FEATURES

- Ultralow offset voltage
 - \(T_a = 25°C, \) 25 \(\mu \)V maximum
- Outstanding offset voltage drift 0.3 \(\mu \)V/°C maximum
- Excellent open-loop gain and gain linearity
 - 12 V/\(\mu \)V typical
- CMRR: 130 dB minimum
- PSRR: 115 dB minimum
- Low supply current 2.0 mA maximum
- Fits industry-standard precision operational amplifier sockets

GENERAL DESCRIPTION

The OP177 features one of the highest precision performance of any operational amplifier currently available. Offset voltage of the OP177 is only 25 \(\mu \)V maximum at room temperature. The ultralow V\(_{os} \) of the OP177 combines with the exceptional offset voltage drift (TCV\(_{os} \)) of 0.3 \(\mu \)V/°C maximum to eliminate the need for external V\(_{os} \) adjustment and increases system accuracy over temperature.

The OP177 open-loop gain of 12 V/\(\mu \)V is maintained over the full ±10 V output range. CMRR of 130 dB minimum, PSRR of 120 dB minimum, and maximum supply current of 2 mA are just a few examples of the excellent performance of this operational amplifier. The combination of outstanding specifications of the OP177 ensures accurate performance in high closed-loop gain applications.

This low noise, bipolar input operational amplifier is also a cost effective alternative to chopper-stabilized amplifiers. The OP177 provides chopper-type performance without the usual problems of high noise, low frequency chopper spikes, large physical size, limited common-mode input voltage range, and bulky external storage capacitors.

The OP177 is offered in the −40°C to +85°C extended industrial temperature ranges. This product is available in 8-lead PDIP, as well as the space saving 8-lead SOIC.
OP177* Product Page Quick Links
Last Content Update: 10/11/2016

Comparable Parts
View a parametric search of comparable parts

Evaluation Kits
• EVAL-OPAMP-1 Evaluation Board

Documentation
Application Notes
• AN-649: Using the Analog Devices Active Filter Design Tool

Data Sheet
• OP177: Ultraprecision Operational Amplifier Data Sheet

Tools and Simulations
• OP177 SPICE Macro-Model

Reference Designs
• CN0039
• CN0040
• CN0041
• CN0042
• CN0048
• CN0052
• CN0061

Reference Materials
Technical Articles
• High-Voltage Monitor Features High Accuracy

Design Resources
• OP177 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

Discussions
View all OP177 EngineerZone Discussions

Sample and Buy
Visit the product page to see pricing options

Technical Support
Submit a technical question or find your regional support number

* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.
TABLE OF CONTENTS

- **Features** ... 1
- **Pin Configuration** ... 1
- **General Description** .. 1
- **Functional Block Diagram** .. 1
- **Revision History** .. 2
- **Specifications** .. 3
 - Electrical Characteristics ... 3
 - Test Circuits ... 4
- **Absolute Maximum Ratings** .. 5
- **Thermal Resistance** .. 5
- **ESD Caution** .. 5
- **Typical Performance Characteristics** 6
- **Applications Information** .. 9
 - Gain Linearity ... 9
 - Thermocouple Amplifier with Cold-Junction Compensation 9
 - Precision High Gain Differential Amplifier 10
 - Isolating Large Capacitive Loads 10
 - Bilateral Current Source .. 10
 - Precision Absolute Value Amplifier 10
 - Precision Positive Peak Detector 12
 - Precision Threshold Detector/Amplifier 12
- **Outline Dimensions** ... 13
- **Ordering Guide** .. 14

REVISION HISTORY

4/16—Rev. G to Rev. H
Changes to Figure 27 .. 9

9/12—Rev. F to Rev. G
Changes to Features and General Description Section 1
Updated Outline Dimensions .. 13
Changes to Ordering Guide .. 14

3/09—Rev. E to Rev. F
Added Figure 23, Renumbered Sequentially 8
Updated Outline Dimensions .. 13

5/06—Rev. D to Rev. E
Changes to Figure 1 .. 1
Change to Specifications Table 1 .. 3
Changes to Specifications Table 2 .. 4
Changes to Table 3 .. 5
Changes to Figure 23 and Figure 24 .. 9
Changes to Figure 32 .. 12
Updated the Ordering Guide .. 14

