Common Name: SULFURIC ACID

Synonyms: Battery Acid; Hydrogen Sulfate; Oil of Vitriol

Chemical Name: Sulfuric Acid

Date: June 2001 Revision: December 2008

Description and Use

Sulfuric Acid is a clear, colorless to brown, odorless liquid. It is used to make storage batteries, fertilizers, paper products, textiles, explosives, and pharmaceuticals, and in steel and iron production.

Reasons for Citation

- Sulfuric Acid is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, NIOSH, NTP, DEP, IARC, NFPA and EPA.
- This chemical is on the Special Health Hazard Substance List.

FIRST AID

Eye Contact
- Immediately flush with large amounts of water for at least 30 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while flushing. Seek medical attention immediately.

Skin Contact
- Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of soap and water. Seek medical attention immediately.

Inhalation
- Remove the person from exposure.
- Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped.
- Transfer promptly to a medical facility.
- Medical observation is recommended for 24 to 48 hours after overexposure, as pulmonary edema may be delayed.

EMERGENCY NUMBERS

Poison Control: 1-800-222-1222
CHEMTREC: 1-800-424-9300
NJDEP Hotline: 1-877-927-6337
National Response Center: 1-800-424-8802

Hazard Summary

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>NJDOH</th>
<th>NFPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>FLAMMABILITY</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>REACTIVITY</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CARCINOGEN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORROSIVE AND REACTIVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXIDIZER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE DO NOT USE WATER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Workplace Exposure Limits

OSHA: The legal airborne permissible exposure limit (PEL) is 1 mg/m³ averaged over an 8-hour workshift.

NIOSH: The recommended airborne exposure limit (REL) is 1 mg/m³ averaged over a 10-hour workshift.

ACGIH: The threshold limit value (TLV) is 0.2 mg/m³ (as the Thoracic fraction) averaged over an 8-hour workshift.

- Sulfuric Acid is a CARCINOGEN in humans. There may be no safe level of exposure to a carcinogen, so all contact should be reduced to the lowest possible level.
Determining Your Exposure

- Read the product manufacturer’s Material Safety Data Sheet (MSDS) and the label to determine product ingredients and important safety and health information about the product mixture.
- For each individual hazardous ingredient, read the New Jersey Department of Health Hazardous Substance Fact Sheet, available on the RTK website (www.nj.gov/health/eoh/rtkweb) or in your facility’s RTK Central File or Hazard Communication Standard file.
- You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Employees Occupational Safety and Health (PEOSH) Act if you are a public worker in New Jersey, and under the federal Occupational Safety and Health Act (OSHA) if you are a private worker.
- The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard (29 CFR 1910.1200) and the PEOSH Hazard Communication Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees.

Health Hazard Information

Acute Health Effects
The following acute (short-term) health effects may occur immediately or shortly after exposure to Sulfuric Acid:

- Contact can severely irritate and burn the skin and eyes, and may lead to blindness.
- Inhaling Sulfuric Acid can irritate the nose and throat.
- Inhaling Sulfuric Acid can irritate the lungs causing coughing and/or shortness of breath. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath.
- Exposure can cause headache, nausea and vomiting.

Chronic Health Effects
The following chronic (long-term) health effects can occur at some time after exposure to Sulfuric Acid and can last for months or years:

Cancer Hazard
Sulfuric Acid is a CARCINOGEN in humans. There is evidence that occupational exposure to strong inorganic acid mists containing Sulfuric Acid cause cancer of the larynx in humans.
- Many scientists believe there is no safe level of exposure to a carcinogen.

Reproductive Hazard
- While Sulfuric Acid has been tested, further testing is required to assess its potential to cause reproductive harm.

Other Effects
- Sulfuric Acid can irritate the lungs. Repeated exposure may cause bronchitis to develop with coughing, phlegm, and/or shortness of breath.
- Repeated exposure can cause permanent lung damage, damage to teeth, and upset stomach.

