Endurance Stretching Flash Memory With Serial SRAM

Written by Jonathan Dillon
Principal Marketing Engineer
Memory Products Division
Microchip Technology Inc.

Presented by Hardik Patel
Principal Applications Engineer
SuperFlash® Memory Division
Microchip Technology Inc.
Agenda

- Example Application & Requirements
- Flash Memory
 - Both limits & increases endurance
- Application Solutions
 - High-Endurance Flash
 - Serial SRAM & Flash Hybrid
 - Serial NVSRAM
- Conclusion
Example High-Endurance Application

- Smart Meter
 - 60 Hz sample rate
 - 24-bit samples
 - Average usage
 - Definable time block average
 - Definable duration moving average

- Storage worst case
 - 512 Kb of non-volatile storage
 - Rewritten every 5 minutes for 25 years
 - Endurance of 2,629,800 program/erase cycles/bit
High-Endurance Flash Memory Solution
Flash Memory Endurance

- Flash memory has finite endurance
 - NOR 100,000+ cycles, typical

- Trap generation in oxide
 - Accumulation limits endurance

- Stress-induced leakage limits endurance
 - Note: Split-gate SuperFlash® memory has greater immunity
Memory-cell endurance can be increased by:

- Longer delay between writes
 - Allows trapped charge to relax
- Temperature
 - High temperatures accelerate charge relaxation
- Data variance
 - Repeated writes of same data causes higher wear
 - ‘1’ no charge transfer, thus less wear
High-Endurance Flash Solution

- Higher density Flash to achieve higher endurance
- Wear leveling
 - Partition the Flash
 - Cycle through the partitions
 - Need to manage partitions
 - Store which is current partition
High-Endurance Flash Solution, Cont.

- 16 Mbit NOR Flash
 - Flash endurance 100,000 cycles
 - Required endurance of 2,629,800 cycles
 - Wear leveling across 27 partitions
 - Each 512 Kb
 - 2.5 Mbit available for partition management & other storage
 - Flash offers low cost/bit nonvolatile storage
 - NOR offers high reliability
Hybrid Memory Solution
Hybrid Memory Solution

- 2-chip solution
- SRAM & Flash
 - SRAM for endurance
 - Flash for NV storage

- SRAM is volatile memory
 - Power-up: Load SRAM from Flash
 - Modify individual bytes in SRAM
 - Power-down: Copy SRAM data to Flash
 - Power-down
 - Detect loss of power, low voltage
 - Must store to Flash before brown-out
Hybrid Memory Solution, Cont.

- **Serial vs. Parallel SRAM**
 - SRAM traditionally Parallel
 - Flash is migrating to Serial

- **Serial SRAM**
 - Supports SPI, SDI & SQI™ buses
 - Shared bus with Flash
 - SQI allows 80 Mbps reads on power-down
 - Small 8-pin packages
 - Low cost
• Required application endurance
 • 512 Kb of storage
 • 2,629,800 writes to every bit

• 512 Kb SRAM & 512 Kb Flash
 • Flash program cycle per power down
 • Application endurance 100,000 power downs

• Must detect power-down and store
 • Loss of AC signal
 • Low voltage on supply
NVSRAM Memory Solution
NVSRAM Solution

• Non-Volatile SRAM (NVSRAM)
 • Unlimited endurance & non-volatile
 ▪ Battery back-up
 ▪ Preserves data when system unpowered
 ▪ Byte level modifiable
 ▪ Immediate read/writes to NV storage
NVSRAM Solution, Cont.

• Using NVSRAM
 ▪ Parallel & Serial NVSRAM
 ▪ Legacy Parallel NVSRAM
 ▪ Many control signals
 ▪ Highest speeds
 ▪ Serial NVSRAM
 ▪ Standard SPI interface
 ▪ SDI for higher speeds
 ▪ Long battery life*
 ▪ Low cost

*CR2032 battery with <1 µA max. current draw. Life limited by battery 10-year warranty
NVSRAM Solution, Cont.

• NVSRAM has no endurance limit
 • 512 Kb NVSRAM for storage requirement

• Back-up Battery
 • Low current draw
 • Handling of data loss on battery failure
 • Increased component count
 • Could share battery with RTCC
Conclusion

- Can meet High-Endurance NV requirements by:
 - Partitioning Flash and wear leveling
 - Buffering the data in a SRAM device
 - Using a battery-backed NVSRAM

- Serial SRAM & NVSRAM
 - Compatible with common Serial Flash interfaces
 - Minimizes signals and pins
 - Small packages and simple design
Trademark Note

SuperFlash is a registered trademark of Microchip Technology Incorporated in the U.S.A. and other countries. SQI is a trademark of Microchip Technology Inc. in the U.S.A. and other countries. All other trademarks mentioned herein are the property of their respective companies.