Selection & Specification Data

Generic Type
High density cementitious fireproofing designed for the fire protection of exterior and interior structural steel.

Description
A 55 lb./ft³ (881 kg/m³) density, Portland cement based, cementitious fireproofing. It provides both hydrocarbon and cellulosic fire protection for structural steel and can also be used to upgrade the fire resistance of existing concrete. Recommended areas of application include refineries, petrochemical, pharmaceutical facilities, pulp and paper mills, offshore platforms, nuclear and conventional power plants, factories, warehouses, institutional and biomedical facilities.

Features
- Over 35 years of proven performance
- Exceptional durability and toughness
- UL 1709 hydrocarbon fire rated up to 4 hours
- BS 476 hydrocarbon fire rated up to 4 hours
- ISO 22899-1 jet fire rated up to 2 hours
- ASTM E119 cellulosic fire rated up to 4 hours
- Cryogenic protection against LNG spills and immersion exposures
- Resistant to 3 bar blast overpressure
- Hose stream resistant
- Tolerant to wide range of climates
- Lightweight – one-fifth the weight of concrete for equal fire protection
- Ideal for onsite and offshore application
- Easy application by spray or trowel
- Nonflammable – during or after application
- Chloride and sulfide free – no special priming required
- Non-friable – high impact strength

Color
Non-Uniform Speckled Gray
Product color may vary due to variations in color of Portland cement.

Finish
Textured
If a smooth finish is required, this may be done by trowel, roller or brush typically within 1 to 2 hours after final application of Pyrocrete 241.

Primer
Pyrocrete 241 neither promotes nor prevents corrosion. The fireproofing should not be considered as part of the corrosion protection system. For applications where primers are required, use a Carboline approved, alkaline resistant primer. Pyrocrete 241 must meet minimum UL bond strength criteria for contour applications where primers are used. Contact the Carboline Fireproofing Technical Service for further information and approved primers.

Fireproofing Topcoats
Generally not required. In severely corrosive atmospheres, topcoats may be used for added durability and chemical resistance. Consult Carboline Fireproofing Technical Service for selection of the coating most suitable for the operating environment.

Selection & Specification Data

Top Coat – Surface hardness should be a minimum Shore D64 as measured with a durometer prior to application of the topcoat. Normally, this minimum dry time is 10 days at 70°F (21°C) and 40 days at 40°F (4°C), for thickness of 1” (25.4 mm) or less.

Caulking – For exterior installations, Acrilast caulk should be applied at all termination joints between Pyrocrete 241 and the substrate. Contact Carboline Fireproofing Technical Service for full information.

Application Thickness
1/2" - 5/8" (12.7 - 15.9 mm) on initial pass

Theoretical Coverage Rates
13.3 board foot per bag @ 55 lbf
1.23 m² @ 25.4 mm thick @ 881 kg/m³

Field results will vary depending upon application parameters. Coverage based on theoretical gross yield without loss. Material losses during mixing and application must be taken into account when estimating project requirements. Coverage based on 50 lb. (22.7 kg) bags (one board ft = one lb of material at one inch thick or 0.09 m² of material at 25.4 mm thick).

Limitations
Not recommended for use as a refractory cement or where continuous operating temperatures exceed 200°F (93°C).

Substrates & Surface Preparation

General
Before applying Pyrocrete 241, the substrate coating must be free of all oil, grease, condensation, or other contamination.

Steel
If primer is required, steel preparation before priming should be done in accordance with the recommended primer’s product data sheet. Contact Carboline Fireproofing Technical Service for approved primers.

Galvanized Steel
Pyrocrete 241 is usually applied directly over galvanized surface. If priming is required, contact Carboline Fireproofing Technical Service for recommendations.

Concrete
The recommended primer to seal concrete prior to applying Pyrocrete 241 is Carboguard 1340.

Non-Ferrous Metals
Aluminum, copper and other non-ferrous metals shall be primed with one coat of Carboline’s Carbomastic 15.

Lathing & Attachments
3.4 lb./yd² (1.85 kg/m²) galvanized metal lath, may be pre-bent and tie-wired into place for appropriate design. Optionally, beam furring clips or electrically welded, pneumatic or self-tapping screws or studs, may be used.

