Selection & Specification Data

<table>
<thead>
<tr>
<th>Generic Type</th>
<th>High density cementitious fireproofing designed for the fire protection of exterior and interior structural steel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A 881kg/m² density, Portland cement-based, cementitious fireproofing. It provides both hydrocarbon and cellulosic fire protection for structural steel and can also be used to upgrade the fire resistance of existing concrete. Recommended areas of application include refineries, petrochemical, pharmaceutical facilities, pulp and paper mills, offshore platforms, nuclear and conventional power plants, factories, warehouses, institutional and biomedical facilities.</td>
</tr>
</tbody>
</table>
| Features | - Over 35 years of proven performance.
- Exceptional durability and toughness.
- UL 1709 hydrocarbon fire rated up to 4 hours.
- BS 476 hydrocarbon fire rated up to 4 hours.
- ISO 22899-1 jet fire rated up to 2 hours.
- ASTM E119 cellulose fire rated up to 4 hours.
- Cryogenic protection against LNG spills and immersion exposures.
- Resistant to 3 bar blast overpressure.
- Hose stream resistant.
- Tolerant to a wide range of climates.
- Lightweight – one-fifth the weight of concrete for equal fire protection.
- Ideal for onsite and offshore applications.
- Easy application by spray or trowel.
- Non-flammable – during or after application.
- Chloride and sulfide free – no special priming required.
- Non-friable – high impact strength. |
| Colour | Non-uniform Speckled Grey
Product colour may vary due to variations in colour of Portland cement. |
| Finish | Textured
If a smooth finish is required, this may be done by trowel, roller or brush typically within 1 to 2 hours after final application of Pyrocrete 241. |
| Primer | Pyrocrete 241 neither promotes nor prevents corrosion. The fireproofing should not be considered as part of the corrosion protection system. For applications where primers are required, use a StonCor Africa approved alkaline resistant primer. Contact StonCor Africa Fireproofing Technical Service for further information and approved primers. |
| Fireproofing | Generally not required. In severe corrosive atmospheres, topcoats may be used for added durability and chemical resistance. Consult StonCor Africa Fireproofing Technical Service for selection of the coating most suitable for the operating environment. |
| Topcoats | Seal Coat: In corrosive environments, use an appropriate topcoat. If topcoating is required, apply Carboguard 1340 as a seal coat. Carboguard 1340 may be applied after 24 hours of final application of Pyrocrete 241. Consult the Carboguard 1340 product data sheet for minimum and maximum cure times.
Topcoat: Surface hardness should be a minimum Shore D654 as measured with a durometer prior to application of the topcoat. Normally this minimum dry time is 10 days at 21°C and 40 days at 4°C, for a thickness of 25mm or less.
Caulking: For exterior installations, Acrilast caulk should be applied at all termination joints between Pyrocrete 241 and the substrate. Contact StonCor Africa Fireproofing Technical Service for full information. |

Application

<table>
<thead>
<tr>
<th>Thickness</th>
<th>13 to 16mm on initial pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td>1.23m² at 25mm thick at 881kg/m³</td>
</tr>
<tr>
<td>Coverage Rate</td>
<td>Field results will vary depending upon application parameters. Coverage based on theoretical gross yield without loss. Material losses during mixing and application must be taken into account when estimating project requirements.</td>
</tr>
</tbody>
</table>

Limitations

Not recommended for use as a refractory cement or where continuous operating temperatures exceed 93°C.

