Proteus NoEndo™ S (Standard) and NoEndo™ HC (High Capacity) Spin Column Kits

User Guide

Introduction

The Proteus kits are designed for simple, rapid removal of endotoxin from a wide range of protein solutions. Proteus spin columns replace lengthy and expensive chromatographic methods such as phase separation and FPLC®.

There are two versions of the Proteus kits; the Proteus NoEndo S (Standard) and NoEndo HC (High Capacity) spin column kits which are suitable for different endotoxin loads. For samples with endotoxin loads less than 30,000 EU, Proteus NoEndo S and Proteus NoEndo HC columns can be used. For samples with endotoxin loads up to 1,000,000 EU, Proteus NoEndo HC columns are required. These Proteus kits incorporate pre-packed NoEndo resin plugs in ready-to-use spin columns. Endotoxin removal is achieved in a 50 ml centrifuge tube. The Proteus NoEndo columns contain a proprietary FlowGo™ technology which regulates sample movement through the high-quality affinity resin matrix. The yields of a gravity flow are provided with the speed of a spin column.

Large numbers of samples can be processed at the same time. There is negligible hold-up volume; ensuring high solute recovery with minimal nonspecific absorptive losses. Protein samples purified using Proteus spin columns may be used for a wide range of laboratory procedures such as biopharmaceutical preparations for proteins, antibodies and vaccines.

Unique Features of Proteus NoEndo Spin Columns:

- Endotoxin levels as low as 0.05 EU/ml with typical protein recoveries > 90%.
- Proteus NoEndo kits are designed to eliminate tedious chromatographic steps normally associated with other affinity chromatography methods.
- The unique flow regulator in a column offers high speed, high capture efficiency and high reproducibility.
- These spin columns are rapid endotoxin removal columns which require minimal preparation time. Loose resin is marketed towards the traditional chromatography market.
- The kits contain pre-packed spin columns that are very easy to use.
- All pre-packed columns have clear and robust specifications generated in situ. No unrealistic static binding capacities are quoted!
- The spin columns allow multiple and parallel rapid purifications. This is ideal for rapid screening and method development.
- The kits offer a standardised method for high grade removal of endotoxin from a broad spectrum of monoclonal antibodies and proteins. All components of the kits will be fully traceable.
- The provision of a disposable spin column is ideally suited to GMP production where current user requirements and price sensitivities demand regeneration of the affinity matrix using harsh treatments.
Contents of Proteus NoEndo Kit with NoEndo Resin:

The Proteus kit contains:

- Proteus spin column plugs containing NoEndo resin
 | NoE2 | NoE12 | NoE48 |
 | 2 | 12 | 48 |

- Proteus spin column devices
 (20 ml capacity in a swing bucket rotor)
 | NoE2 | NoE12 | NoE48 |
 | 2 | 12 | 48 |

- 50 ml centrifuge tubes
 | NoE2 | NoE12 | NoE48 |
 | 2 | 12 | - |

- Plug insertion tool
 | NoE2 | NoE12 | NoE48 |
 | 1 | 1 | 1 |

- Protocol card
 | NoE2 | NoE12 | NoE48 |
 | 1 | 1 | 1 |

Proteus NoEndo column kit components:

Additional Items Recommended:

- Filter units: 0.2 and 1.2 µm syringe filters for clarification.

- Low endotoxin pre-equilibration buffer (Recommend PBS, pH 7.4).

- 50 ml centrifuge tubes

- Quartz cuvettes for UV absorbance measurements.

- UV/VIS spectrophotometer.

- Pyrogen-free test tubes and pipettes.

- A bench-top centrifuge with swing bucket rotor that can accommodate 50 ml centrifuge tubes.

NOTE: The preferred rotor is a swinging bucket rotor. For optimal performance with a fixed angle rotor, ensure that the orientation of the spin column in the rotor is the same for sample binding and washing.
NoEndo Resin:

Both Proteus NoEndo S and Proteus NoEndo HC spin columns contain NoEndo resin. The NoEndo resin is specifically designed with a polyamine chemical synthetic ligand which has high selectivity for endotoxin. This ligand is immobilized on to nearly mono-disperse 6% agarose beads using established chemical methods. It is highly effective in binding and removing endotoxin from a variety of fluids such as water, aqueous solutions and biopharmaceutical preparations such as proteins, vaccines and antibiotics.