Contour Design
- 3.4 lb./yd² (1.85 kg/m²) galvanized metal lath wrapped around the flange edges toward the web approximately 1 1/2" (38 mm). Contour column designs allow the use of 2" x 2" (50.8 mm x 50.8 mm) galvanized or PVC coated hexagonal metal mesh with beam furring clips as an alternate to the 3.4 lb./yd² (1.85 kg/m²) galvanized metal lath. Plastic-nosed corner beads may also be used for better thickness control and aesthetics on flange edges of steel. Please refer to design details. For contour applications on structural members with web span greater than 16” (406 mm) or flange widths greater than 12” (304 mm).
Substrates & Surface Preparation

mm) refer to the UL Fire Resistance Directory under “Coating Materials” section.

Boxed Design - 3.4 lb./yd² (1.85 kg/m²) galvanized metal lath wrapped around member spanning the web, overlapped 1” (25.4 mm) and tie-wired on the flange face 12” (304 mm) on center. For large webbed members, additional support for lath may be needed for ease of installation. Plastic-nosed corner beads may also be used for better thickness control and aesthetics.

Tower Skirts and Flat Surfaces - Require that 3.4 lb./yd² (1.85 kg/m²) galvanized metal lath be anchored on 12” to 24” (304 mm to 610 mm) centers depending upon requirements. The lath should overlap and be tie-wired. On tower skirts only, PVC coated mesh can be used in lieu of 3.4 lb./yd² (1.85 kg/m²) galvanized lath. Mesh shall be 2” x 2” (50.8 mm x 50.8 mm) 20 gauge wire coated with PVC as furnished by Carboline. When ram set or welding is prohibited; a pneumatic fastener may be used. On very large areas, control joints are made by scoring hallway through the thickness of Pyrocrete. This is achieved by using the trowel blade edge or an appropriate scoring tool. A preferred option would be the use of plastic-nosed corner beads. Spacing should be on 10’ (3 m) centers, both horizontally and vertically. Please refer to design details or contact Carboline Fireproofing Technical Service.

Performance Data (Typical Values)

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D2240 Durometer</td>
<td>83</td>
</tr>
<tr>
<td>Hardness (Shore DO)</td>
<td></td>
</tr>
<tr>
<td>ASTM D2794 Impact Resistance</td>
<td>Pass (No cracking at 20 foot pounds)</td>
</tr>
<tr>
<td>ASTM E605 Density¹</td>
<td>55 lb./ft³ (881 kg/m³) (minimum average)</td>
</tr>
<tr>
<td>ASTM E736 Bond Strength (Unprimed Steel)²</td>
<td>22,026 psi (10,545 kPa)</td>
</tr>
<tr>
<td>ASTM E759 Deflection</td>
<td>Pass</td>
</tr>
<tr>
<td>ASTM E760 Bond Impact</td>
<td>Pass</td>
</tr>
<tr>
<td>ASTM E761 Compressive Strength</td>
<td>1,111 psi (7.6 MPa)</td>
</tr>
<tr>
<td>ASTM E84 Flame Spread</td>
<td>0</td>
</tr>
<tr>
<td>ASTM E84 Smoke Development</td>
<td>0</td>
</tr>
<tr>
<td>ASTM E937 Corrosion</td>
<td></td>
</tr>
<tr>
<td>Coverage 50 lb. (22.7 kg) bag</td>
<td>13.3 Bc Ft. (1.23 m² @ 25 mm)</td>
</tr>
<tr>
<td>Explosion Resistance</td>
<td>3 bar</td>
</tr>
<tr>
<td>Hose Stream Resistance</td>
<td>Pass</td>
</tr>
<tr>
<td>Shrinkage</td>
<td><0.5%</td>
</tr>
</tbody>
</table>

¹ Air dry at ambient conditions until constant weight is achieved. Do not force dry. Use ASTM E605 Positive Bead Displacement modified to use 1 mm ceramic beads.
² Bond strength testing performed utilizing ASTM E736 with AWCI Technical Manual 12-A modifications.

All test data above was generated under laboratory conditions. Field testing results may vary. Physical property data was derived using 4.5 gallons of water for 50 lb. (22.7 kg) bag. Material shall reach a hardness of Shore DO 64 prior to handling and topping. Test reports and additional data available upon written request.

Mixing & Thinning

Mixer

Use a heavy-duty mortar mixer rotating at 40 rpm with rubber tipped blades that will scrape the sides and bottom of the mixer. A 50 lb. (22.7 kg) bag of Pyrocrete 241 typically requires a mixer volume of 8 ft³ (227 L) minimum and mixer. Do not use pan type mixers.

