0470, they show a pattern of apneas and hypopneas that meets the definition of CSA.

CSA is defined as:
(1) An apnea–hypopnea index greater than five; and
(2) Central apneas/hypopneas greater than 50% of the total apneas/hypopneas; and
(3) Central apneas or hypopneas greater than or equal to five times per hour; and
(4) Symptoms of either excessive sleepiness or disrupted sleep.1

References

Prescription for S9 VPAP Adapt

HCPCS Code
E0471 Bilevel w/ backup rate
Medicare Policy for Treatment of OSA
(Effective 2/4/11)

CPAP Qualifications (E0601)
Patient must meet **all** the following criteria to qualify for an E0601 device (CPAP, such as S9™ Series)

- Patient has had a **face-to-face clinical evaluation** by treating physician prior to sleep test. See back for additional information.
- Patient has had a Medicare-covered sleep test that meets either of the following criteria:
 a. AHI/RDI is ≥ 15 events per hour with minimum of 30 events; or,
 b. AHI/RDI is ≥ 5 and ≤ 14 events per hour with minimum of 10 events and documentation of excessive daytime sleepiness, impaired cognition, mood disorders, insomnia, hypertension, ischemic heart disease or history of stroke. See back for additional information.
- Diagnosed with OSA (ICD-9 code of 327.23)
- Patient and/or caregiver has received instruction from the supplier of the CPAP device and accessories in the proper use and care of the equipment.

Bilevel Qualifications (E0470)
(Follow for CPAP to bilevel conversion)
Patient must meet **all** the following criteria to qualify for an E0470 device (bilevel without a backup rate, such as VPAP™ Auto)

- Patient is qualified for E0601 (CPAP)
- Treating physician documented both of the following issues were addressed prior to changing a patient from an E0601 to an E0470 device due to ineffective therapy:
 a. An appropriate interface has been properly fitted and the beneficiary is using it without difficulty. The properly fitted interface will be used with the E0470 device; and
 b. The current pressure setting of the E0601 prevents the beneficiary from tolerating the therapy, and lower pressure settings of the E0601 were tried but failed to:
 1. Adequately control the symptoms of OSA; or
 2. Improve sleep quality; or
 3. Reduce the AHI/RDI to acceptable levels.

Documentation for Continued Coverage
(For continuing to bill months 4-13)

- Between 31st and 91st day, treating physician has a face-to-face clinical re-evaluation with patient documenting that symptoms of OSA improved.
- Objective evidence of adherence to use of the PAP device reviewed by treating physician. (Adherence is use of PAP ≥ 4 hours per night on 70% of nights during a consecutive 30-day period anytime during the first 3 months of initial usage. Documentation of adherence to PAP therapy shall be accomplished through direct download or visual inspection of usage data.)
Bilevel Conversion Pathways

Day 1 – 60 (from initial CPAP setup)
- Document criteria for ineffective CPAP therapy
- Rx for E0470
- Clinical re-evaluation and documentation of adherence on the bilevel between 31st – 91st day from CPAP initiation

Day 61 – 90 (from initial CPAP setup)
- Document criteria for ineffective CPAP therapy
- Rx for E0470
- Clinical re-evaluation and documentation of adherence on the bilevel by 120th day from CPAP initiation

Post Day 90 (from initial CPAP setup)
- Document criteria for ineffective CPAP therapy
- Rx for E0470
- New face-to-face clinical evaluation
- Clinical re-evaluation and documentation of adherence on the bilevel between 31st – 91st day from bilevel initiation

1. **Face-to-face clinical evaluation** may include sleep history and symptoms of OSA, Epworth Sleepiness Scale and physical exam documenting body mass index, neck circumference and a focused cardiopulmonary and upper airway evaluation. Some of these elements, in addition to other details, must be documented in patient charts.

2. **Medicare-covered sleep tests** include Type I, Type II, Type III and Type IV (must monitor and record a minimum of three (3) channels). All sleep tests must be interpreted by a physician who is board-certified in sleep medicine by the ABMS, board-certified in sleep medicine by member board of ABMS, trained in an ABMS member board specialty and is awaiting exam, or active staff member of an AASM or The Joint Commission accredited sleep center or lab. (Effective 11/1/08 for Home Sleep Testing and 1/1/10 for Polysomnography)

3. **AHI** is defined as the average number of episodes of apnea and hypopnea per hour of sleep. **RDI** is defined as the average number of apneas plus hypopneas per hour of recording.

4. **If the patient fails the 12-week trial:**
 Beneficiaries requalify for a PAP device with both:
 1. Face-to-face clinical re-evaluation by treating physician to determine etiology of failure to respond to PAP therapy; and
 2. Repeat sleep test in a facility-based setting (Type 1 study).

