Tuesday 22 January 2013 – Morning

GCSE GATEWAY SCIENCE
ADDITIONAL SCIENCE B

B721/01 Additional Science modules B3, C3, P3 (Foundation Tier)

Candidates answer on the Question Paper.
A calculator may be used for this paper.

OCR supplied materials:
None

Other materials required:
• Pencil
• Ruler (cm/mm)

Duration: 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
• Use black ink. HB pencil may be used for graphs and diagrams only.
• Answer all the questions.
• Read each question carefully. Make sure you know what you have to do before starting your answer.
• Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
• Do not write in the bar codes.

INFORMATION FOR CANDIDATES

• Your quality of written communication is assessed in questions marked with a pencil (₢).
• A list of equations can be found on page 2.
• The Periodic Table can be found on the back page.
• The number of marks is given in brackets [] at the end of each question or part question.
• The total number of marks for this paper is 75.
• This document consists of 28 pages. Any blank pages are indicated.
EQUATIONS

energy = mass \times \text{specific heat capacity} \times \text{temperature change}

energy = mass \times \text{specific latent heat}

efficiency = \frac{\text{useful energy output} \times 100\%}{\text{total energy input}}

wave speed = \text{frequency} \times \text{wavelength}

power = \text{voltage} \times \text{current}

energy supplied = \text{power} \times \text{time}

average speed = \frac{\text{distance}}{\text{time}}

distance = \text{average speed} \times \text{time}

\begin{align*}
 s &= \frac{(u + v)}{2} \times t \\
\end{align*}

acceleration = \frac{\text{change in speed}}{\text{time taken}}

force = \text{mass} \times \text{acceleration}

weight = \text{mass} \times \text{gravitational field strength}

work done = \text{force} \times \text{distance}

power = \frac{\text{work done}}{\text{time}}

power = \text{force} \times \text{speed}

\begin{align*}
 \text{KE} &= \frac{1}{2}mv^2 \\
 \text{momentum} &= \text{mass} \times \text{velocity} \\
\end{align*}

force = \frac{\text{change in momentum}}{\text{time}}

\begin{align*}
 \text{GPE} &= \text{mgh} \\
 \text{mgh} &= \frac{1}{2}mv^2 \\
\end{align*}

\begin{align*}
 \text{resistance} &= \frac{\text{voltage}}{\text{current}}
\end{align*}
Noel grows onions. He wants to grow onions to enter into a competition.

(a) Noel is growing two types of onion, Spencer's Glory and Liz's Delight. Noel plants the onions. He measures the growth of the onions at regular intervals. His results are shown on the graph.

(i) What did Noel measure to show the growth of the onions?
.. [1]

(ii) Noel chooses Spencer's Glory to take to the vegetable show. Suggest why he chooses this onion.
.. [1]
(b) Noel wants to see which onion has the largest cells.

Explain how he could make a microscope slide of onion tissue (so that he can see the cells).

...
...
...
... [2]

[Total: 4]

Question 2 begins on page 6
Cross-country skiers have to be very fit.

(a) Cross-country skiers have high numbers of mitochondria in the muscles of their arms and legs.

Why are mitochondria needed in muscle cells?

...

..

(b) One way of measuring the fitness of a person is to measure the maximum rate that they can use oxygen.

This is called their \(\text{VO}_2 \text{Max} \).

The table shows typical ranges of \(\text{VO}_2 \text{Max} \) for different men.

<table>
<thead>
<tr>
<th>Range of (\text{VO}_2 \text{Max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-sportsman</td>
</tr>
<tr>
<td>runner</td>
</tr>
<tr>
<td>cross-country skier</td>
</tr>
</tbody>
</table>

(i) What relationship is there between fitness and \(\text{VO}_2 \text{Max} \)?

..

..
(ii) It is hard to measure VO$_2$Max.

It can be estimated using the formula below.

$$VO_2\text{Max} = 15 \times \frac{\text{maximum heart rate}}{\text{resting heart rate}}$$

Toby is training to become a cross-country skier.

He starts from rest and exercises as hard as he can for 8 minutes.

The graph shows his heart rate as he exercises.

![Graph showing heart rate over time](image)

Work out Toby’s VO$_2$Max.

\[\text{answer} = \text{...} \] [2]

(iii) Is Toby fit enough yet to be a successful cross-country skier?

Justify your answer.

\[\text{...} \] [1]
Heart fear for cross-country skiers

It has long been known that cross-country skiers have bigger hearts than average. This helps them compete.

However, this might cause problems.

The top two chambers of the heart may start to beat in an unusual way. This is called fibrillation.

A study looked at 78 retired skiers; 13 of them had fibrillation.

About 15 percent of 75 year-old men in the whole population have fibrillation.

However, the skiers developed the condition at an earlier age than most men.

(i) Suggest why having a bigger heart helps cross-country skiers.

...
...
...

(ii) Fibrillation causes blood to collect in the top chambers of the heart.