4/06—Rev. C to Rev. D
Change to Pin Configuration Caption 1
Changes to Features ... 1
Change to Table 2 ... 4
Change to Figure 2 .. 4
Changes to Figure 10 and Figure 11 6
Changes to Figure 12 through Figure 17 7
Changes to Figure 18 through Figure 22 8
Change to Figure 27 .. 10
Changes to Figure 30 and Figure 31 11
Updated Outline Dimensions .. 13
Changes to Ordering Guide .. 13

1/05—Rev. B to Rev. C
Edits to Features ... 1
Edits to General Description .. 1
Edits to Pin Connections ... 1
Edits to Electrical Characteristics ... 2, 3
Global deletion of references to OP177E 3, 4, 10
Edits to Absolute Maximum Ratings 5
Edits to Package Type .. 5
Edits to Ordering Guide .. 5
Edit to Outline Dimensions .. 11

11/95—Rev. 0: Initial Version
SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

At $V_S = \pm 15\,\text{V}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>OP177F</th>
<th>OP177G</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT OFFSET VOLTAGE</td>
<td>V_{OS}</td>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT LONG-TERM OFFSET1</td>
<td>$\Delta V_{OS}/\text{time}$</td>
<td></td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>INPUT OFFSET CURRENT</td>
<td>I_{OS}</td>
<td></td>
<td>-0.2</td>
<td>+1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT NOISE VOLTAGE</td>
<td>e_n</td>
<td>$f_o = 1,\text{Hz to 100 Hz}$</td>
<td>118</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT NOISE CURRENT</td>
<td>i_n</td>
<td>$f_o = 1,\text{Hz to 100 Hz}$</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>INPUT RESISTANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Mode3</td>
<td>R_{IN}</td>
<td></td>
<td>26</td>
<td>45</td>
</tr>
<tr>
<td>INPUT RESISTANCE COMMON MODE</td>
<td>R_{INCM}</td>
<td></td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>INPUT VOLTAGE RANGE4</td>
<td>I_{VR}</td>
<td></td>
<td>±13</td>
<td>±14</td>
</tr>
<tr>
<td>COMMON-MODE REJECTION RATIO</td>
<td>$CMRR$</td>
<td>$V_{CM} = \pm 13,\text{V}$</td>
<td>130</td>
<td>140</td>
</tr>
<tr>
<td>POWER SUPPLY REJECTION RATIO</td>
<td>$PSRR$</td>
<td>$V_S = \pm 3,\text{V to 18 V}$</td>
<td>115</td>
<td>125</td>
</tr>
<tr>
<td>LARGE SIGNAL VOLTAGE GAIN</td>
<td>A_{VO}</td>
<td>$R_L \geq 2,\text{kΩ}, V_O = \pm 10,\text{V}$</td>
<td>5000</td>
<td>12,000</td>
</tr>
<tr>
<td>OUTPUT VOLTAGE SWING</td>
<td>V_O</td>
<td>$R_L \geq 10,\text{kΩ}$</td>
<td>±13.5</td>
<td>±14.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L \geq 2,\text{kΩ}$</td>
<td>±12.5</td>
<td>±13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$R_L \geq 1,\text{kΩ}$</td>
<td>±12.0</td>
<td>±12.5</td>
</tr>
<tr>
<td>SLEW RATE2</td>
<td>SR</td>
<td>$R_L \geq 2,\text{kΩ}$</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>CLOSED-LOOP BANDWIDTH2</td>
<td>BW</td>
<td>$A_{VCL} = 1$</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>OPEN-LOOP OUTPUT RESISTANCE</td>
<td>R_O</td>
<td></td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>POWER CONSUMPTION</td>
<td>P_D</td>
<td>$V_S = \pm 15,\text{V, no load}$</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_S = \pm 3,\text{V, no load}$</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>SUPPLY CURRENT</td>
<td>I_{SY}</td>
<td>$V_S = \pm 15,\text{V, no load}$</td>
<td>1.6</td>
<td>2</td>
</tr>
<tr>
<td>OFFSET ADJUSTMENT RANGE</td>
<td>R_P</td>
<td>$R_P = 20,\text{kΩ}$</td>
<td>±3</td>
<td>±3</td>
</tr>
</tbody>
</table>

1 Long-term input offset voltage stability refers to the averaged trend line of V_{OS} vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically less than 2.0 µV.

