National Hospital Quality Measures
Surgical Care Improvement Project

(SCIP-1) Prophylactic Antibiotic Received Within One Hour Prior to Surgical Incision

Description: Surgical patients with prophylactic antibiotics initiated within one hour prior to surgical incision. *Patients who received vancomycin or a fluoroquinolone for prophylactic antibiotics should have the antibiotics initiated within two hours prior to surgical incision. Due to the longer infusion time required for vancomycin or a fluoroquinolone, it is acceptable to start these antibiotics within two hours prior to incision time.

Rationale: A goal of prophylaxis with antibiotics is to establish bactericidal tissue and serum levels at the time of skin incision. Studies performed in the 1960’s and 1970’s demonstrated that a common reason for failure of prophylaxis was delay of antibiotic administration until after the operation. In a study of 2,847 surgery patients at LDS Hospital in Salt Lake City, it was found that the lowest incidence of post-operative infection was associated with antibiotic administration during the one hour prior to surgery. The risk of infection increased progressively with greater time intervals between administration and skin incision. This relationship was observed whether antibiotics preceded or followed skin incision (Classen 1993). Opportunities to improve care have been demonstrated and timely administration has been recommended. For example, at LDS Hospital, administration of the first antibiotic dose “on call” to the operating room was frequently associated with timing errors. Altering the system there resulted in an increase in appropriate timing from 40% of cases in 1985 to 99% of cases in 1998.

(SCIP-2) Prophylactic Antibiotic Selection for Surgical Patients

Description: Surgical patients who received prophylactic antibiotics consistent with current guidelines (specific to each type of surgical procedure).

Rationale: A goal of prophylaxis with antibiotics is to use an agent that is safe, cost-effective, and has a spectrum of action that covers most of the probable intraoperative contaminants for the operation. First or second-generation cephalosporins satisfy these criteria for most operations, although anaerobic coverage is needed for colon surgery. Vancomycin is not recommended for routine use because of the potential for development of antibiotic resistance, but is acceptable if a patient is allergic to beta-lactams, as are fluoroquinolones and clindamycin in selected situations.
(SCIP-3) Prophylactic Antibiotics Discontinued Within 24 hours After Surgery End Time

Description: Surgical patients whose prophylactic antibiotics were discontinued within 24 hours after surgery end time. *The Society of Thoracic Surgeons (STS) Practice Guideline for Antibiotic Prophylaxis in Cardiac Surgery (2006) indicates that there is no reason to extend antibiotics beyond 48 hours for cardiac surgery and very explicitly states that antibiotics should not be extended beyond 48 hours even with tubes and drains in place for cardiac surgery.

Rationale: A goal of prophylaxis with antibiotics is to provide benefit to the patient with as little risk as possible. It is important to maintain therapeutic serum and tissue levels throughout the operation. Intraoperative re-dosing may be needed for long operations. However, administration of antibiotics for more than a few hours after the incision is closed offers no additional benefit to the surgical patient. Prolonged administration does increase the risk of *Clostridium difficile* infection and the development of antimicrobial resistant pathogens.

(SCII-4) Cardiac Surgery Patients With Controlled 6 A.M. Postoperative Blood Glucose

Description: Cardiac surgery patients with controlled 6 A.M. blood glucose (= 200 mg/dL) on postoperative day one (POD 1) and postoperative day two (POD 2) with *Surgery End Date* being postoperative day zero (POD 0).

