Lithium Exploration Company Advancing Projects in Nevada

2 Kilometer Long Discovery Zone of 1,100 ppm Li in Highly Soluble Lithium-Rich Claystone Found at Surface
Forward Looking Statements

Some of the statements in this document may be deemed to be "forward-looking statements". All statements on in this document, other than statements of historical facts, that address events or developments that management of the Company expects, are forward-looking statements. Although management believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance, and actual results or developments may differ materially from those in the forward-looking statements. The Company undertakes no obligation to update these forward-looking statements if management's beliefs, estimates or opinions, or other factors, should change. Factors that could cause actual results to differ materially from those in forward-looking statements, include market prices, exploration and development successes, continued availability of capital and financing, and general economic, market or business conditions. Please see the public filings of the Company at www.sedar.com for further information.

Qualified Person

Robert Marvin, P.Geo., Exploration Manager and Project Geologist for Cypress Development is the Qualified Person as defined by National Instrument 43-101 and supervised both the project field exploration and the preparation of the technical information in this presentation.
Cypress Capital Structure

- TSX Venture Exchange Symbol: CYP
- US OTC Pink Symbol: CYDVF
- Frankfurt Exchange Symbol: C1Z1
- Shares Issued & Outstanding: 25.6 million
- Fully Diluted Shares Outstanding: 37.2 million
- Market Capitalization: $3.9 million
- Year End: December 31st
Cypress Lithium Projects in Nevada Map
Cypress is acquiring the Clayton Valley Lithium Project, Nevada totaling 1,520 acres in size.

Cypress Clayton Valley project is located within .5 mile (<1000m) south of lithium brine wells belonging to the only operating brine lithium mine in North America, the Albemarle (NYSE: ALB) Silver Peak Mine.

Cypress’ Clayton Valley lithium project shares its western boundary with Pure Energy Minerals’ (TSX-V: PE) lithium brine Northern Resource Area on their Clayton Valley South project.

2016 sampling results show a 2 kilometer discovery zone of north-south strike of lithium-rich outcropping claystones that assay approximately 1,100 ppm Li on average and include a 1.0 kilometer discovery zone that averages 1350 ppm Li.

The lithium-rich claystones are believed to represent uplifted portions of the stratigraphy within which the lithium brines of the basin are found and produced from.

A leach test performed on 47 previous assayed samples by ALS Chemex shows a 95% lithium recovery using a weak acid water leach.

This work substantiates the potential to produce lithium directly from the mineralized claystones with a low cost and environmentally friendly approach without the need for roasting or other costly mining and complex treatments.

A planned drilling program targeting lithium-rich brines at Cypress' Clayton Valley project will also include shallow holes targeting the wide areas of lithium-rich claystones discovered at surface.
Phase 1 Clayton Valley Claystone Assay Results

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Weight kg</th>
<th>K %</th>
<th>Li ppm</th>
<th>Mg %</th>
<th>Na %</th>
<th>P ppm</th>
<th>Sr ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>123118</td>
<td>0.53</td>
<td>4.07</td>
<td>1690</td>
<td>1.62</td>
<td>3.21</td>
<td>510</td>
<td>5310</td>
</tr>
<tr>
<td>123119</td>
<td>0.46</td>
<td>3.30</td>
<td>530</td>
<td>1.97</td>
<td>2.15</td>
<td>1810</td>
<td>3850</td>
</tr>
<tr>
<td>123120</td>
<td>0.46</td>
<td>4.24</td>
<td>640</td>
<td>1.63</td>
<td>1.54</td>
<td>610</td>
<td>1375</td>
</tr>
<tr>
<td>123121</td>
<td>0.60</td>
<td>0.66</td>
<td>26</td>
<td>3.73</td>
<td>0.50</td>
<td>480</td>
<td>320</td>
</tr>
<tr>
<td>123122</td>
<td>0.48</td>
<td>4.45</td>
<td>800</td>
<td>2.01</td>
<td>2.78</td>
<td>550</td>
<td>705</td>
</tr>
<tr>
<td>123123</td>
<td>0.46</td>
<td>4.66</td>
<td>870</td>
<td>2.38</td>
<td>2.97</td>
<td>530</td>
<td>4110</td>
</tr>
<tr>
<td>123124</td>
<td>0.40</td>
<td>3.16</td>
<td>82</td>
<td>0.84</td>
<td>1.02</td>
<td>1480</td>
<td>224</td>
</tr>
<tr>
<td>123125</td>
<td>0.65</td>
<td>3.50</td>
<td>43</td>
<td>1.06</td>
<td>1.48</td>
<td>1830</td>
<td>110</td>
</tr>
<tr>
<td>123126</td>
<td>0.50</td>
<td>2.52</td>
<td>332</td>
<td>0.86</td>
<td>6.57</td>
<td>900</td>
<td>282</td>
</tr>
<tr>
<td>123127</td>
<td>0.62</td>
<td>4.24</td>
<td>690</td>
<td>1.91</td>
<td>3.60</td>
<td>600</td>
<td>947</td>
</tr>
<tr>
<td>123128</td>
<td>0.44</td>
<td>4.47</td>
<td>790</td>
<td>1.79</td>
<td>3.90</td>
<td>520</td>
<td>2670</td>
</tr>
<tr>
<td>123129</td>
<td>0.35</td>
<td>4.59</td>
<td>760</td>
<td>2.11</td>
<td>4.78</td>
<td>520</td>
<td>1660</td>
</tr>
<tr>
<td>123130</td>
<td>0.41</td>
<td>4.46</td>
<td>720</td>
<td>1.95</td>
<td>7.10</td>
<td>500</td>
<td>3020</td>
</tr>
<tr>
<td>123131</td>
<td>0.51</td>
<td>3.55</td>
<td>97</td>
<td>1.13</td>
<td>1.39</td>
<td>780</td>
<td>469</td>
</tr>
<tr>
<td>123132</td>
<td>0.33</td>
<td>4.36</td>
<td>2010</td>
<td>1.92</td>
<td>4.18</td>
<td>500</td>
<td>1390</td>
</tr>
</tbody>
</table>