The FlowGo™ Advantage:

The Proteus spin columns contain a unique FlowGo™ technology. This technology uses back pressure to enable a steady and controlled flow of sample and buffer through the affinity resin column during centrifugation. This powerful flow regulation technology leads to maximum endotoxin removal, higher protein recovery and improved purification results, in comparison with similar gravity flow and spin systems. The columns are supplied pre-packed and ready-to-use.

Affinity chromatography:

The essence of affinity chromatography utilizes the concept of bio-specificity, implying an interaction between a natural binding site and the natural ligand, whether it be enzyme substrate, enzyme-inhibitor or resin-endotoxin interactions.

Often a researcher needs to choose the correct base matrix, select the optimal activation chemistry and couple a suitable ligand to develop an affinity column to purify the target protein. Proteus spin columns remove the guesswork associated with optimizing the resin chemistry by offering ready-to-use resin plugs that have satisfied stringent quality control to guarantee reproducible purification process. Many affinity support preparations require less than 5 ml resin so NoEndo spin columns contain ideal bed volumes.

The columns are normally constructed from polystyrene or polypropylene with a simple barrel and the addition of porous disks to contain the resin. However, the affinity separation often takes several hours to complete; in addition the researcher usually has to pack the column, which can add a minimum 2 further hours to the purification step. The elaborate nature of the packing means that it is usually undertaken by an experienced laboratory worker. Proteus NoEndo spin columns eliminate these time consuming steps.

Storage Conditions:

Remove the Proteus NoEndo plug box from the kit and store it at 2-8°C. There is no need to place the rest of the kit in a refrigerator or cold room. Do not freeze the resin plugs or store them at room temperature. Freezing the suspension will damage the agarose beads. The resin is pre-swollen and defined. Proteus spin columns are stable for up to 2 years at 2-8 °C from the date of manufacture. The expiration date is recorded clearly on the outside of the pack. All resin is stored in 20% v/v ethanol containing 0.1M NaCl.
Chemical Compatibility:

<table>
<thead>
<tr>
<th>Compatible with</th>
<th>Incompatible with</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5M NaOH</td>
<td>Oxidising agents</td>
</tr>
<tr>
<td>PBS buffers</td>
<td>Strong acids</td>
</tr>
<tr>
<td>Detergents, Urea, guanidinium chloride</td>
<td>All Tris buffers</td>
</tr>
<tr>
<td>Water miscible solvents (e.g. 20% ethanol) *</td>
<td>All Glycine buffers</td>
</tr>
<tr>
<td>Stable between pH 3-13</td>
<td>Most buffers with amine groups</td>
</tr>
<tr>
<td>10 mM ETDA</td>
<td></td>
</tr>
<tr>
<td>Stable to 2 – 40 °C, recommended storage is 2-8 °C</td>
<td></td>
</tr>
<tr>
<td>Operational Flow Rates : 200 cm/hr</td>
<td></td>
</tr>
</tbody>
</table>

* Note: Water miscible organic solvents such as ethanol should be introduced at incremental concentrations up to the desired concentration otherwise bed movement in packed columns may occur. The same is true when exchanging from an aqueous organic solvent to an aqueous solution.

Background:

Endotoxins are the predominant lipids found in the outer membrane of gram negative bacteria. We know that sub-nanogram levels of endotoxin can trigger immune responses and alter the function of many different cell types and that removal of endotoxin is one of the most difficult downstream processes during protein or antibody purification. Gram negative bacteria are widely used as vectors for the manufacture of recombinant peptides and proteins. Much work has been spent over the years optimizing *E. coli* as an expression host for proteins from higher organisms. As a result, it is generally recognized that the first attempt to express a recombinant protein uses *E. coli* as the expression host. Phage display, which utilizes Gram negative bacteria, is increasingly used for the manufacture of monoclonal antibodies. Recombinant viruses and viral vectors are also currently being developed for therapeutic applications to treat conditions such as heart disease, diabetes, muscular dystrophy and cancer. These final products are generally contaminated with endotoxin. Contaminating endotoxins such as lipopolysaccharides present in gram negative bacteria need to be removed from protein, antibody and viral vectors. This makes the final product suitable for animal studies, cell cultures and cell based assays.