2 Sample tested.

3 Guaranteed by design.

4 Guaranteed by CMRR test condition.

5 To ensure high open-loop gain throughout the ±10 V output range, A_{VOL} is tested at $-10\,\text{V} \leq V_O \leq 0\,\text{V}, 0\,\text{V} \leq V_O \leq +10\,\text{V}$, and $-10\,\text{V} \leq V_O \leq +10\,\text{V}$.
At $V_S = \pm 15\, \text{V}$, $-40^\circ\text{C} \leq T_A \leq +85^\circ\text{C}$, unless otherwise noted.

Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>OP177F Min</th>
<th>OP177F Typ</th>
<th>OP177F Max</th>
<th>OP177G Min</th>
<th>OP177G Typ</th>
<th>OP177G Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset Voltage</td>
<td>V_{OS}</td>
<td></td>
<td>15</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td></td>
<td></td>
<td>μV</td>
</tr>
<tr>
<td>Average Input Offset Voltage Drift1</td>
<td>TC_{VOS}</td>
<td></td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>1.2</td>
<td></td>
<td></td>
<td>μV/°C</td>
</tr>
<tr>
<td>Input Offset Current</td>
<td>I_{OS}</td>
<td></td>
<td>0.5</td>
<td>2.2</td>
<td>0.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Average Input Offset Current Drift2</td>
<td>$TC_{I_{OS}}$</td>
<td></td>
<td>1.5</td>
<td>40</td>
<td>1.5</td>
<td>85</td>
<td></td>
<td></td>
<td>pA/°C</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td>I_B</td>
<td></td>
<td>-0.2</td>
<td>+2.4</td>
<td>+2.4</td>
<td>± 6</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Average Input Bias Current Drift2</td>
<td>$TC_{I_{B}}$</td>
<td></td>
<td>8</td>
<td>40</td>
<td>15</td>
<td>60</td>
<td></td>
<td></td>
<td>pA/°C</td>
</tr>
<tr>
<td>Input Voltage Range3</td>
<td>IVR</td>
<td></td>
<td>±13</td>
<td>±13.5</td>
<td>±13</td>
<td>±13.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>COMMON-MODE REJECTION RATIO</td>
<td>CMRR</td>
<td></td>
<td>120</td>
<td>140</td>
<td>110</td>
<td>140</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>POWER SUPPLY REJECTION RATIO</td>
<td>PSRR</td>
<td>$V_S = \pm 3, \text{V}$ to $\pm 18, \text{V}$</td>
<td>110</td>
<td>120</td>
<td>106</td>
<td>115</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>LARGE-SIGNAL VOLTAGE GAIN4</td>
<td>A_{VO}</td>
<td>$R_L \geq 2, \text{kΩ}, V_O = \pm 10, \text{V}$</td>
<td>2000</td>
<td>6000</td>
<td>1000</td>
<td>4000</td>
<td></td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>OUTPUT VOLTAGE SWING</td>
<td>V_O</td>
<td>$R_L \geq 2, \text{kΩ}$</td>
<td>±12</td>
<td>±13</td>
<td>±12</td>
<td>±13</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>POWER CONSUMPTION</td>
<td>P_D</td>
<td>$V_S = \pm 15, \text{V}$, no load</td>
<td>60</td>
<td>75</td>
<td>60</td>
<td>75</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>SUPPLY CURRENT</td>
<td>I_{SY}</td>
<td>$V_S = \pm 15, \text{V}$, no load</td>
<td>20</td>
<td>2.5</td>
<td>2</td>
<td>2.5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

1 TC_{VOS} is sample tested.

2 Guaranteed by endpoint limits.

3 Guaranteed by CMRR test condition.

4 To ensure high open-loop gain throughout the $\pm 10\, \text{V}$ output range, A_{VO} is tested at $-10\, \text{V} \leq V_O \leq 0\, \text{V}$, $0\, \text{V} \leq V_O \leq +10\, \text{V}$, and $-10\, \text{V} \leq V_O \leq +10\, \text{V}$.