*ppm=parts per million, *1 ppm=1 milligram per litre, *kg=kilogram
Phase 1 Clayton Valley Claystone Assay Results

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Weight kg</th>
<th>K %</th>
<th>Li ppm</th>
<th>Mg %</th>
<th>Na %</th>
<th>P ppm</th>
<th>Sr ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>123133</td>
<td>0.91</td>
<td>3.68</td>
<td>1440</td>
<td>6.47</td>
<td>3.31</td>
<td>320</td>
<td>>10000</td>
</tr>
<tr>
<td>123134</td>
<td>0.9</td>
<td>4.13</td>
<td>950</td>
<td>1.54</td>
<td>4.84</td>
<td>330</td>
<td>487</td>
</tr>
<tr>
<td>123135</td>
<td>0.78</td>
<td>4.85</td>
<td>2220</td>
<td>2.74</td>
<td>3.43</td>
<td>420</td>
<td>779</td>
</tr>
<tr>
<td>123136</td>
<td>1.37</td>
<td>4.69</td>
<td>2100</td>
<td>1.96</td>
<td>6.24</td>
<td>410</td>
<td>8750</td>
</tr>
<tr>
<td>123137</td>
<td>1.03</td>
<td>3.98</td>
<td>3070</td>
<td>1.09</td>
<td>>10.00</td>
<td>270</td>
<td>839</td>
</tr>
<tr>
<td>123138</td>
<td>1.59</td>
<td>4.39</td>
<td>1810</td>
<td>2.18</td>
<td>2.65</td>
<td>450</td>
<td>423</td>
</tr>
<tr>
<td>123139</td>
<td>0.92</td>
<td>4.08</td>
<td>1080</td>
<td>2.05</td>
<td>2.40</td>
<td>470</td>
<td>479</td>
</tr>
<tr>
<td>123140</td>
<td>0.88</td>
<td>4.36</td>
<td>2050</td>
<td>2.01</td>
<td>4.89</td>
<td>460</td>
<td>958</td>
</tr>
<tr>
<td>123141</td>
<td>1.01</td>
<td>4.30</td>
<td>1150</td>
<td>2.13</td>
<td>2.62</td>
<td>450</td>
<td>479</td>
</tr>
<tr>
<td>123142</td>
<td>0.88</td>
<td>4.73</td>
<td>1120</td>
<td>2.73</td>
<td>2.08</td>
<td>450</td>
<td>1470</td>
</tr>
<tr>
<td>123143</td>
<td>0.94</td>
<td>4.81</td>
<td>1210</td>
<td>2.21</td>
<td>8.56</td>
<td>350</td>
<td>544</td>
</tr>
<tr>
<td>123144</td>
<td>0.94</td>
<td>6.15</td>
<td>810</td>
<td>2.42</td>
<td>1.30</td>
<td>540</td>
<td>343</td>
</tr>
<tr>
<td>123145</td>
<td>1.13</td>
<td>5.45</td>
<td>950</td>
<td>2.49</td>
<td>1.54</td>
<td>470</td>
<td>676</td>
</tr>
</tbody>
</table>

*ppm=parts per million, *1 ppm=1 milligram per litre, *kg=kilogram
2016 Clayton Valley Surface Lithium Assay Results

- 2016 Phase 1 sampling program returned the highest reported assay result for lithium at surface (3070 Li) known by the Company to be publicly reported in Nevada’s Clayton Valley history.