Respiratory Assist Device (RAD) Qualifying Guidelines

CMS guidelines February 2011

I. Restrictive Thoracic Disorders

Perform one of the following:
- ABGs (done while awake) PaCO₂ ≥ 52 mm Hg (patient’s prescribed FiO₂)
- Sleep oximetry Oxygen saturation ≤ 88% for ≥ 5 minutes, minimum 2 hours recording time (patient’s prescribed FiO₂)
- For neuromuscular disease only, either FVC < 50% of predicted or MIP < 60 cm H₂O

COPD does not contribute significantly to pulmonary limitation

Based on the treating physician’s judgment

II. COPD

For COPD patients to qualify for a RAD with backup rate (E0471):

Situation 1
After period of initial use of an E0470; ABG (done while awake) shows PaCO₂ worsens ≥ 7 mm Hg compared to original ABG result (on patient’s prescribed FiO₂); PSG demonstrates oxygen saturation ≤ 88% for ≥ 5 minutes, minimum 2 hours recording time, on an E0470, not caused by obstructive upper airway events (ie, AHI < 5).

Documentation of neuromuscular disease or severe thoracic cage abnormality

Situation 2
No sooner than 61 days after initial use of E0470; ABG (done while awake) shows PaCO₂ ≥ 52 mm Hg (on patient’s prescribed FiO₂); Sleep oximetry on an E0470 demonstrates oxygen saturation ≤ 88% for ≥ 5 minutes, minimum 2 hours recording time (on 2 L/min O₂ or patient’s prescribed FiO₂, whichever is higher).

Respiratory Assist Device (RAD) Documentation Requirements for Continued Coverage

Patients on an E0470 or E0471 device must be reevaluated no sooner than 61 days after initiating therapy.

Required Documentation
- Progress of relevant symptoms
- Signed and dated statement by treating physician declaring patient using average 4 hours per 24-hour period and patient benefiting from use

ResMed E0470 and E0471 Devices
E0470—Bilevel without a backup rate
- VPAP™ Auto
- VPAP S

E0471—Bilevel with a backup rate
- VPAP ST
- VPAP Adapt
III. Central Sleep Apnea or Complex Sleep Apnea

Improvement of sleep-associated hypoventilation with use of E0470 or E0471 device on:
- Settings that will be prescribed for initial use at home
- Patient’s prescribed FiO2

Based on the treating physician’s judgment

(E0470) or (E0471)

IV. Hypoventilation

A diagnosis of central sleep apnea (CSA) requires all of the following:
1. An apnea hypopnea index > 5
2. Central apneas/hypopneas > 50% of the total apneas/hypopneas
3. Central apneas or hypopneas ≥ 5 times per hour
4. Symptoms of either excessive sleepiness or disrupted sleep

Complex sleep apnea (CompSA) is a form of central apnea
- Identified by the persistence or emergence of central apneas or hypopneas upon exposure to CPAP or an E0470 device when obstructive events have disappeared
- CompSA patients have predominately obstructive or mixed apneas during the diagnostic sleep study occurring at ≥ 5 times per hour
- With use of a CPAP or E0470 device, they show a pattern of apneas and hypopneas that meets the definition of CSA

Spirometry
FEV1/FVC ≥ 70% and an FEV1 ≥ 50% of predicted
Refer to SEVERE COPD category for information about device coverage for patients with FEV1/FVC < 70% or FEV1 < 50% of predicted

ABGs (done while awake)
PaCO2 ≥ 45 mm Hg (patient’s prescribed FiO2)

Spirometry
FEV1/FVC ≥ 70% and an FEV1 ≥ 50% of predicted
Refer to SEVERE COPD category for information about device coverage for patients with FEV1/FVC < 70% or FEV1 < 50% of predicted

ABGs (done while awake)
PaCO2 worsens ≥ 7 mm Hg compared to original ABG (patient’s prescribed FiO2) or
PSG demonstrates oxygen saturation ≤ 88% for ≥ 5 minutes, minimum 2 hours recording time not caused by obstructive upper airway events (ie, AHI < 5)

Spirometry
FEV1/FVC ≥ 70% and an FEV1 ≥ 50% of predicted
Refer to SEVERE COPD category for information about device coverage for patients with FEV1/FVC < 70% or FEV1 < 50% of predicted

ABGs (done during sleep or immediately upon awakening)
PaCO2 worsens ≥ 7 mm Hg compared to original ABG (patient’s prescribed FiO2) or
PSG demonstrates oxygen saturation ≤ 88% for ≥ 5 minutes, minimum 2 hours recording time not caused by obstructive upper airway events (ie, AHI < 5)

Spirometry
FEV1/FVC ≥ 70% and an FEV1 ≥ 50% of predicted
Refer to SEVERE COPD category for information about device coverage for patients with FEV1/FVC < 70% or FEV1 < 50% of predicted

ABGs (done while awake)
PaCO2 worsens ≥ 7 mm Hg compared to ABG result used to qualify for E0470 (patient’s prescribed FiO2) or
PSG demonstrates oxygen saturation ≤ 88% for ≥ 5 minutes, minimum 2 hours recording time not caused by obstructive upper airway events (ie, AHI < 5)
Pair S9 VPAP Tx with ResMed’s premium masks for successful overnight titrations.

Swift™ FX
Mirage™ FX
Quattro™ FX

Global leaders in sleep and respiratory medicine www.resmed.com