Rationale: Hyperglycemia has been associated with increased in-hospital morbidity and mortality for multiple medical and surgical conditions. In a study by Zerr, et al (1997), the risk of infection was significantly higher for patients undergoing coronary artery bypass graft (CABG) if blood glucose levels were elevated. Furthermore, Zerr, et al (2001), demonstrated that the incidence of deep wound infections in diabetic patients undergoing cardiac surgery was reduced by controlling mean blood glucose levels below 200mg/dL in the immediate postoperative period. Latham, et al (2001), found that hyperglycemia in the immediate postoperative phase increases the risk of infection in both diabetic and nondiabetic patients and the higher the level of hyperglycemia, the higher the potential for infection in both patient populations. A study conducted in Leuven, Belgium (Van den Berghe, 2001), demonstrated that intensive insulin therapy not only reduced overall in-hospital mortality but also decreased blood stream infections, acute renal failure, red cell transfusions, ventilator support, and intensive care. Hyperglycemia is a risk factor that, once identified, could minimize adverse outcomes for cardiac surgical patients.
Description: Cardiac surgery patients with controlled 6 A.M. blood glucose (= 200 mg/dL) on postoperative day one (POD 1) and postoperative day two (POD 2) with Surgery End Date being postoperative day zero (POD 0).

Rationale: Hyperglycemia has been associated with increased in-hospital morbidity and mortality for multiple medical and surgical conditions. In a study by Zerr, et al (1997), the risk of infection was significantly higher for patients undergoing coronary artery bypass graft (CABG) if blood glucose levels were elevated. Furthermore, Zerr, et al (2001), demonstrated that the incidence of deep wound infections in diabetic patients undergoing cardiac surgery was reduced by controlling mean blood glucose levels below 200mg/dL in the immediate postoperative period. Latham, et al (2001), found that hyperglycemia in the immediate postoperative phase increases the risk of infection in both diabetic and nondiabetic patients and the higher the level of hyperglycemia, the higher the potential for infection in both patient populations. A study conducted in Leuven, Belgium (Van den Berghe, 2001), demonstrated that intensive insulin therapy not only reduced overall in-hospital mortality but also decreased blood stream infections, acute renal failure, red cell transfusions, ventilator support, and intensive care. Hyperglycemia is a risk factor that, once identified, could minimize adverse outcomes for cardiac surgical patients.

SCIP-6) Surgery Patients with Appropriate Hair Removal

Description: Surgery patients with appropriate surgical site hair removal. No hair removal, or hair removal with clippers or depilatory is considered appropriate. Shaving is considered inappropriate.

Rationale: Studies show that shaving causes multiple skin abrasions that later may become infected. In a randomized study of 1,980 adult patients undergoing cardiopulmonary bypass surgeries, Ko, et al (1992), reported a significantly higher rate of infection among patients who were shaved with a razor than those who had hair removal by electric clippers before skin incision. In another randomized trial of 200 patients undergoing elective inguinal herniorrhaphy, Balthazar, et al (1982), concluded that hair removal with electric clippers immediately prior to the procedures “did not increase the risk of postoperative wound infection” (p. 799). In a systematic literature review by Kjonniksen, et al (2002), there was no strong evidence to contraindicate preoperative hair removal; however, there was strong evidence against hair removal with a razor. This review recommended depilatory or electric clippers immediately prior to surgery when hair removal was required. Alexander, et al (1983), reported that clippers, used on the morning of surgery, resulted in reduced surgical site infections and healthcare expenditures.

SCIP-7) Colorectal Surgery Patients with Immediate Postoperative Normothermia.

Updated 5/16/08
Description: Colorectal surgery patients with immediate normothermia (greater than or equal to 96.8° F) within the first fifteen minutes after leaving the operating room.

Rationale: Core temperatures outside the normal range pose a risk in all patients undergoing surgery.

According to the Clinical Guidelines for the Prevention of Unplanned Perioperative Hypothermia by the American Society of PeriAnesthesia Nurses (ASPAN, 2001), published research has correlated impaired wound healing, adverse cardiac events, altered drug metabolism, and coagulopathies with unplanned perioperative hypothermia. A study by Kurtz, et al (1996), found that incidence of culture-positive surgical site infections among those with mild perioperative hypothermia was three times higher than the normothermic perioperative patients. In this study, mild perioperative hypothermia was associated with delayed wound closure and prolonged hospitalization. In a meta-analysis of outcomes and costs, Mahoney and Odom (1999), demonstrated that hypothermia is associated with a significant increase in adverse outcomes, including an increased incidence of infections. The authors also concluded that hypothermia is associated with an increased chance of blood products administration, myocardial infarction, and mechanical ventilation. These adverse outcomes resulted in prolonged hospital stays and increased healthcare expenditures.

