Chromatography Courses

Schulungen und Chromatographie
Bernd Mischke
Rudower Chaussee 29
12489 Berlin

Tel: +49 (0)30 6392 6390
Fax: +49 (0)30 6392 6391

E-Mail: chrompy@gele-kurse.de
Introduction: Gas chromatography: typical samples, applications Principles of separation, retention, capacity factor, selectivity, efficiency, plate number, resolution, linear velocity, flow

Instrumentation: Gas supply system: tubing, type of carrier gas, pressure regulation, flow control, settings injection: principles, direct injection, septum, parameters, syringe types and handling oven: influence of temperature, installation of a column Detection: Linearity, noise, wander, drift, FID, TCD and ECD

Qualitative and quantitative analysis: Identification based on (relative) retention times. Fingerprint Detector response: height/area Calibration curves: single point, multi point, linearity Calculation methods: (normalized) 100%, external standard, internal standard

The GC column: Types of stationary phases: selection, percentage or film thickness, sample capacity, minimum and maximum temperatures, bleeding, column conditioning and storage Packed columns: tube material, support material, coated packing

Capillary columns: Introduction features and properties

Wide bore: Comparison of a packed, a capillary open tubular and a wide bore column, column parameters, modification of equipment, installation of a wide bore column, optimizing an analysis on a wide bore column.

Profile of course candidates: The above course is intended for people who:

are new to, or have recently started using gas chromatography techniques:
have recently left college and have little or no knowledge of gas chromatographic procedures;
have limited experience only and wish to acquire a better understanding of qualitative and quantitative analysis and the instrumentation used;
generally want to improve their understanding of the fundamentals of gas chromatography.
Capillary gas chromatography (Level 2)
Contents of lectures, case studies and practicals:

Summary of basic chromatographic principles:
Introduction to GC: equipment, chromatographic principles
Theoretical aspects: retention, selectivity, efficiency, plate number, plate height, Van Deemter equation, diffusion parameters, H-u curve, resolution, asymmetry

Capillary CC column:
Theoretical aspects: properties and features, efficiency, speed
Column: types, internal diameter, film thickness, WCOT, PLOT, sample capacity
Stationary phases WCOT: types, features, chemically/non-chemically bonded, selectivity, maximum and minimum temperatures, bleeding, deactivation
Stationary phases PLOT: types, features, applications
Tube material: fused silica, metal
Column conditioning, storage and practical aspects

Column choice and optimization:
Influence of length, type of stationary phase, film thickness, internal diameter instrument settings, effect of temperature, temperature programming, modification of program, linear gas velocity, carrier gas

Instrument aspects:
Carrier gases: types, purity, filtering
Gas supply system: (back-) pressure regulator, flow controller, needle valve, settings, ferrules and nuts
Column: installation
Oven: features

Injection techniques:
Direct, applications
Split: function, split ratio, split flow, advantages/disadvantages, critical operational parameters
Splitless and cold on-column: introduction
Comparison of injection techniques

Detection:
FID, TCD, ECD, NPD and FPD for capillary use: cell volumes, gas settings, make-up gas, critical operational parameters

Profile of course candidates:
The above course is intended for people who:

are already working with gas chromatography techniques and have a working knowledge of the basics of chromatography;
want to know more about capillary gas chromatography, capillary columns, column choice and optimization;
have experience based on routine work only and want to improve their understanding of the chromatographic theory as well as the practical aspects related to capillary gas chromatography
Advanced gas chromatography (Level 3)
Contents of lectures, case studies and practicals:

Theoretical aspects concerning capillary columns:
Golay equation, band broadening, optimal linear gas velocity, (effective) plate number, phase ratio influence of carrier gas, column length, internal diameter and film thickness on resolution, speed, capacity and sensitivity
Comparison capillary dimensions