TEST CIRCUITS

Figure 3. Typical Offset Voltage Test Circuit

Figure 4. Optional Offset Nulling Circuit

Figure 5. Burn-In Circuit
ABSOLUTE MAXIMUM RATINGS

Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22 V</td>
</tr>
<tr>
<td>Internal Power Dissipation1</td>
<td>500 mW</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±30 V</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>±22 V</td>
</tr>
<tr>
<td>Output Short-Circuit Duration</td>
<td>Indefinite</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +125°C</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>−40°C to +85°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 60 sec)</td>
<td>300°C</td>
</tr>
<tr>
<td>DICE Junction Temperature (TJ)</td>
<td>−65°C to +150°C</td>
</tr>
</tbody>
</table>

1 For supply voltages less than ±22 V, the absolute maximum input voltage is equal to the supply voltage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θ_{JA} is specified for worst-case mounting conditions, that is, θ_{JA} is specified for device in socket for PDIP; θ_{JC} is specified for device soldered to printed circuit board for SOIC package.

Table 4. Thermal Resistance

<table>
<thead>
<tr>
<th>Package Type</th>
<th>θ_{JA}</th>
<th>θ_{JC}</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Lead PDIP (P-Suffix)</td>
<td>103</td>
<td>43</td>
<td>°C/W</td>
</tr>
<tr>
<td>8-Lead SOIC (S-Suffix)</td>
<td>158</td>
<td>43</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Gain Linearity (Input Voltage vs. Output Voltage)

Figure 7. Power Consumption vs. Power Supply

Figure 8. Warm-Up Vos Drift (Normalized) Z Package

Figure 9. Offset Voltage Change Due to Thermal Shock

Figure 10. Open-Loop Gain vs. Temperature

Figure 11. Open-Loop Gain vs. Power Supply Voltage
Figure 12. Input Bias Current vs. Temperature

Figure 13. Input Offset Current vs. Temperature

Figure 14. Closed-Loop Response for Various Gain Configurations

Figure 15. Open-Loop Frequency Response

Figure 16. CMRR vs. Frequency

Figure 17. PSRR vs. Frequency
Figure 18. Total Input Noise Voltage vs. Frequency

Figure 19. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency Indicated)

Figure 20. Maximum Output Swing vs. Frequency

Figure 21. Maximum Output Voltage vs. Load Resistance

Figure 22. Output Short-Circuit Current vs. Time

Figure 23. Input Bias (Ib) vs. Common-Mode Voltage (Vcm)
APPLICATIONS INFORMATION

GAIN LINEARITY

The actual open-loop gain of most monolithic operational amplifiers varies at different output voltages. This nonlinearity causes errors in high closed-loop gain circuits.

It is important to know that the manufacturer's AVO specification is only a part of the solution because all automated testers use endpoint testing and, therefore, show only the average gain. For example, Figure 24 shows a typical precision operational amplifier with a respectable open-loop gain of 650 V/mV. However, the gain is not constant through the output voltage range, causing nonlinear errors. An ideal operational amplifier shows a horizontal scope trace.

Figure 25 shows the OP177 output gain linearity trace with the truly impressive average AVO of 12,000 V/mV. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. Analog Devices, Inc., also performs additional testing to ensure consistent high open-loop gain at various output voltages. Figure 26 is a simple open-loop gain test circuit.

THERMOCOUPLE AMPLIFIER WITH COLD-JUNCTION COMPENSATION

An example of a precision circuit is a thermocouple amplifier that must accurately amplify very low level signals without introducing linearity and offset errors to the circuit. In this circuit, an S-type thermocouple with a Seebeck coefficient of 10.3 μV/°C produces 10.3 mV of output voltage at a temperature of 1000°C. The amplifier gain is set at 973.16, thus, it produces an output voltage of 10.024 V. Extended temperature ranges beyond 1500°C are accomplished by reducing the amplifier gain. The circuit uses a low cost diode to sense the temperature at the terminating junctions and, in turn, compensates for any ambient temperature change. The OP177, with the high open-loop gain plus low offset voltage and drift, combines to yield a precise temperature sensing circuit. Circuit values for other thermocouple types are listed in Table 5.

Table 5.