(SCIP-CARD-2) Surgery Patients on Beta-Blocker Therapy Prior to Admission Who Received a Beta-Blocker During the Perioperative Period

Description: Surgery patients on beta-blocker therapy prior to admission who received a beta-blocker during the perioperative period. The perioperative period for the SCIP Cardiac measures is defined as 24 hours prior to surgical incision through discharge from post-anesthesia care/recovery area.

Rationale: In patients at risk of cardiovascular complications in a variety of medical conditions, beta-blockers have been shown to reduce that risk. Studies show that patients with a history of myocardial infarction who have had beta-blocker therapy initiated and continued, have a 20 to 30% reduction in subsequent coronary events, cardiovascular mortality, and all-cause mortality (Yusuf, 1985). In a meta-analysis by McGory et al (2005), long-term cardiac mortality and myocardial ischemia were reduced significantly by perioperative beta blockade. Patients maintained on beta-blockers, without complications that might warrant discontinuation, are good candidates for continuation of beta-blockers through the perioperative period.
(SCIP-VTE-1) Surgery Patients with Recommended Venous Thromboembolism Prophylaxis Ordered

Description: Surgery patients with recommended venous thromboembolism (VTE) prophylaxis ordered anytime from hospital arrival to 48 hours after Surgery End Time.
Rationale: There are over 30 million surgeries performed in the United States each year. Despite the evidence that VTE is one of the most common postoperative complications and prophylaxis is the most effective strategy to reduce morbidity and mortality, it is often underused. The frequency of venous thromboembolism (VTE), that includes deep vein thrombosis and pulmonary embolism, is related to the type and duration of surgery, patient risk factors, duration and extent of postoperative immobilization, and use or nonuse of prophylaxis. According to Heit et al, 2000, surgery was associated with over a twenty-fold increase in the odds of being diagnosed with VTE. Studies have shown that appropriately used thromboprophylaxis has a positive risk/benefit ratio and is cost effective. Prophylaxis recommendations for this measure are based on selected surgical procedures from the 2004 American College of Chest Physicians guidelines.

(SCIP-VTE-2) Surgery Patients Who Received Appropriate Venous Thromboembolism Prophylaxis Within 24 Hours Prior to Surgery to 24 Hours After Surgery

Description: Surgery patients who received appropriate venous thromboembolism (VTE) prophylaxis within 24 hours prior to Surgical Incision Time to 24 hours after Surgery End Time.
Rationale: There are over 30 million surgeries performed in the United States each year. Despite the evidence that VTE is one of the most common postoperative complications and prophylaxis is the most effective strategy to reduce morbidity and mortality, it is often underused. The frequency of venous thromboembolism (VTE), that includes deep vein thrombosis and pulmonary embolism, is related to the type and duration of surgery, patient risk factors, duration and extent of postoperative immobilization, and use or nonuse of prophylaxis. According to Heit et al, 2000, surgery was associated with over a twenty-fold increase in the odds of being diagnosed with VTE. Studies have shown that appropriately used thromboprophylaxis has a positive risk/benefit ratio and is cost effective. Prophylaxis recommendations for this measure are based on selected surgical procedures from the 2004 American College of Chest Physicians guidelines. Timing of prophylaxis is based on the type of procedure, prophylaxis selection, and clinical judgment regarding the impact of patient risk factors. The optimal start of pharmacologic prophylaxis in surgical patients varies and must be balanced with the efficacy-versus-bleeding potential. Due to the inherent variability related to the initiation of prophylaxis for surgical procedures, 24 hours prior to surgery to 24 hours post surgery was recommended by consensus of the SCIP Technical Expert Panel in order to establish a timeframe that would encompass most procedures.