Medical

Medical Testing
Before beginning employment and at regular times thereafter, (at least annually), the following are recommended:

- Lung function tests

If symptoms develop or overexposure is suspected, the following is recommended:

- Consider chest x-ray after acute overexposure

Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for damage already done are not a substitute for controlling exposure.

Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee Exposure and Medical Records Standard (29 CFR 1910.1020).

Mixed Exposures
- Smoking can cause heart disease, lung cancer, emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce your risk of developing health problems.
Workplace Controls and Practices

Very toxic chemicals, or those that are reproductive hazards or sensitizers, require expert advice on control measures if a less toxic chemical cannot be substituted. Control measures include: (1) enclosing chemical processes for severely irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single exposure, and (3) using general ventilation to control exposures to skin and eye irritants. For further information on workplace controls, consult the NIOSH document on Control Banding at www.cdc.gov/niosh/topics/ctrlbanding/.

The following work practices are also recommended:

- Label process containers.
- Provide employees with hazard information and training.
- Monitor airborne chemical concentrations.
- Use engineering controls if concentrations exceed recommended exposure levels.
- Provide eye wash fountains and emergency showers.
- Wash or shower if skin comes in contact with a hazardous material.
- Always wash at the end of the workshift.
- Change into clean clothing if clothing becomes contaminated.
- Do not take contaminated clothing home.
- Get special training to wash contaminated clothing.
- Do not eat, smoke, or drink in areas where chemicals are being handled, processed or stored.
- Wash hands carefully before eating, smoking, drinking, applying cosmetics or using the toilet.

In addition, the following may be useful or required:

- Before entering a confined space where Sulfuric Acid may be present, check to make sure that an explosive concentration does not exist.
- Where possible, transfer Sulfuric Acid from drums or other containers to process containers in an enclosed system.

Personal Protective Equipment

The OSHA Personal Protective Equipment Standard (29 CFR 1910.132) requires employers to determine the appropriate personal protective equipment for each hazard and to train employees on how and when to use protective equipment.

The following recommendations are only guidelines and may not apply to every situation.

Gloves and Clothing

- Avoid skin contact with Sulfuric Acid. Wear personal protective equipment made from material which can not be permeated or degraded by this substance. Safety equipment suppliers and manufacturers can provide recommendations on the most protective glove and clothing material for your operation.
- Safety equipment manufacturers recommend Butyl, Silver Shield®/4H®, Viton and Barrier® for gloves, and Tychem® fabrics; Zytron® 300; ONESuit®TEC; and Trellechim® HPS and VPS, or the equivalent, as protective materials for clothing.
- All protective clothing (suits, gloves, footwear, headgear) should be clean, available each day, and put on before work.

Eye Protection

- Wear non-vented, impact resistant goggles when working with fumes, gases, or vapors.
- Wear indirect-vent, impact and splash resistant goggles when working with liquids.
- Wear a face shield along with goggles when working with corrosive, highly irritating or toxic substances.

Respiratory Protection

Improper use of respirators is dangerous. Respirators should only be used if the employer has implemented a written program that takes into account workplace conditions, requirements for worker training, respirator fit testing, and medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134).

- Where the potential exists for exposure over 0.2 mg/m³, use a NIOSH approved full facepiece respirator with an acid gas cartridge specifically approved for Sulfuric Acid, with an R or P100 prefilter. Increased protection is obtained from full facepiece powered-air purifying respirators.
- Leave the area immediately if (1) while wearing a filter or cartridge respirator you can smell, taste, or otherwise detect Sulfuric Acid, (2) while wearing particulate filters abnormal resistance to breathing is experienced, or (3) eye irritation occurs while wearing a full facepiece respirator. Check to make sure the respirator-to-face seal is still good. If it is, replace the filter or cartridge. If the seal is no longer good, you may need a new respirator.
- Consider all potential sources of exposure in your workplace. You may need a combination of filters, prefilters or cartridges to protect against different forms of a chemical (such as vapor and mist) or against a mixture of chemicals.
- Where the potential exists for exposure over 2 mg/m³, use a NIOSH approved supplied-air respirator with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus operated in a pressure-demand or other positive-pressure mode.
- Exposure to 15 mg/m³ is immediately dangerous to life and health. If the possibility of exposure above 15 mg/m³ exists, use a NIOSH approved self-contained breathing apparatus with a full facepiece operated in a pressure-demand or other positive-pressure mode equipped with an emergency escape air cylinder.