Injection techniques:
Split, splitless, cold on-column: principles, application field, concentration range, advantages/disadvantages, critical operational parameters in relation to band broadening in time/space, discrimination, speed, solvent effect, solvent focusing and cold trapping
Head space: static/dynamic, purge and trap
Thermal desorption
Special injection techniques: PTV, moving needle

Temperature in capillary GC:
Temperature retention, selectivity, resolution, column efficiency, flow rate

Column selectivity:
Type of stationary phase vs temperature stability, compatibility with detectors, sensitivity, peak symmetry
Chiral separations PLOT columns: inorganic adsorbents, polymeric adsorbents, molecular sieves, principles, application field

Multi column systems/column switching
Principles, advantages/disadvantages, pre separation, sample clean-up, pre concentration, peak purity

Hyphenated techniques:
Supercritical fluid extraction coupled to GC (SFE-GC):
on-line extraction, fundamentals of supercritical fluids, SFE vs off-line liquid or solid phase extractions

High Speed GC:
Principles, column dimensions, carrier gas, instrument aspects, advantages/disadvantages

Profile of course candidates:
The above course is intended for people who:

have a good theoretical knowledge of gas chromatography, at least to the level gained
after our intermediate (level 2) courses;
want to gain ultimate understanding of the theory of gas chromatography;
want to improve their knowledge of practical, operational and instrumentation aspects concerning capillary gas chromatography;
want to master the different aspects of column selectivity, optimization and method development;
want to be informed about specific topics and the latest developments in capillary gas chromatography.
Trouble shooting in gas chromatography
Contents of lectures, case studies and practicals:

Fundamentals of problem solving:
How to structure, recognize and analyse problems, methods; remedying troubles
First check, spare parts and tools

Share the experience:
Problems concerning equipment, gases, samples, injection, connections, sample introduction
columns, detectors

Problem solving from chromatograms:
Real-life aspects of 'bad' chromatograms are discussed, such as instability, ghost peaks, distorted
peaks, baseline disturbances, repeatability problems

At the practical sessions the participants will try to
analyse and solve problems in a structural way.

The purpose of this course is not to show you how to operate your individual system, but teaches
you how to effectively deal with general chromatographic and instrument problems. Note that it
is not a service training related to an instrument of a certain brand

Profile of course candidates:

The above course is intended for people who:

have at least one year of practical experience in gas chromatography;
have reached a knowledge level corresponding to our level 2 courses;
want to become more familiar with the practical aspects of (brand-independent)
instrumentation;
want to test and improve their knowledge of practical and operational problems and the
ways to solve them.
Introduction to liquid chromatography (Level 1)

Contents of lectures, case studies and practicals:

Introduction:
Liquid chromatography: typical samples, applications Principles of separation, retention: retained and unretained components Definitions: capacity factor, selectivity, efficiency, plate number, resolution

Instrumentation:
Types: modular/integral
Pumps: constant pressure pumps, constant flow pumps (e.g. reciprocating plunger): principles, features and requirements, pistons, check valves, pump heads, gradient systems: low/high pressure mixing Injection valves Detectors: refractive index, conductivity, UV absorption, fluorescence, general aspects, noise, wander, response, linear dynamic range, instrumental band broadening

Columns:
Dimensions, flow direction, packing procedure, start-up, maintenance, guard columns, storage

Qualitative and quantitative analysis:
General aspects: accuracy, precision, justification, random errors and systematic errors
identification: based on (relative) retention times, fingerprint Detector response: height/area
Calibration curves: single point, multi-point, linearity
Calculation methods: (normalized) 100%, extremal standard, internal standard

Liquid Chromatography:
Column chromatography: adsorption chromatography, partition chromatography, features
Reversed Phase Liquid Chromatography: non-polar bonded phases, features and advantages,
applications RP stationary phase: silica, influence of stationary phase on retention and separation
Mobile phase: influence on retention and separation, purity, degassing, composition, additives,
safety, parameters, solvent strength (general), modifier type. isocratic vs gradient elution