Endotoxins are of great concern in the medical device and pharmaceutical industries. If the final product is not certified to be free of endotoxin, many experiments may fail. Efficient and cost-effective removal of endotoxin from R & D preparations is extremely challenging. Endotoxin removal for research into animal studies, transplantation, gene therapy, stem cell technologies, cell sorting
and other mammalian cell treatments is vital. Endotoxin concentrations as low as 0.3-0.4 EU/ml can induce pyrogenic shock in mammals.

Many commercially available products are unable to remove endotoxin satisfactorily, or require time-consuming incubation steps. It is well documented that there is widespread dissatisfaction with all known commercial methods to remove endotoxin. Typically, the target protein binds as efficiently to the matrix as the endotoxin and cannot be recovered easily, or both endotoxin and protein elute in the flow-through fractions.

Incumbent technologies include:

1. **Affinity-based methods e.g. Polymyxin B-agarose resin.**

2. **Non-affinity-based methods e.g. Ion exchange chromatography and ultrafiltration.**

 Weaknesses: Empirical design of experiments and prior knowledge of key physical properties of target proteins e.g. isoelectric point, molecular weight is required and often difficult to ascertain. Also requires access to both anion and cation exchange technologies.

3. **Detergent-based methods e.g. Phase separation using Triton X-114.**

 Weaknesses: Resultant Triton X-114 resides in the sample. It is very difficult to remove TX-114. Also requires instrumentation to heat to 42°C and for subsequent detergent removal (with inevitable protein losses). Methodology is long-winded and unreliable. The detergent is relatively expensive and would add a significant cost to a manufacturing process. It may also affect the activity of the target protein.

The diversity in the number of methods to remove endotoxin indicates a dilemma in endotoxin removal. Often, endotoxin removal requires more than 1 of the above methodologies used in combination. Each of the above procedures address the problems associated with endotoxin removal in completely different ways. However, none of them has broad applicability. For example, ultrafiltration can remove endotoxins but will generally retain proteins as well. For small proteins, such as myoglobin (Mr ~ 18,000), ultrafiltration can be useful to remove large endotoxin aggregates, but not monomeric endotoxin which has a molecular weight between 10 and 20 kDa. With large proteins, such as immunoglobulins, ultrafiltration would not be effective for removing endotoxin aggregates. Usually, the procedures employed for endotoxin removal are unsatisfactory when you assess the following criteria: selectivity, adsorption capacity and recovery of the target species.

High cost has also severely limited widespread use of current endotoxin capture methods. In many cases, complete endotoxin removal is only achieved with large losses in protein yields. More importantly, strong selectivity is required as protein samples are often concentrated to between 5-30 mg/ml, and there is significant evidence showing that endotoxins do bind to proteins. Consequently, reduction or removal of endotoxin to less than 0.3 EU/ml sample (1 ng/mg; 10 EU/mg) is a very challenging task. Note that the term EU describes the biological activity of an
endotoxin. For example, 100 pg of the standard endotoxin EC-5 and 120 pg of endotoxin from *E. coli* O111:B4 have activity of 1 EU.

New fields in science increasingly demand that their raw ingredients are certified endotoxin free, as dictated by European Pharmacopoeia and FDA regulations (Gorbet and Sefton, 2005; Petsch et al, 2000). Many laboratories are forced to allocate resources to run parallel production lines that are endotoxin-free. Successful exploitation of an effective endotoxin removal kit will free up vital resources. Anything that reduces laboratory costs and inconvenience will, therefore, attract considerable interest.