Fire Hazards

If employees are expected to fight fires, they must be trained and equipped as stated in the OSHA Fire Brigades Standard (29 CFR 1910.156).

- Sulfuric Acid is not combustible, but it is a STRONG OXIDIZER that enhances the combustion of other substances.
- Extinguish fire using an agent suitable for type of surrounding fire. Sulfuric Acid itself does not burn.
- DO NOT USE WATER directly on Sulfuric Acid.
- POISONOUS GASES ARE PRODUCED IN FIRE, including Sulfur Oxides.
- CONTAINERS MAY EXPLODE IN FIRE.
- Sulfuric Acid may ignite combustibles (wood, paper, and oil).
Spills and Emergencies
If employees are required to clean-up spills, they must be properly trained and equipped. The OSHA Hazardous Waste Operations and Emergency Response Standard (29 CFR 1910.120) may apply.

If Sulfuric Acid is spilled or leaked, take the following steps:

- Evacuate personnel and secure and control entrance to the area.
- Eliminate all ignition sources.
- Neutralize spill with crushed limestone, soda ash or lime and place into sealed containers for disposal.
- DO NOT USE WATER OR WET METHOD.
- Ventilate area of spill or leak.
- DO NOT wash into sewer.
- It may be necessary to contain and dispose of Sulfuric Acid as a HAZARDOUS WASTE. Contact your state Department of Environmental Protection (DEP) or your regional office of the federal Environmental Protection Agency (EPA) for specific recommendations.

Handling and Storage
Prior to working with Sulfuric Acid you should be trained on its proper handling and storage.

- Sulfuric Acid reacts violently with ALCOHOL and WATER to release HEAT and will also react violently or explosively with ORGANIC MATERIALS; COMBUSTIBLES; STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE); REDUCING AGENTS (such as LITHIUM, SODIUM, ALUMINUM and their HYDRIDES); and OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE).
- Sulfuric Acid reacts with MOST METALS to produce flammable and explosive Hydrogen gas.
- Sulfuric Acid is not compatible with STRONG ACIDS (such as HYDROCHLORIC and NITRIC); MOISTURE; AMINES; and many OTHER SUBSTANCES.
- Store in tightly closed containers in a cool, well-ventilated area away from HEAT SOURCES, MOIST AIR, and COMBUSTIBLES.
- Sulfuric Acid will absorb WATER from the air.

Occupational Health Information Resources
The New Jersey Department of Health offers multiple services in occupational health. These services include providing informational resources, educational materials, public presentations, and industrial hygiene and medical investigations and evaluations.

For more information, please contact:

New Jersey Department of Health & Senior Services
Right to Know Program
PO Box 368
Trenton, NJ 08625-0368
Phone: 609-984-2202
Fax: 609-984-7407
E-mail: rtk@doh.state.nj.us
Web address: http://www.nj.gov/health/eoh/rtkweb

The Right to Know Hazardous Substance Fact Sheets are not intended to be copied and sold for commercial purposes.
GLOSSARY

ACGIH is the American Conference of Governmental Industrial Hygienists. They publish guidelines called Threshold Limit Values (TLVs) for exposure to workplace chemicals.

Acute Exposure Guideline Levels (AEGLs) are established by the EPA. They describe the risk to humans resulting from once-in-a lifetime, or rare, exposure to airborne chemicals.

