The Big 50 Revision Guidelines for S1

If you can understand all of these you’ll do very well...

1. Know what is meant by a statistical model and the “Modelling cycle” of continuous refinement

2. Understand how inferences from a suitably representative sample can be used to study the wider population

3. Name at least three sampling techniques and describe the relative advantages and disadvantages of each in terms of practicality, economy and reliability

4. Know how to categorise data types according to labels such as discrete, continuous, qualitative and quantitative and be able to give real-life examples of each

5. Understand the distinction between Upper/Lower Class Boundaries and Upper/Lower Class Limits, and why the Upper Class Boundary is used in cumulative frequency graphs

6. Understand that graphical representation can result in loss of data, especially through over-simplification

7. Know how to construct a cumulative frequency step polygon

8. Know how to construct a single or double sided Stem and Leaf diagram

9. Know a variety of techniques for the display of data and understand that according to context some are more effective than others

10. Understand the necessary calculations of frequency density and area required for the construction and interpretation of variable-width histograms

11. Understand the distinction between Measures of Central Tendency (Location) and Measures of Dispersion (Spread) and give examples of each

12. Know how to interpret the Mode, Median and Mean of a set of data, and how to estimate these from a grouped frequency chart, including interpolation as necessary
13. Understand what is meant by the Coding of data, and the implications on the calculation of the mean of the original data set

14. Appreciate the conventions used for the determination of Upper and Lower Quartiles from a small set of discrete data ($n < 50$) when $n/4$ is or is not an integer

15. Understand and use the formula to find the r^{th} of s quantiles within a given class, given the lower class boundary b, the total frequency n, the cumulative frequency f up to b, the class frequency c and the class width w

16. Appreciate the assumptions made when interpolating or extrapolating data

17. Know how to find the quartiles, both from a cumulative frequency graph and from a grouped frequency chart, and to use them to describe the skewness of a data set

18. Know how to calculate a measure of skewness using the mean, median and s.d.

19. Know how to calculate the variance and standard deviation of a set of data, and how to do this efficiently on a scientific calculator

20. Understand the notation used to describe overlapping and disjoint sets (Venn Diagram notation) and the graphical interpretation of Union, Intersection and Complement

21. Understand the simplifications made for probability work at KS3 and GCSE, and how these are extended into more general contexts at KS5

22. Know the meaning of Dependent, Independent, Mutually Exclusive and Conditional in the context of probability

23. Understand how to apply the formula to calculate the probability of one event given the probability of another

24. Understand and use the notation $P(A)$, $P(A')$, $P(A \cup B)$, $P(A \cap B)$ and $P(A \mid B)$

25. Given $P(C)$, $P(S \mid C)$ and $P(S \mid C')$, know how to calculate (for example) $P(S \cap C')$, $P(S)$ and $P(C \mid S)$, and be able to give both a graphical illustration and a real-life context for these calculations
26. Understand why $P(A \mid B) = P(B \mid A) = 0$ for mutually exclusive events A and B.

27. Understand why $P(A \mid C) = P(A)$ and $P(C \mid A) = P(C)$ implies that events A and C are independent

28. Understand and use the Addition and Multiplication Rules for probability

29. Know how to use probability trees and Venn Diagrams to solve probability problems

30. Know how to use the factorial function $n!$ to calculate number of arrangements, and to use the formula $\binom{n}{r}$ or $\binom{n}{r}$ to deal with repeated items

31. Understand and use a Probability Distribution Function $P(X = x)$ for a discrete random variable and appreciate why for all such PDFs, $\sum P(X = x) = 1$

32. Appreciate the distinction between unbiased $(n - 1)$ and biased (n) estimators for the calculation of the population variance from the sample data

33. Understand and use the Expectation of a random variable, and of a function of a random variable, where in general $E(g(x)) = \sum g(x)P(X = x)$

34. Appreciate that $E(X^2) \neq [E(X)]^2$ and be able to explain the difference

35. Know how to write the Mean and Variance of a random variable X in terms of $E(X)$, $E(X^2)$ and $E^2(X) = [E(X)]^2$

36. Know how to calculate the Expectation and Variance of a linear function of a random variable: $E(aX + b)$ and $Var(aX + b)$

37. Understand the concept of Correlation between the two variables in a bivariate data set as a measure of the quality of a “best fit” line