Isocratic and gradient elution:
Isocratic elution Gradient: instrument and solvent related parameters, profile, elution strength,
gradient range, blank, scouting gradient, development of a gradient, modification and optimization, practical aspects

Profile of course candidates:

The above course is intended for people who:

are new to, or have recently started using liquid chromatography techniques;
have recently left college and have little or no knowledge of liquid chromatographic procedures:
have limited experience only and wish to acquire a better understanding of qualitative and quantitative analysis and the instrumentation used;
generally want to improve their understanding of the fundamentals of liquid chromatography.
Principles and practice of modern HPLC (Level 2)
Contents of lectures, case studies and practicals:

Introduction to HPLC:
Equipment, chromatographic principles
Theoretical aspects: retention, selectivity, efficiency, plate number, plate height, equation, diffusion parameters, H-u curve, resolution, asymmetry

HPLC techniques:
Typical compounds, HPLC modes
Adsorption chromatography: LSC, stationary phases, mobile phases, applications, advantages/disadvantages
Partition chromatography: LLC, principles, disadvantages Chemically bonded phases: features, non-polar bonded phases (RPLC) Polar bonded phases: structure, features and applications of diol phases, amino phases and cyano phases Ion exchange chromatography: principles and mechanism, stationary phases, mobile phases, detection Size Exclusion Chromatography: SEC, GFC, GPC, principles, applications

Reversed Phase Chromatography (RPLC):
Features, properties and advantages, applications Reversed phase materials: preparation, properties, surface structure, carbon Loading, coverage, monomeric /polymeric, end capping, influence of stationary phase on retention and separation, retention order, selectivity Mobile phase: influence on retention and separation, modifiers, solvent strength, polarity and selective interactions, practical use of solvent selectivity Ion suppression, dynamic ion exchange: principles, parameters, practical aspects

Column dimensions:
Packing performance, particle size, wall effects, internal diameters, practical aspects, pressure drop, column dimensions vs analysis time, sensitivity, economical and operational aspects

Optimization:
Goals, influence of k', and N on resolution Optimization of a separation: operational parameters, analysis time parameters, optimization vs separation, time, capacity, sensitivity

Profile of course candidates:
The above course is intended for people who:

are already working with liquid chromatography techniques and have a working knowledge of the basics of chromatography;
want to know more about HPLC techniques, HPLC columns, column choice and optimization.
Troubleshooting in liquid chromatography

Contents of lectures, case studies and practicals:

Fundamentals of problem solving:
How to structure, recognize and analyze problems, methods and remedying troubles First check, spare parts and tools

Share in our experience:
Problems concerning equipment, solvents, samples, pumps, connections, sample introduction, columns, detectors

Problem solving from chromatograms:
Real-life aspects of 'bad' chromatograms are discussed, such as instability, ghost peaks, distorted peaks, baseline disturbances, repeatability problems.

At the practical sessions the participants will try to analyse and salve problems in a structural way.

The purpose of this course is not to show you how to operate your personal HPLC system, but to teach you how to effectively deal with general chromatographic and instrument problems. Note that it is not a service training related to an instrument of a certain brand.

Profile of course candidates:

The above course is intended for people who:

- have at least one year of practical experience in liquid chromatography;
- have reached a knowledge level corresponding to our level 2 courses;
- want to become more familiar with the practical aspects of (brand-independent) instrumentation;
- want to test and improve their knowledge of practical and operational problems and the ways to solve them.
Common conditions for customers:

for every course the customers can take part by appointment only. The announcement has to be sent by fax, email or letter with full name of customer, factory and address. The courses are limited to citizens of the European Community.

Based on the bill payment has to be done before the course starts (10 days).

In the course price included are:

the course (9 -16.30)
a course manual (English or German)
non alcoholic drinks
lunch every day
certificate

Not included are travel and hotel costs. A hotel near my lab/office can be organized.

Languages for courses possible: English, Polish, Russian, German