Mixing

Target water level: 4.5 gallons (17 liters)
Add clean, potable water to a mortar mixer with rubber tipped blades. With mixer running slowly, add powder and mix for 5 minutes until a homogeneous mortar-like consistency is achieved. Longer mixing times may result in lower densities. Total water must not exceed 5 gallons (19 liters) per 50 lb. (22.7 kg) bag. In cool weather, warm water may be used to enhance application. In hot weather, cold water may be used.

Pot Life

2 hours at 70°F (21°C) and less at higher temperatures. Pot life ends when the material thickens and becomes unusable.

Density

Target wet density: 76 - 82 lb./ft³ (1,217-1,313 kg/m³). Wet density measurements are critical to obtaining correct dry densities. When checking wet densities, use the following procedures:

Equipment needed:
- 1 liter (1000 cc) polyethylene cup
- Small metal spatula
- Scale accurate to 1 gram

Determination of Pyrocrete wet density:
- Weigh the empty cup to the nearest gram, then tare the scale.
- Use the spatula to fill the cup completely with mixed material (do not tamp cup).
- Remove the excess material on top by placing the vertical edge of the spatula on the top edge of the cup. Use a sawing motion to level the mixed Pyrocrete material flush with the top of the cup.
- Weigh the filled cup to the nearest gram.
- Record the weight of material in grams. This value equals the wet density in grams/liter and kg/m³.
- To calculate the wet density of the material in lb./ft³, multiply the value in grams/liter by 0.0624.

Contact Carboline Fireproofing Technical Service for additional details.

Application Equipment Guidelines

Listed below are general equipment guidelines for the application of this product. Job site conditions may require modifications to these guidelines to achieve the desired results.

Pump

This material can be pumped with a wide range of piston, rotor stator and squeegee pumps designed to pump cement & plaster materials including:
- Essick - model# FM9/FM5E (Rotor Stator/2L4)
- Putzmeister - model# SSEV (Rotor Stator/2L6)
- Hy-Flex - model# HZ-30E (Rotor Stator/2L6)
- Hy-Flex - model# HZ-30E (Rotor Stator/2L6)
- Airtech - model# Swinger (Piston)
- Mayco - model# PF30 (Dual Piston)
- Thomsen - model# PTV 700 (Dual Piston)

Trowel

Standard plasterers’ hawk and trowel may be used. A rubber float may also aid in finishing.

Material Hose

Minimum 1” (25.4 mm) I.D. hose with 300 psi minimum bursting pressure. For lengths over 50’ (15 m) use 1½” to 3” (38 mm to 76 mm) I.D. hose. Do not reduce hose diameter by more than ¼” (6.4 mm) per 25’ (7.6 m) unless a tapered conical reducer equipped with swivel fitting is used. A 10’ (3m) length of ¾” (19 mm) I.D. hose may be added at the gun for use as a whip.

August 2016

To the best of our knowledge the technical data contained herein is true and accurate on the date of publication and is subject to change without prior notice. User must contact Carboline Company to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to Carboline quality control. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of products. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY CARBOLINE, EXPRESS OR IMPLIED, STATUTORY, BY OPERATION OF LAW, OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Carboline® and Carboguard® are registered trademarks of Carboline Company.
Pyrocrete® 241

Application Equipment Guidelines

Listed below are general equipment guidelines for the application of this product. Job site conditions may require modifications to these guidelines to achieve the desired results.

Nozzle/Gun
- Binks - part# 7E2 (47-49 fluid tip / 3/8"-1/2" air cap)
- Graco - part# 204000(3/8" - 1/2" fluid tip / air cap)
- Speeflow - part# 701(3/8" - 1/2" fluid tip / air cap)
- Airtech - internal mix with 3/8" - 1/2" fluid tip
- Standard plasterers gun with 3/8" - 1/2" fluid tip

Compressor
- Be certain that the air supply is a minimum 22 cfm at 100 psi (689 kPa) and higher when distances longer than 75' (22 m) are required.

Air Line
- Use ½" (12.7 mm) I.D. line, with a minimum bursting pressure of 100 psi (689 kPa).

Application Procedures

General
Pyrocrete 241 may be applied by spray and/or trowel. Material build will depend on application method, weather conditions and equipment used. For application overhead, a scratch coat of up to ½" (12.7 mm) is recommended to key into the lath. Allow to set for approximately 1 to 2 hours at 70°F (21°C) before applying the subsequent coats. It is recommended that the total required thickness be applied within a 24 hour period. If this is not possible, the preceding coats should be left as sprayed or scored after application. Product must be dampened with water before application of additional coats.
- Maximum time to achieve the full thickness is 3 days at 70°F (21°) and 50% relative humidity. This would be less at higher temperatures.
- All additional coats are applied monolithically to the entire perimeter of the member.
- At no time shall Pyrocrete 241 be applied at a thickness less than ¼" (6.4 mm) or “skim” coated.