The platelets then cause changes in the blood.

Suggest why this is harmful.

...
...
...

(iii) Explain how the results of the study could be used to show that there is no link between skiing and fibrillation.

...

[Total: 11]
Two students are discussing cloning.

I am worried about cloning because it is an artificial process.

I don't know why you are worried because it happens naturally in animals and plants.

Write about how cloning can happen naturally and artificially in plants and animals.

The quality of written communication will be assessed in your answer to this question.
Cyril has a disorder called sickle cell anaemia.

The haemoglobin in his blood has a different structure to normal haemoglobin.

This is due to a change in the gene that codes for haemoglobin.

(a) Write down the name for a change in the structure of a gene.

.. [1]

(b) Haemoglobin is found in red blood cells.

During exercise the blood flowing through Cyril's muscles becomes more acidic.

This affects Cyril's haemoglobin and makes his red blood cells change shape.

(i) Why does the blood flowing through Cyril's muscles become more acidic during exercise?

..
.. [2]

(ii) Cyril's red blood cells do **not** work so well after they change shape.

Suggest one reason why.

..
.. [1]

[Total: 4]
5 Look at the diagrams. They show the structures of diamond and graphite.

(a) Diamond is used in cutting tools. Explain why.

.. [1]

(b) Graphite does not dissolve in water. Write down two other properties of graphite.

.. [2]

[Total: 3]
6 Ammonia is an industrial chemical made in large quantities.

It is made using a **continuous** process.

Many medicines are made using **batch** processes.

(a) Write about the differences between a continuous process and a batch process.

...
...
...
[2]

(b) Aspirin is a medicine used to control pain.

Look at the equations. They show how aspirin can be made.

\[
\text{salicylic acid} + \text{ethanoyl chloride} \rightarrow \text{aspirin} + \text{hydrogen chloride}
\]

\[
C_7H_6O_3 + C_2H_3OCl \rightarrow C_9H_8O_4 + HCl
\]

(i) Put a (कर) around the **formula** of one reactant. [1]

(ii) Look at the table. It shows some information about the compounds involved in making aspirin.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>Relative formula mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>salicylic acid</td>
<td>C(_7)H(_6)O(_3)</td>
<td>138</td>
</tr>
<tr>
<td>ethanoyl chloride</td>
<td>C(_2)H(_3)O(_Cl)</td>
<td>78.5</td>
</tr>
<tr>
<td>aspirin</td>
<td>C(_9)H(_8)O(_4)</td>
<td>180</td>
</tr>
<tr>
<td>hydrogen chloride</td>
<td>HCl</td>
<td></td>
</tr>
</tbody>
</table>

Complete the table to show the relative formula mass of hydrogen chloride.

The relative atomic mass of H is 1 and of Cl is 35.5. [1]

(iii) Calculate the **atom economy** of this reaction.

...
...
...

answer = ... % [2]
(c) New medicines need to be tested before they can be used.

Write down one reason why.

.. [1]

[Total: 7]
Nick and Lesley are comparing the energy content of three fuels. Look at the diagram. It shows the apparatus they use.

Look at their results.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Temperature of 100 g of water at start in °C</th>
<th>Temperature of 100 g of water at end in °C</th>
<th>Mass of fuel burned in g</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>40</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>38</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>22</td>
<td>42</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Write about how Nick and Lesley do the experiment, and explain which fuel gives out the most energy per gram.

The quality of written communication will be assessed in your answer to this question.

[Total: 6]
Jan and Mike investigate the reaction between magnesium lumps and hydrochloric acid.

Magnesium chloride solution and hydrogen gas are made.

(a) Write a **word** equation for this reaction.

.. [1]

(b) Look at the diagram. It shows the apparatus they use.

Look at the graph of their results
(i) How long does it take to make 50 cm3 of hydrogen?

... seconds [1]

(ii) What volume of gas is made when the reaction has finished?

... cm3 [1]

(c) Explain why the reaction stops.

.. [1]

(d) Jan repeats the experiment with magnesium powder instead of magnesium lumps.

What happens to the rate of reaction?

Explain why.

..

..

.. [2]

(e) Jan and Mike want to speed up the reaction.

They do not want to change the mass of magnesium or the volume of the hydrochloric acid.

They know that using magnesium powder changes the speed of the reaction.

Write about other ways they could speed up the reaction.

..

..

..

.. [3]

[Total: 9]
 Nine people are on a roller coaster ride.

Part of the track is shown.

(a) In what position does a roller coaster car have the greatest gravitational potential energy? Put a (ring) around the correct answer.

 A B C D

[b] [1]

(b) The table shows the total mass of each roller coaster car.

<table>
<thead>
<tr>
<th>Car</th>
<th>Mass of car and passengers in kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>180</td>
</tr>
<tr>
<td>X</td>
<td>250</td>
</tr>
<tr>
<td>Y</td>
<td>310</td>
</tr>
<tr>
<td>Z</td>
<td>350</td>
</tr>
</tbody>
</table>

Which car has the greatest momentum as they move down the slope? Put a (ring) around the correct answer.