Substrates & Surface Preparation

<table>
<thead>
<tr>
<th>General</th>
<th>Before applying Pyrocrete 241, the substrate coating must be free of all oil, grease, condensation or other contamination.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>If primer is required, steel preparation before priming should be done in accordance with the recommended primer's product data sheet. Contact StonCor Africa Fireproofing Technical Service for approved primers.</td>
</tr>
<tr>
<td>Galvanized</td>
<td>Pyrocrete 241 is usually applied directly over galvanized surface. If priming is required, contact StonCor Africa Fireproofing Technical Service for recommendations.</td>
</tr>
<tr>
<td>Concrete</td>
<td>The recommended primer to seal concrete prior to applying Pyrocrete 241 is Carboguard 1340.</td>
</tr>
<tr>
<td>Non-ferrous</td>
<td>Aluminum, copper and other non-ferrous metals shall be primed with one coat of Carbomastic 15.</td>
</tr>
<tr>
<td>Metals</td>
<td>1.85 kg/m² Galvanized metal lath, may be pre-bent and tie-wired into place for appropriate design. Optionally, beam furring clips or electrically welded, pneumatic or self-tapping screws or studs may be used.</td>
</tr>
<tr>
<td>Lathering &</td>
<td>Contour Design: 1.85kg/m² Galvanized metal lath wrapped around the flange edges towards the web approximately 38mm. Contour column designs allow the use of 50mm x 50mm galvanized or PVC coated hexagonal metal mesh with beam furring clips as an alternate to the 1.85kg/m² galvanized metal lath. Plastic-nosed corner beads may also be used for better thickness control and aesthetics on flange edges of steel. Please refer to design details. For contour applications on structural members with web span greater than 406mm or flange widths greater than 304mm, refer to the UL Fire Resistance Directory under “Coating Materials” section.</td>
</tr>
<tr>
<td>Attachments</td>
<td>Boxed Design: 1.85kg/m² Galvanized metal lath wrapped around the flange towards the web, overlapped 25mm and tie-wired on the flange face 304mm on center. For large webbed members, additional support for lath may be needed for ease of installation. Plastic-nosed corner beads may also be used for better thickness control and aesthetics.</td>
</tr>
</tbody>
</table>

Substrates & Surface Preparation

<table>
<thead>
<tr>
<th>Substrates & Surface Preparation</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>Consult StonCor Africa Fireproofing Technical Service for approved primers.</td>
</tr>
<tr>
<td>Steel</td>
<td>Priming is required. Contact StonCor Africa Fireproofing Technical Service for recommendations.</td>
</tr>
<tr>
<td>Non-ferrous</td>
<td>Consult StonCor Africa Fireproofing Technical Service for approved primers.</td>
</tr>
<tr>
<td>Lathing & Attachments</td>
<td>Consult StonCor Africa Fireproofing Technical Service for approved primers.</td>
</tr>
</tbody>
</table>
Substrates & Surface Preparation

Lathing & Attachments

Tower Skirts and Flat Surfaces (Cont.)

When ram set or welding is prohibited; a pneumatic fastener may be used. On very large areas, control joints are made by scoring halfway through the thickness of Pyrocrete. This is achieved by using the trowel blade edge or an appropriate scoring tool. A preferred option would be the use of plaster-nosed corner beads. Spacing should be 3m centers, both horizontally and vertically. Please refer to design details or contact StonCor Africa Fireproofing Technical Service.

Performance Data (Typical Values)

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durometer Hardness Shore DO</td>
<td>83</td>
</tr>
<tr>
<td>Impact Resistance</td>
<td>Pass</td>
</tr>
<tr>
<td>Density</td>
<td>881kg/m³ (minimum average)</td>
</tr>
<tr>
<td>Bond Strength (Unprimed steel)</td>
<td>1054 KPa</td>
</tr>
<tr>
<td>Deflection</td>
<td>Pass</td>
</tr>
<tr>
<td>Bond Impact</td>
<td>Pass</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>7.6 MPa</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>0</td>
</tr>
<tr>
<td>Smoke Development</td>
<td>0</td>
</tr>
<tr>
<td>Corrosion</td>
<td>0.00 gm/mm²</td>
</tr>
<tr>
<td>Explosion Resistance</td>
<td>3 bar</td>
</tr>
<tr>
<td>NFPA 58 Annex H Torch / Hose Stream Resistance</td>
<td>Pass</td>
</tr>
<tr>
<td>Shrinkage</td>
<td><0.5%</td>
</tr>
</tbody>
</table>

1 Air dry at ambient conditions until constant weight is achieved. Do not force dry. Use ASTM E605 Positive Bead Displacement modified to use 1mm ceramic beads.

2 Bond strength testing performed utilizing ASTM E736 with AWCI Technical Manual 12-A modifications. All test data above was generated under laboratory conditions. Field testing results may vary. Physical property data was derived using 18.7 litres of water per 25kg bag. Material shall reach a hardness of Shore DO 64 prior to handling and topcoating. Test reports and additional data available upon written request.