38. Understand the concept of Linear Regression as a means of fitting a straight line through a set of data points, especially by the Method of Least Squares
39. Understand the distinction between the regression line y on x and the regression line x on y, and know when each is appropriate

40. Know how to calculate S_{xx}, S_{xy} and S_{yy} given n, $\sum x$, $\sum y$, $\sum xy$, $\sum x^2$ and $\sum y^2$

41. Know how to calculate and interpret (Pearson’s) Product Moment Correlation Coefficient PMCC, especially with the assistance of a scientific calculator

42. Know how to calculate the equation of a regression line of A on B, especially with the assistance of a scientific calculator

43. Understand why the Regression Line must go through the Mean Point (\bar{x}, \bar{y})

44. Understand the concept of a Normal Distribution $X \sim N(\mu, \sigma^2)$ and the Standard Normal Distribution $Z \sim N(0,1)$, and the standardising process from $X \longrightarrow Z$

45. Understand and use tables or scientific calculator to determine approximate areas under the Normal curve between any two points

46. Know the relationship between areas under the Normal curve and associated probability calculations for a Normally-distributed continuous random variable

47. Know the approximate percentages of a Normal distribution contained within ±1, ±2 and ±3 standard deviations of the mean

48. Know how to use the symmetry of the Normal Distribution to calculate related probabilities

49. Know how to interpret phrases such as “at least”, “between”, “no more than” etc. in the context of probability questions

50. Know how to interpret tabulated or calculated values in the context of the original problem.
This really is it – the big one. If you can answer YES to all 50 of these questions then you can feel confident about any Stats Exam they might throw at you. Here goes:

- Do you know the shape of the two skewed distributions?
- Can you use a random number table to generate a set of random numbers?
- Do you know how to calculate Standard Deviation and Variance?
- Do you know how to estimate population size using the Petersen Capture/Recapture method?
- Can you say when it is best to use dual or stacked bar charts?

- Can you sketch examples of two non-linear relationships?
- Can you give three examples of both primary and secondary data?
- Can you give three examples of both qualitative and quantitative data?
- Do you know what is meant by the Population of a statistical study?
- Would you know what to do with time series data?

- Can you calculate and use the equation of a line of best fit?
- Do you know the difference between univariate and bivariate data?
- Can you draw the diagrams for under-simplification and over-simplification?
- Can you give three examples of both discrete and continuous data?
- Can you explain when and how to use a weighted mean?

- Can you operate with Warning and Action Limits for Quality Control?
- Can you explain the purpose of a pilot survey?
- Can you interpret graphs and charts and comment on misleading representations?
- Can you name three measures of central tendency?
- Can you draw stem and leaf diagrams either one sided or back-to-back?

- Can you use interpolation to estimate the median of grouped data?
- Do you know how to calculate outliers and show them on a box and whisker plot?
- Can you use Sigma Notation for the mean of grouped data?
- Can you use interval notation correctly without gaps or overlaps?
- Do you know how to calculate and plot moving averages and trend lines?
Can you explain when and how to use the geometrical mean?

Can you draw and use probability trees?

Can you name three measures of dispersion?

Can you explain Frequency Density in Histograms?

Can you explain why standardised scores are the best way to compare exam results in two different subjects?

Can you explain how to do stratified sampling?

Can you give three examples of different scales used for data?

Do you know how to reduce bias in sampling?

Can you say why interpolation is more accurate than extrapolation on a scattergraph?

Can you explain how quartiles, deciles and percentiles fit on a cumulative frequency graph?

Can you calculate probabilities associated with discrete uniform distributions?

Can you calculate and interpret Spearman's Rank Correlation Coefficient?

Can you name ten different statistical charts and diagrams?

Do you know the central percentages of the Normal Distribution associated with ± 1, 2 or 3 SDs?

Can you describe four sampling techniques with their pros and cons?

Do you know the difference between independent (explanatory) and dependent (response) variables?

Can you calculate probabilities associated with the Binomial Distribution?

Can you say when it is a good idea to use comparative frequency polygons?

Can you use simple examples of conditional probability?

Can you say why a sample should be representative?

Do you know why a hypothesis can never be proved?

Do you know how to use Venn Diagrams?

Can you work with comparative pie charts?

Do you know the difference between Hypothesis and Sub-Hypothesis?

Can you use chain base and index numbers to show changes in data?