Finishing
Material can be left as sprayed or finished with a trowel for better aesthetics.

Application Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Material</th>
<th>Surface</th>
<th>Ambient</th>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>40°F (4°C)</td>
<td>40°F (4°C)</td>
<td>40°F (4°C)</td>
<td>0%</td>
</tr>
<tr>
<td>Maximum</td>
<td>100°F (38°C)</td>
<td>125°F (52°C)</td>
<td>110°F (43°C)</td>
<td>95%</td>
</tr>
</tbody>
</table>

Curing Schedule

<table>
<thead>
<tr>
<th>Surface Temp.</th>
<th>Dry to Recoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°F (21°C)</td>
<td>2 Hours</td>
</tr>
</tbody>
</table>

Fresh Pyrocrete 241 must be protected from rain or running water for 24 hours at 70°F (21°C). In low humidity, high temperature, direct sun or wind, the Pyrocrete surface should be kept damp for at least 12 hours by applying a water mist or wrapping in plastic sheets to reduce rapid water loss. Caution: Do not start work if ambient temperatures are expected to drop below 35°F (2°C) for 24 hours after application. Material shall reach a hardness of Shore D6 64 prior to handling and topping off.

Cleanup & Safety

Cleanup
Pump, mixer and hose should be cleaned with clean, potable water at least once every 4 hours at 70°F (21°C), and more often at higher temperatures. Sponges should be run through the hoses to remove residual material. Wet Pyrocrete 241 overspray must be cleaned up with soapy or clean, potable water. Cured overspray may require chipping and/or scraping to remove.

Testing / Certification / Listing

Underwriters Laboratories, Inc.
Pyrocrete 241 has been tested by Underwriters Laboratories, Inc. and is classified for exterior or interior use by UL in the following designs:
- UL 1709 Rapid temperature rise hydrocarbon fire exposure
- Columns – XR701, XR702, XR 734
- BS 476: Part 20: Appendix D hydrocarbon fire exposure
- Columns – Report No. R11193

Cryogenic Testing
Tested in accordance to “Specification for Cryogenic Protection and Passive Fire Protection of Structural Members”, dated March 2006 from South Hook LNG Terminal Company Ltd. Additional splash and spill testing perform at varying flow rates. All testing has been witnessed by UL.
- ASTM E119 (UL 263, NFPA 251) Cellulosic fire exposure
- Columns - X732, X733, X735, X736, X743, X744, Y707, Y708
- Roof Assembly – P734, P735, P736, P737, P738, P739, P926, P927, P928, P929, P906, P907, P908, J713, J714, J715, J716
- Beams – N715, N716, N717, N718, N771, N772, N773, N774, N775, N706, S713, S731, S732, S733
- Floor Ceiling Assembly – D744, D767, D768, D769, D770, D771, D772, D773, D774, D775, D776, D777, D927, D928
- Walls – U704

City of New York
- MEA No. 172-80-M (Columns)
- MEA No. 173-80-M (Columns W14x233)
- MEA No. 174-80-M (Beams)

City of Los Angeles
- RR24763

FM Global
Tested and listed by FM Global for structural Test and LPG vessels at 3/8” (10mm) thickness from face of metal lath for 2 hour rating, including hose stream endurance test.

City of San Francisco
- 164 C57.7A

Det Norske Veritas
- 3 bar overblast protection

Lloyd’s Register
- J-120 jet fire protection - certificate No. SAS F130010

Packaging, Handling & Storage

Shelf Life
- 24 months (minimum) when kept at recommended storage conditions.

August 2016

To the best of our knowledge the technical data contained herein is true and accurate on the date of publication and is subject to change without prior notice. User must contact Carboline Company to verify correctness before specifying or ordering. No guarantee of accuracy is given or implied. We guarantee our products to conform to Carboline quality control. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of products. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY CARBOLINE, EXPRESS OR IMPLIED, STATUTORY, BY OPERATION OF LAW, OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Carboline® and Carboguard® are registered trademarks of Carboline Company.
Packaging, Handling & Storage

Shipping Weight (Approximate) 50 lb. (22.7 kg)

Storage Store indoors in a dry environment between -20°F - 150°F (-29°C - 66°C)
 Material must be kept dry or clumping may occur.

Packaging 50 lb. (22.7 kg) bags