- 2016 Phase 2 sampling results show a 2 kilometer discovery zone of north-south strike of lithium-rich outcropping claystones that assay approximately 1,100 ppm Li on average and include a 1.0 kilometer discovery zone that averages 1350 ppm Li.

- Results suggest a strong possibility of an essentially continuously mineralized volume of lithium-rich claystone at surface on the Cypress Clayton Valley property in a position immediately east of both brine production wells at the Albemarle Silver Peak Mine and the lithium brine Northern Resource Area of Pure Energy Minerals’ Clayton Valley South project.

- A planned drilling program targeting lithium-rich brines at Cypress' Clayton Valley Project will also include shallow holes targeting the wide areas of lithium-rich claystones discovered in 2016 at surface.
Lithium Leach Test of Surface Claystones

- 2016 leach test of the feasibility of extracting lithium directly from the surface claystones show an average of 95% recovery of lithium without the need for roasting or other costly and complex treatments.

- The lithium mineralization is contained within calcareous evaporite rocks, dominantly carbonate rich lake-bed claystones with interbedded volcanic ash units.

- The exposed claystones are part of the basin filling Esmeralda Formation and are believed to represent uplifted portions of the stratigraphy within which the lithium brines of the basin are found and produced.

- 47 samples were selected for the leach test and previously averaged 1334 ppm Li using the industry standard 4-acid assay method.

- The 47 selected samples averaged 1276 ppm Li using a dilute acid leach.

- The weak acid method recovered an impressive 95% of the lithium found by the standard assay method.

- The data indicates that a readily soluble mineral form of lithium has been discovered at Cypress’ Clayton Valley project.

- The leach test samples cover a 2 kilometer strike length of exposed lithium mineralization.

- The goal of this work is to substantiate the potential to produce lithium directly from the mineralized claystones with a low cost and environmentally friendly approach without the need for roasting or other costly mining and complex treatments.

- The leach test and assaying was completed by ALS Chemex in Reno, Nevada.
Cypress has received a drilling permit from the BLM, Nevada covering a planned drill program targeting potential lithium-rich brines and the lithium-rich claystones discovered at surface on the Company's Clayton Valley project.

The permit application contains reverse circulation ("R-C") drill holes targeting lithium brines within the Main Ash Aquifer projected to underlie the west and west-central portion of Cypress' Clayton Valley project.

The Main Ash Aquifer is the primary target of the R-C holes. Cypress expects to intersect this zone at approximately 500 to 1,000 feet below surface.

Additional deeper targets will also be tested including the potential presence of a coarse gravel aquifer near the base of the basin fill evaporate sequence.

The planned drilling program will also include shallow auger holes targeting the 2 kilometer long discovery zone of 1,100 ppm lithium-rich claystones discovered in 2016 at surface.

This shallow drilling should allow Cypress to begin to estimate size, lithium (Li) grade and tonnage in the claystones at its Clayton Valley Project.

The surface sampling and reconnaissance geologic results received by Cypress to date are viewed as being highly encouraging for the presence of lithium-rich brines within the subsurface aquifers below the lithium-rich claystones discovered in 2016 at surface.
Cypress Clayton Valley Project Proposed Drill Holes
Clayton Valley Lithium Project Seismic Data

Cypress Development Clayton Valley Lithium Project Intertted R8 Seismic Reflector Layer Target

- Cypress - Pure Energy Property Boundary
- R8 Seismic Reflector Target
- Other Seismic Reflector Units
- Proposed CYP-3 Bore Hole
- CV-2 Bore Hole
Clayton Valley Location & Infrastructure

- Well maintained state highways connect Silver Peak to the main road network in Nevada.
- Nevada has fostered a thriving mining industry with associated development expertise, construction and operations services and a mature regulatory environment.
- Single best mining jurisdiction in the U.S. and ranked 3rd globally by the respected “Fraser Institute's annual Survey of Mining Countries”.
- Graded and maintained gravel roads link Silver Peak to the southern half of Clayton Valley.
- Nearest rail system is in Hawthorne, Nevada, approximately 90 miles by road.
- Public use airport in Tonopah with two runways.
- Electrical connection is possible at the sub-station in Silver Peak.
- Water supply is currently served by the Silver Peak municipal water supply.
Alkali Valley Lithium Brine Project, Nevada
Cypress has acquired a 100% interest in the 1,780 acre Alkali Valley lithium brine project located in Esmeralda County, Nevada.