General Considerations for Optimal Binding Conditions for Proteus NoEndo kits:

No Freezing of Protein Solutions before Endotoxin Removal:

All samples should be filtered just prior to loading even if they have been filtered several days before using the sample. Aggregation/precipitation of proteins is common during storage and repeated freeze-thawing. Protein solution should not be frozen before endotoxin removal. Freeze – thawing increases the formation of endotoxin micelles which can be more difficult to remove.

Binding Kinetics of NoEndo Spin Columns:

Controlling the flow rate through an affinity chromatography support is important in achieving binding. Flow rate through the column support is inextricably related to the efficiency of the separation; too fast a flow will cause the mobile phase to move past the beads faster than the diffusion time necessary to reach the internal bead volume. Our studies demonstrate that the large internal surface area of the NoEndo resin compensates completely for the velocity of the mobile phase through the column support when the centrifugal speed does not exceed 1,500 x g*. The NoEndo resin chemistries used in the Proteus spin column have sufficiently rapid association kinetics between the endotoxin molecule and the immobilised polyamine ligand to allow for optimal diffusional flow through the internal bead structure. Traditionally, gravity flow chromatography is very slow and resolution of the protein separation can be adversely affected by secondary diffusion effects.

* No performance data is available for centrifugal speeds greater than 1,500 x g.
Loading the Media Plug into the Spin Column:

1. Unwrap the sealing film from both ends of the plug.
2. Remove the top and bottom caps.
 NOTE: Once the caps are removed, the top end can be identified because it is recessed.
 (4 mm deep recess – High Capacity)
 (12 mm deep recess - Standard)
3. Insert the plug into the spin column with the top (recessed) end uppermost.
4. Push the plug fully into the tapered end of the spin column using the insertion tool.
 NOTE: To remove the plug from the spin column, insert the tool into the bottom of the spin column and push upward.

Endotoxin Removal Protocol:

This protocol is applicable to both Proteus NoEndo S and NoEndo HC spin columns. After loading the plug into the spin column and placing the spin column into a centrifuge tube, follow the procedure below.

PRE-EQUILIBRATION

1. Pre-equilibrate the Proteus NoEndo spin column with 10 ml equilibration buffer by centrifuging the spin column at 500 x g for 3 min.
NOTE: If using one spin column, ensure that the spin column is counterbalanced with a unit of equal weight (adjusted with distilled water; without a plug).

CLARIFICATION OF SAMPLE
2. Pre-filter 20-25 ml sample through a single 1.2 µm (25 mm diameter) syringe filter to remove any cellular debris. Following this, filter the partially clarified sample through a single 0.2 µm (25 mm diameter) syringe filter.

NOTE: As with all forms of chromatography, it is critical that the sample is filtered through a final 0.2 µm syringe filter immediately before loading it on the spin column. Optimal performance of these devices will depend on these instructions being rigorously followed.

SAMPLE LOADING
3. Pipette 20 ml sample into the spin column. Centrifuge the spin column at 100 x g for 30 min. Ideal sample loading conditions are obtained using a flow rate of less than 1 ml/min. It may be necessary to increase the spin time or spin speed if any sample remains on the top of the plug. Spin speeds as high as 1,500 x g have no damaging effect upon the NoEndo resin. A flow rate slower than expected may be indicative of a partially clogged plug resulting in incomplete filtration of the sample.

NOTE: When necessary, perform a further wash step by reloading 1-2 column volume equilibration buffer for maximum protein recovery.
4. For maximal removal of endotoxin, reload the sample into a new spin column (pre-equilibrated as per step 1) and repeat the centrifugation step (100 x g for 30 min). Increase the spin time or speed if any sample remains above the plug.

NOTE: If using one spin column, ensure that the spin column is counterbalanced with a unit of equal weight (adjusted with distilled water; without a plug).

PURIFIED SAMPLE
5. The eluate contains the target analyte largely depleted of endotoxin and is now ready for further downstream processing.