Boiling point is the temperature at which a substance can change its physical state from a liquid to a gas.

A carcinogen is a substance that causes cancer.

The CAS number is unique, identifying number, assigned by the Chemical Abstracts Service, to a specific chemical.

CFR is the Code of Federal Regulations, which are the regulations of the United States government.

A combustible substance is a solid, liquid or gas that will burn.

A corrosive substance is a gas, liquid or solid that causes destruction of human skin or severe corrosion of containers.

DEP is the New Jersey Department of Environmental Protection.

DOT is the Department of Transportation, the federal agency that regulates the transportation of chemicals.

EPA is the Environmental Protection Agency, the federal agency responsible for regulating environmental hazards.

ERG is the Emergency Response Guidebook. It is a guide for emergency responders for transportation emergencies involving hazardous substances.

Emergency Response Planning Guideline (ERPG) values provide estimates of concentration ranges where one reasonably might anticipate observing adverse effects.

A fetus is an unborn human or animal.

A flammable substance is a solid, liquid, vapor or gas that will ignite easily and burn rapidly.

The flash point is the temperature at which a liquid or solid gives off vapor that can form a flammable mixture with air.

IARC is the International Agency for Research on Cancer, a scientific group.

Ionization Potential is the amount of energy needed to remove an electron from an atom or molecule. It is measured in electron volts.

IRIS is the Integrated Risk Information System database on human health effects that may result from exposure to various chemicals, maintained by federal EPA.

LEL or Lower Explosive Limit, is the lowest concentration of a combustible substance (gas or vapor) in the air capable of continuing an explosion.

mg/m³ means milligrams of a chemical in a cubic meter of air. It is a measure of concentration (weight/volume).

A mutagen is a substance that causes mutations. A mutation is a change in the genetic material in a body cell. Mutations can lead to birth defects, miscarriages, or cancer.

NFPA is the National Fire Protection Association. It classifies substances according to their fire and explosion hazard.

NIOSH is the National Institute for Occupational Safety and Health. It tests equipment, evaluates and approves respirators, conducts studies of workplace hazards, and proposes standards to OSHA.

NTP is the National Toxicology Program which tests chemicals and reviews evidence for cancer.

OSHA is the federal Occupational Safety and Health Administration, which adopts and enforces health and safety standards.

PEOSHA is the New Jersey Public Employees Occupational Safety and Health Act, which adopts and enforces health and safety standards in public workplaces.

Permeated is the movement of chemicals through protective materials.

ppm means parts of a substance per million parts of air. It is a measure of concentration by volume in air.

Protective Action Criteria (PAC) are values established by the Department of Energy and are based on AEGLs and ERPGs. They are used for emergency planning of chemical release events.

A reactive substance is a solid, liquid or gas that releases energy under certain conditions.

STEL is a Short Term Exposure Limit which is usually a 15-minute exposure that should not be exceeded at any time during a work day.

A teratogen is a substance that causes birth defects by damaging the fetus.

UEL or Upper Explosive Limit is the highest concentration in air above which there is too much fuel (gas or vapor) to begin a reaction or explosion.

Vapor Density is the ratio of the weight of a given volume of one gas to the weight of another (usually Hydrogen), at the same temperature and pressure.

The vapor pressure is a force exerted by the vapor in equilibrium with the solid or liquid phase of the same substance. The higher the vapor pressure the higher concentration of the substance in air.
Common Name: SULFURIC ACID