Application Equipment Guidelines

Listed below are general equipment guidelines for the application of this product. Job site conditions may require modifications to these guidelines to achieve the desired results.

Pump

This material can be pumped with a wide range of piston, rotor stator and squeeze pumps designed to pump cement and plaster materials including:
- Essick – model # FM9/FM5E (Rotor Stator/2L4)
- Putzmeister – model # S5EV (Rotor Stator/2L6)
- Hy-flex – model # HZ-30E (Rotor Stator/2L6)
- Hy-flex – model # H320E (Piston)
- Strong Mfg – model # Spraymate 60 (Rotor Stator/2L6)
- Airtech – model # Swinger (Piston)
- Mayco – model # FF50 (Dual Piston)
- Thomsen – model # PTV 700 (Dual Piston)

Trowel

Standard plasterers’ hawk and trowel may be used. A rubber float may also aid in finishing.

Material Hose

Minimum 25.4mm I.D. hose with 300 psi minimum bursting pressure. For lengths over 15m, use 38mm to 76mm I.D. hose. Do not reduce hose diameter by more than 6.4mm per 7.6m unless a tapered conical reducer equipped with swirl fitting is used. A 3m length 19mm I.D. hose may be added at the gun for use as a whip.

Nozzle / Gun

Bins – part # 7E2 (47-49 fluid tip, 3/8”-1/2” air cap)
Graco – part # 204000 (10-12mm fluid tip / air cap)
Speedflow – part # 701 (10-12mm fluid tip / air cap)
Airtech – Internal mix with 10-12mm fluid tip
Standard plasterers gun with 10-12mm fluid tip

Compressor

Be certain that the air supply is a minimum 600l/m at 689 KPa and higher when distances longer than 22m are required.

Air Line

Use 12mm I.D. line with a minimum bursting pressure of 689 KPa.

Mixing & Thinning

Mixer

Use a heavy-duty mortar mixer with rubber tipped blades that will scrape the sides and bottom of the mixer. A 25kg bag of Pyrocrete 241 typically requires a mixer volume of 250L minimum. Do not use pan type mixers.

Mixing

Target water level – 16 litres
Water level range – 14–18 litres

Add clean, potable water to a mortar mixer with rubber tipped blades. With mixer running slowly, add powder and mix for 5 minutes until a homogenous mortar-like consistency is achieved. Longer mixing times may result in lower densities. Total water must not exceed 18 litres per 25kg bag.

In cool weather, warm water may be used to enhance application. In hot weather, cold water may be used.

Pot Life

2 Hours at 21°C and less at higher temperatures. Pot life ends when the material thickens and becomes unusable.

Density

Target wet density – 1,217 to 1,313kg/m³. Wet density measurements are critical to obtaining correct dry densities. To check wet densities, fill a Dixie cup (or other suitable container of known volume in grams) with mixed material. Screw the excess until even with the rim of the container and weigh it on a gram scale. Multiply the weight (in grams) by a conversion factor based on the size of the container.

Contact StonCor Africa Fireproofing Technical Service for additional details.

Application Procedures

General

Pyrocrete 241 may be applied by spray and/or trowel. Material build will depend on application method, weather conditions and equipment used. For application overhead, a scratch coat of up to 12mm is recommended to key into the lath. Allow to set for approximately 1 to 2 hours at 21°C before applying the subsequent coats. It is recommended that the total required thickness be applied within a 24 hour period. If this is not possible, the preceding coats should be left as sprayed or scored after the initial 24 hour period, material should then be dampened with water before application of additional coats.

- Maximum time to achieve the full thickness is 3 days at 21°C and 50% relative humidity. This would be less at higher temperatures.
- All additional coats are applied monolithically to the entire perimeter of the member.
- At no time shall Pyrocrete 241 be applied at a thickness less than 6mm or “skin” coated.

Finishing

Material can be left as sprayed or finished with a trowel for better aesthetics.