<table>
<thead>
<tr>
<th>Thermocouple Type</th>
<th>Seebeck Coefficient</th>
<th>R1</th>
<th>R2</th>
<th>R7</th>
<th>R9</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>39.2 μV/°C</td>
<td>110 Ω</td>
<td>5.76 kΩ</td>
<td>102 kΩ</td>
<td>269 kΩ</td>
</tr>
<tr>
<td>J</td>
<td>50.2 μV/°C</td>
<td>100 Ω</td>
<td>4.02 kΩ</td>
<td>80.6 kΩ</td>
<td>200 kΩ</td>
</tr>
<tr>
<td>S</td>
<td>10.3 μV/°C</td>
<td>100 Ω</td>
<td>20.5 kΩ</td>
<td>392 kΩ</td>
<td>1.07 MΩ</td>
</tr>
</tbody>
</table>

Figure 24. Typical Precision Operational amplifier

Figure 25. Output Gain Linearity Trace

Figure 26. Open-Loop Gain Linearity Test Circuit

Figure 27. Thermocouple Amplifier with Cold Junction Compensation
PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER

The high gain, gain linearity, CMRR, and low TCVos of the OP177 make it possible to obtain performance not previously available in single stage, very high gain amplifier applications. See Figure 28.

For best CMR, \(\frac{R1}{R2} \) must equal \(\frac{R3}{R4} \)

In this example, with a 10 mV differential signal, the maximum errors are listed in Table 6.

![Figure 28. Precision High Gain Differential Amplifier](image)

Table 6. High Gain Differential Amplifier Performance

<table>
<thead>
<tr>
<th>Type</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common-Mode Voltage</td>
<td>0.1%/V</td>
</tr>
<tr>
<td>Gain Linearity, Worst Case</td>
<td>0.02%</td>
</tr>
<tr>
<td>TCVos</td>
<td>0.0003%/°C</td>
</tr>
<tr>
<td>TClvos</td>
<td>0.008%/°C</td>
</tr>
</tbody>
</table>

ISOLATING LARGE CAPACITIVE LOADS

The circuit shown in Figure 29 reduces maximum slew rate but allows driving capacitive loads of any size without instability. Because the 100 \(\Omega \) resistor is inside the feedback loop, the effect on output impedance is reduced to insignificance by the high open loop gain of the OP177.

![Figure 29. Isolating Capacitive Loads](image)

BILATERAL CURRENT SOURCE

The current sources shown in Figure 30 supply both positive and negative currents into a grounded load.

Note that

\[
Z_o = \frac{R_5 \left(\frac{R_4}{R_2} + 1 \right)}{R_2} - \frac{R_3}{R_1}
\]

and that for \(Z_o \) to be infinite

\[
\frac{R_5 + R_4}{R_2} \text{ must } \frac{R_3}{R_1}
\]

PRECISION ABSOLUTE VALUE AMPLIFIER

The high gain and low TCVos assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the operational amplifiers (for details, see Figure 31).

![Figure 30. Bilateral Current Source](image)
Figure 31. Precision Absolute Value Amplifier

Figure 32. Precision Positive Peak Detector
PRECISION POSITIVE PEAK DETECTOR

In Figure 32, CH must be polystyrene, Teflon®, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of CH and the bias current of the AD820.

PRECISION THRESHOLD DETECTOR/AMPLIFIER

In Figure 33, when \(V_{IN} < V_{TH} \), amplifier output swings negative, reverse biasing diode D1. \(V_{OUT} = V_{TH} \) if \(R_L = \infty \). When \(V_{IN} \geq V_{TH} \), the loop closes.

\[
V_{OUT} = V_{TH} + (V_{IN} - V_{TH}) \left(1 + \frac{R_F}{R_S} \right)
\]

\(C_C \) is selected to smooth the response of the loop.
OUTLINE DIMENSIONS

Figure 34. 8-Lead Plastic Dual In-Line Package (PDIP)
P-Suffix (N-8)
Dimensions show in inches and (millimeters)

Figure 35. 8-Lead Standard Small Outline Package (SOIC_N)
S-Suffix (R-8)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP177FPZ</td>
<td>−40°C to +85°C</td>
<td>8-Lead PDIP</td>
<td>P-Suffix (N-8)</td>
</tr>
<tr>
<td>OP177GPZ</td>
<td>−40°C to +85°C</td>
<td>8-Lead PDIP</td>
<td>P-Suffix (N-8)</td>
</tr>
<tr>
<td>OP177FSZ</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177FSZ-REEL</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177FSZ-REEL7</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177GS</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177GS-REEL</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177GS-REEL7</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177GSZ</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177GSZ-REEL</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
<tr>
<td>OP177GSZ-REEL7</td>
<td>−40°C to +85°C</td>
<td>8-Lead SOIC_N</td>
<td>S-Suffix (R-8)</td>
</tr>
</tbody>
</table>

\(^1\) Z = RoHS Compliant Part.