Cypress' Alkali Valley (AV) lithium brine project covers the central and northeast portions of the bottom of the Alkali Lake Playa and is contiguous with claims of the Dajin Resources (TSX-V: DJI) Alkali Lake lithium project.

The highly prospective Alkali Lake Playa lies approximately 12 kilometres northeast of Albemarle's Silver Peak lithium mine.

Lithium brine project surrounded by lithium-enriched Tertiary age rhyolite tuffs (peralkaline rhyolites) and lithium-bearing sediments as well as active geothermal systems. Over time, the lithium has become mobilized from these sources into surface and ground waters and can, under the right conditions, produce brines enriched in lithium.

The potential for deep basin brines at Alkali has never been tested.
Lithium Timing

- The energy storage revolution is generating high demand for lithium, with analysts forecasting demand increases for the product (Li) in the near future.

- Battery giants are scaling up lithium-ion production with mega-factories and are actively acquiring the raw material through off take agreements.

- Companies already producing lithium are attempting to increase production.

- Rockwood Holdings was purchased by Albemarle Corporation (NYSE: ALB) in 2014 for $6.2 billion USD. This purchase included the Silver Peak lithium producer located in Clayton Valley, Nevada.

- Tesla Motors is building a $5 billion battery gigafactory outside Reno, Nevada. A large amount of the supply of lithium carbonate will have to come from Nevada production because of the major tax incentives Tesla received ($1.3 billion tax incentives over the next 10 years for Tesla).

- Electric vehicles and energy storage has become a huge demand driver for the increased production in Clayton Valley and for the exploration and discovery of more lithium deposits in Nevada.
Lithium Uses

- The most important use of lithium is in rechargeable batteries for mobile phones, laptops, digital cameras and electric vehicles. Lithium is also used in some non-rechargeable batteries for things like heart pacemakers, toys and clocks.

- Lithium metal is made into alloys with aluminium and magnesium, improving their strength and making them lighter. A magnesium-lithium alloy is used for armour plating. Aluminium-lithium alloys are used in aircraft, bicycle frames and high-speed trains.

- Lithium oxide is used in special glasses and glass ceramics. Lithium chloride is one of the most hygroscopic materials known, and is used in air conditioning and industrial drying systems (as is lithium bromide). Lithium stearate is used as an all-purpose and high-temperature lubricant. Lithium carbonate is used in drugs to treat manic depression, although its action on the brain is still not fully understood. Lithium hydride is used as a means of storing hydrogen for use as a fuel.
Management

- **Don C. Huston** – President & CEO, Director
 Don Huston is the President and CEO of Cypress Development Corp. He has been associated with the mineral exploration industry for over 30 years and has extensive experience as a financier and in-field manager of numerous mineral exploration projects in North America. He was born and raised in Red Lake, Ontario and spent 15 years as a geophysical contractor with C.D. Huston & Sons Ltd. as mineral exploration consultants in northern Ontario, Manitoba and Saskatchewan. Mr. Huston serves as a director of 5 Canadian public resource companies.

- **Jim Pettit** – CFO, Director
 Jim Pettit is the acting CFO and a Director of Cypress Development Corp. Mr. Pettit is currently serving as a director on the Boards of 6 public resource companies and offers over 20 years of experience within the industry specializing in finance, corporate governance, management and compliance. He specializes in the early stage development of private as well as public companies. His background over the past 20 plus years has been focused primarily within the resource sector where he has managed and directed junior resource companies through good times and bad. Jim was previously Chairman and CEO of Bayfield Ventures Corp. which was bought by New Gold Inc. in January 2015.

- **Donald G. Myers** – Director
 Don Myers serves as a non-executive Director and audit committee member of Cypress Development Corp. He is currently serving on the board of directors of three and manages the investor relations and corporate communications of four publicly traded mineral exploration and development companies. He has 30 plus years of experience in public company management and investor relations having helped raise over $350 million in venture capital for resource and technology companies listed on the TSX Venture, NASDAQ and Toronto Stock Exchanges.

- **Robert D. Marvin** – P.Geo, Exploration Manager and Qualified Person
 Bob Marvin, P.Geo., Senior Project Geologist and Qualified Person, has been involved in mineral exploration and evaluation of lithium, gold, copper, zinc and uranium deposits throughout the Americas as an employee and as an independent consultant. He graduated from the University of New Mexico with a Bachelor of Science degree in geology in 1984. A third generation Nevada resource geologist, Bob has learned the business from the field starting at an early age. Always keen to explore high grade deposits, Bob has been involved in several successful gold-silver projects in Canada, most recently with Bayfield Ventures in the Rainy River gold district in Ontario but also at Meliadine and in the Committee Bay Belt of the far north.