Synonyms: Battery Acid; Hydrogen Sulfate; Oil of Vitriol

CAS No: 7664-93-9

Molecular Formula: H$_2$SO$_4$

RTK Substance No: 1761

Description: Clear, colorless to brown, odorless liquid

HAZARD DATA

<table>
<thead>
<tr>
<th>Hazard Rating</th>
<th>Firefighting</th>
<th>Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 - Health</td>
<td>Sulfuric Acid is not combustible, but it is a STRONG OXIDIZER that enhances the combustion of other substances. Extinguish fire using an agent suitable for type of surrounding fire. Sulfuric Acid itself does not burn. DO NOT USE WATER directly on Sulfuric Acid. POISONOUS GASES ARE PRODUCED IN FIRE, including Sulfur Oxides. CONTAINERS MAY EXPLODE IN FIRE. Sulfuric Acid may ignite combustibles (wood, paper and oil).</td>
<td>Sulfuric Acid reacts violently with ALCOHOL and WATER to release HEAT and will also react violently or explosively with ORGANIC MATERIALS; COMBUSTIBLES; STRONG BASES (such as SODIUM HYDROXIDE and POTASSIUM HYDROXIDE); REDUCING AGENTS (such as LITHIUM, SODIUM, ALUMINUM and their HYDRIDES); and OXIDIZING AGENTS (such as PERCHLORATES, PEROXIDES, PERMANGANATES, CHLORATES, NITRATES, CHLORINE, BROMINE and FLUORINE). Sulfuric Acid reacts with MOST METALS to produce flammable and explosive Hydrogen gas. Sulfuric Acid is not compatible with STRONG ACIDS (such as HYDROCHLORIC and NITRIC); MOISTURE; AMINES; and many OTHER SUBSTANCES.</td>
</tr>
<tr>
<td>0 - Fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - Reactivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOT#: UN 1830

ERG Guide #: 137

Hazard Class: 8 (Corrosive)

PHYSICAL PROPERTIES

- **Odor Threshold:** Odorless
- **Flash Point:** Nonflammable
- **Vapor Density:** 3.4 (air = 1)
- **Vapor Pressure:** 0.001 mm Hg at 68°F (20°C)
- **Specific Gravity:** 1.8 (water = 1)
- **Water Solubility:** Soluble (mixes)
- **Boiling Point:** 554° to 640°F (290° to 338°C)
- **Melting Point:** 51°F (10°C)
- **Molecular Weight:** 98.1
- **pH:** 0.3

EXPOSURE LIMITS

- **OSHA:** 1 mg/m3, 8-hr TWA
- **NIOSH:** 1 mg/m3, 10-hr TWA
- **ACGIH:** 0.2 mg/m3, 8-hr TWA
- **IDLH:** 15 mg/m3
 - ERPG-1 = 2 mg/m3
 - ERPG-2 = 10 mg/m3
 - ERPG-3 = 30 mg/m3

PROTECTIVE EQUIPMENT

- **Gloves:** Butyl, Silver Shield®/4H®, Viton and Barrier® (>8-hr breakthrough)
- **Coveralls:** Tychem® fabrics; Zytron® 300; ONESuit®TEC; and Trellchem® HPS and VPS (>8-hr breakthrough)
- **Respirator:** <2 mg/m3 - full facepiece APR with Acid gas cartridge and R or P100 prefilter
 >2 mg/m3 - Supplied air or SCBA

HEALTH EFFECTS

- **Eyes:** Severe irritation and burns
- **Skin:** Severe irritation and burns
- **Inhalation:** Nasal irritation; coughing; shortness of breath; headache; nausea and vomiting
- **Chronic:** Strong inorganic acid mists containing Sulfuric Acid cause cancer of the larynx in humans

FIRST AID AND DECONTAMINATION

- **Remove** the person from exposure.
- **Flush** eyes with large amounts of water for at least 30 minutes. Remove contact lenses if worn. Seek medical attention immediately.
- **Quickly** remove contaminated clothing and wash contaminated skin with large amounts of soap and water. Seek medical attention immediately.
- **Begin** artificial respiration if breathing has stopped and CPR if necessary.
- **Transfer** promptly to a medical facility.
- **Medical** observation is recommended as symptoms may be delayed.

Right to Know Hazardous Substance Fact Sheet

December 2008