March 2016

To the best of our knowledge the technical data contained herein is true and accurate on the date of publication and is subject to change without prior notice. User must contact StonCor Africa to verify correctness before specifying or ordering. We guarantee accuracy is given or implied. We guarantee our products to conform to StonCor Africa quality control. We assume no responsibility for coverage performance or injuries resulting from use. Liability, if any, is limited to replacement of products. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY STONCOR AFRI EXPRESS OR IMPLIED, STATUTORY, BY OPERATION OF LAW, OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Carboline® and Carboguard® are registered trademarks of Carboline Company.
Pyrocrete® 241

Application Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Material</th>
<th>Surface</th>
<th>Ambient</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 4°C</td>
<td>4°C</td>
<td>4°C</td>
<td>4°C</td>
<td>0%</td>
</tr>
<tr>
<td>Maximum 38°C</td>
<td>52°C</td>
<td>43°C</td>
<td>95%</td>
<td></td>
</tr>
</tbody>
</table>

Curing Schedule

<table>
<thead>
<tr>
<th>Surface Temp and 50% Relative Humidity</th>
<th>Dry to Recoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>21°C</td>
<td>2 Hours</td>
</tr>
</tbody>
</table>

Fresh Pyrocrete 241 must be protected from rain or running water for 24 hours at 21°C. In low humidity, high temperature, direct sun or wind, the Pyrocrete surface should be kept damp for at least 12 hours by applying a water mist or wrapping in plastic sheets to reduce rapid water loss.

Caution: Do not start work if ambient temperatures are expected to drop below 2°C for 24 hours after application. Material shall reach a hardness of Shore DO64 prior to handling and topcoating.

Clean-up & Safety

Clean-up

Pump, mixer and hose should be cleaned with clean, potable water at least once every 4 hours at 21°C, and more often at higher temperatures. Sponges should be run through the hoses to remove residual material. Wet Pyrocrete 241 overspray must be cleaned up with soapy or clean, potable water. Cured overspray may require chipping and/or scraping to remove.

Safety

Follow all safety precautions on the Material Safety Data Sheet. It is recommended that personal protective equipment be worn, including spray suits, gloves, eye protection and respirators.

Overspray

Adjacent surfaces shall be protected from damage and overspray. Sprayed fireproofing materials may be difficult to remove from surfaces and may cause damage to architectural finishes. Cured overspray may require chipping and/or scraping to remove.

Ventilation

In enclosed areas, ventilation shall be 4 complete air exchanges per hour until the material is dry.

Testing, Certification, Listing

Underwriters Laboratories Inc.

Pyrocrete 241 has been tested by Underwriters Laboratories Inc., and is classified for exterior or interior use by UL in the following designs:

UL 1709

Rapid temperature rise hydrocarbon fire exposure

Columns – XR701, XR702, XR734

BS 476: Part 20: Appendix D

Hydrocarbon fire exposure

Columns – Report No. R11193

Cryogenic Testing

Tested in accordance to “Specification for Cryogenic Protection and Passive Fire Protection of Structural Members”, dated March 2006 from South Hook LNG Terminal Company Ltd. Additional splash and spill testing perform at varying flow rates. All testing has been witnessed by UL.

ASTM E119 (UL 263, NFPA 251)

Cellulosic fire exposure

Columns – X732, X733, X735, X736, X743, X744, Y707, Y708

Roof Assembly – P734, P735, P736, P737, P738, P739, P926, P927, P928, P929, G706, G707, G708, J713, J714, J715, J716

Beams – N715, N716, N717, N718, N719, N721, N722, N773, N774, N775, S706, S713, S731, S732, S733

Floor Ceiling Assembly – D774, D767, D768, D769, D770, D771, D772, D773, D774, D775, D776, D777, D927, D928

Packaging, Handling & Storage

Shelf Life

24 Months (minimum) when kept at recommended storage conditions.

Shipping Weight

25kg (Approximate)

Storage

Store indoors in a dry environment between -29°C to 66°C

Material must be kept dry or clumping may occur.

Packaging

25kg

March 2016

To the best of our knowledge the technical data contained herein is true and accurate on the date of publication and is subject to change without prior notice. User must contact StonCor Africa to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to StonCor Africa quality control. We assume no responsibility for coverage or otherwise including merchantability and fitness for a particular purpose. Carboline® and Carboguard® are registered trademarks of Carboline Company.