 W X Y Z

[b] [1]
(c) All the people in the roller coaster cars wear a special harness.

(i) The cars stop quickly. This produces a rapid decrease in momentum. What acts on the people as the cars stop?

.. [1]

(ii) The harness is padded. This protects the people. Describe the benefit of wearing a padded harness when the cars stop quickly.

.. [2]

[Total: 5]
Helen and Finn take part in a cross-country run.

Look at the information about their run.

Their speeds have been plotted on a graph.

Use the graphs to compare Helen's and Finn's acceleration over the whole run.

The quality of written communication will be assessed in your answer to this question.
There are many different types of hybrid cars available.

(a) Different hybrid cars have different power ratings.

What unit is used to measure power?

Put a (ring) around the correct answer.

- joule
- kilogram
- newton
- watt

(b) Some hybrid cars run on fuels made from fossil fuels.

Look at the table. It shows how fuel consumption is affected by the size of the engine and the type of fossil fuel used.

<table>
<thead>
<tr>
<th>Name of car</th>
<th>Fossil fuel</th>
<th>Size of engine</th>
<th>Fuel consumption in litres per 100 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acclaim</td>
<td>petrol</td>
<td>small</td>
<td>4.0</td>
</tr>
<tr>
<td>Balance</td>
<td>diesel</td>
<td>large</td>
<td>4.8</td>
</tr>
<tr>
<td>Citrus</td>
<td>petrol</td>
<td>medium</td>
<td>4.6</td>
</tr>
<tr>
<td>Dancer</td>
<td>diesel</td>
<td>medium</td>
<td>4.2</td>
</tr>
<tr>
<td>Eagle</td>
<td>LPG</td>
<td>medium</td>
<td>4.9</td>
</tr>
<tr>
<td>Robin</td>
<td>......................</td>
<td>......................</td>
<td>......................</td>
</tr>
</tbody>
</table>

These cars have the same shape and mass. The Robin car is the most efficient.

Using information from the table, suggest the type of fossil fuel and engine size of the Robin car, and estimate its fuel consumption.

Complete the table to show your answers.
Car tyres have tread.

As tyres become worn the amount of tyre tread decreases.

(a) Look at the braking distance chart for the same car with different tyre tread depths.

<table>
<thead>
<tr>
<th>tyre tread depth in mm</th>
<th>braking distance in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>25.9</td>
</tr>
<tr>
<td>3</td>
<td>31.7</td>
</tr>
<tr>
<td>1.6</td>
<td>39.5</td>
</tr>
</tbody>
</table>

(i) What is braking distance?

Complete the sentence.

Braking distance is the distance taken to stop once the ..

... [1]

(ii) Describe the relationship between tyre tread depth and braking distance.

Explain why tyre tread depth is important for road safety.

... [2]
(b) The data in the table shows the advice about depth of tyre tread.

<table>
<thead>
<tr>
<th>Depth of tyre tread in mm</th>
<th>Advice</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>tyre is legal</td>
</tr>
<tr>
<td>4</td>
<td>tyre is legal</td>
</tr>
<tr>
<td>3</td>
<td>consider replacing</td>
</tr>
<tr>
<td>2</td>
<td>warning to replace tyre</td>
</tr>
<tr>
<td>1.6</td>
<td>legal limit</td>
</tr>
</tbody>
</table>

Due to technological advances a new tyre has been made.

The tread on the new tyre lasts ten times longer but once it reaches 4 mm the depth rapidly decreases to the legal limit.

Discuss the advantages and disadvantages in terms of road safety of this new tyre.

...
...
...
...
.. [3]

[Total: 6]
13 David is a parachutist.

He jumps out of an aeroplane.

(a) Write down the name of the upward force acting on David as he falls.
.. [1]

(b) David reduces the upward force.
Describe how he could do this.
..
.. [1]

(c) David's terminal speed is 50 m/s. He now opens his parachute.

Explain what happens to his terminal speed after he opens his parachute.
..
..
.. [2]

[Total: 4]
The Periodic Table of the Elements

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>hydrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- **Relative atomic mass**
- **Atomic symbol**
- **Atomic (proton) number**

Elements

<table>
<thead>
<tr>
<th>Period</th>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>He</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Li</td>
<td>3</td>
<td>Be</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Na</td>
<td>11</td>
<td>Mg</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Al</td>
<td>13</td>
<td>Si</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>K</td>
<td>19</td>
<td>Ca</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Rb</td>
<td>37</td>
<td>Sr</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Cs</td>
<td>55</td>
<td>Ba</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>Fr</td>
<td>87</td>
<td>Ra</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Atomic Masses

- The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Elements

- Elements with atomic numbers 112-116 have been reported but not fully authenticated.

Notes

- The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.