Appendix

How to convert rpm to g force (RCF) for the spin column using a swing bucket rotor

It is important that the Proteus spin columns are centrifuged at the correct speeds. Use of higher speeds than those indicated may damage the resin matrix and result in reduced performance. Many centrifuges display only rpm. See the diagram to enable accurate conversion between rpm and RCF (g force). This formula will work on any rotor providing an accurate measurement is taken from the center of the rotor to the bottom of the swing bucket at its open position (when the bucket is rotated through 90° in its running position).

\[
\text{RCF} = 1.12 \times r \left(\frac{\text{rpm}}{1000} \right)^2
\]

Eq. 500 g corresponds to 1630 rpm when the radius (r) = 170 mm
Product Performance:

The NoEndo resin exhibits low protein binding and a wide range of proteins can be processed regardless of their iso-electric points.

Figure 1: Protein recovery is largely unaffected by NoEndo purification.

The Proteus NoEndo S and Proteus NoEndo HC spin columns exhibit low protein binding. The data represents a wide range of proteins that were loaded on to the columns regardless of their iso-electric points (pI). Typical protein recoveries close to 90% were obtained.

Figure 2: Protein recovery between pH 4.0 and pH 9.0.

The following proteins were tested in acidic to neutral conditions (pH 4.0 to pH 7.2) using the Proteus NoEndo S and Proteus NoEndo HC spin columns. The data here shows that the NoEndo resin can operate in these conditions without a reduction in endotoxin removal and maintaining >85% recovery of various proteins (up to 5 mg/mL). At pH 9.0, both endotoxin and target protein co-bind to the NoEndo adsorbent.
Table 1: Endotoxin removal and protein recovery using the Proteus NoEndo spin column with BSA spike with *E.coli* lysate.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Endotoxin removal (EU)</th>
<th>Endotoxin removal efficiency (%)</th>
<th>Protein Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>28,000</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>1st cycle</td>
<td>80</td>
<td>99.7</td>
<td>99</td>
</tr>
<tr>
<td>2nd cycle</td>
<td>0.5</td>
<td>99.9</td>
<td>98.5</td>
</tr>
</tbody>
</table>

The Proteus NoEndo S spin column was used to clear endotoxin from a 1 mg/ml BSA sample spiked with *E.coli* lysate. The column was pre-equilibrated with PBS (pH 7.5). After loading 20 ml sample, the column was centrifuged at 100 g for 30 min. The flow through was loaded on to a fresh column and centrifuged using the same conditions. The data represents a typical 4 log reduction in endotoxin load. The protein recoveries were determined separately with the Proteus NoEndo spin columns.

Figure 3: Endotoxin removal and protein recovery using the Proteus NoEndo HC Midi spin column sampled with rabbit IgG and BSA spiked with *E.coli* lysate.

Rabbit Immunoglobulin G

Bovine Serum Albumin

The Proteus NoEndo HC spin columns effectively remove endotoxin from BSA and rabbit IgG samples (1mg/ml) spiked with *E.coli* lysate. The Proteus NoEndo HC spin columns were pre-equilibrated with PBS (pH 7.5) and 20 ml protein samples were loaded and centrifuged at 100 g for 30 min. The flow throughs were loaded on to fresh columns and centrifuged using the same conditions. Typically, a 4 log reduction in endotoxin was observed. The protein recoveries were determined separately with the Proteus NoEndo HC spin columns.
Specifications:

<table>
<thead>
<tr>
<th>Kit</th>
<th>NoEndo S Spin Column</th>
<th>NoEndo HC Spin Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical in situ binding capacity per column</td>
<td>30,000 EU</td>
<td>500,000-1,000,000 EU</td>
</tr>
<tr>
<td>Typical binding capacity per ml resin</td>
<td>30,000 EU/ml</td>
<td>450,000 EU/ml</td>
</tr>
<tr>
<td>Typical endotoxin removal after 1 pass</td>
<td>2-3 log reduction</td>
<td>2-3 log reduction</td>
</tr>
<tr>
<td>Typical endotoxin removal after 2 passes</td>
<td>4 log reduction</td>
<td>4-5 log reduction</td>
</tr>
<tr>
<td>Minimum endotoxin levels tested post-column</td>
<td><0.05 EU/ml</td>
<td><0.05 EU/ml</td>
</tr>
<tr>
<td>Maximum sample load volume</td>
<td>20 ml</td>
<td>20 ml</td>
</tr>
<tr>
<td>Bed volume</td>
<td>1 ml</td>
<td>1.7 ml</td>
</tr>
<tr>
<td>Resin</td>
<td>NoEndo resin</td>
<td>NoEndo resin</td>
</tr>
<tr>
<td>Bead size range</td>
<td>100 µm</td>
<td>100 µm</td>
</tr>
<tr>
<td>Proteus matrix</td>
<td>Cross-linked 6 % agarose</td>
<td>Cross-linked 6 % agarose</td>
</tr>
<tr>
<td>Recommended working pH</td>
<td>4-8</td>
<td>4-8</td>
</tr>
<tr>
<td>Colour coded end-caps</td>
<td>Light green</td>
<td>Dark green</td>
</tr>
</tbody>
</table>

Questions and Answers

What is the preferred rotor for the NoEndo spin columns?

The preferred rotor is a swing bucket rotor. For optimal performance with a fixed angle rotor, ensure that the orientation of the spin column in the rotor is the same for endotoxin binding, protein elution and washing.

Do I need to filter the buffers prepared in my laboratory?

It is good laboratory practice to filter all buffers.

Do I need to pre-filter my sample before loading it on to a NoEndo spin column?

All samples should be filtered through a final 0.2 µm syringe filter just before the sample loading step.

What are the typical binding capacities of NoEndo spin columns?

The typical endotoxin binding capacity is 30,000 EU/ml of resin for the NoEndo S spin column and 450,000 EU/ml of resin for the NoEndo HC Spin column.

How should I prepare my sample for the NoEndo spin column?

Many chromatographic procedures demand that the sample is pre-conditioned prior to loading. It is recommended that all samples are pre-filtered down to a 0.2 µm pore size.

What is the maximum volume of solution I can load on to a spin column?

You can load up to 20 ml in a swing bucket rotor and up to 12 ml in a 25° fixed angle rotor.

What is the recommended loading buffer?

It is recommended that low-endotoxin PBS buffer be used. Buffers with amines should NOT be used.
What is the highest speed that I should spin the NoEndo spin column?

There is no need to spin the devices at speeds greater than 1,000 x g. No performance data is available at centrifugal speeds greater than 1,500 x g.

Is there a minimum spin speed for the NoEndo spin columns?

There are no minimum speeds for NoEndo spin columns. The devices can be spun at speeds as low as 50 x g.

Why are the sample loading steps for the NoEndo spin columns extended to 30 minutes?

The NoEndo resin plug incorporates a technologically advanced flow regulator which is designed to control the flow rate of the samples through the active column matrix. Observed yields and purities fluctuate as a direct function of the flow rate of the sample loading step. The flow regulator is preset to slow down the flow rate to an optimal capture speed. The concomitant increase in the residence time of the endotoxin molecules with the resin in the spin column increases substantially the removal of endotoxin from the target protein. However, unlike many other chromatography systems, there are negligible hold-up volumes and the removal of endotoxin is rapid.

How can I detect endotoxin levels in my sample?

There are many commercially available endotoxin detection instruments available in the market. However, based on test data reliability, use of kinetic chromogenic or turbidometric LAL assay from Charles River Laboratories, Wilmington, MA, US, is recommended.

Can I autoclave the NoEndo plugs?

The NoEndo plugs cannot be autoclaved.

Should I be concerned if the plugs partially dry out during the centrifugal steps?

The plugs are robust. Partially dried plug rehydrate rapidly. There are no adverse effects upon the performance of the plugs.

Can I re-use the NoEndo spin columns?

These are disposable columns where only one sample should be used per NoEndo spin column.

How do I determine the protein recovery?

Protein recovery can be determined by measuring the absorbance of the sample before and after using the Proteus NoEndo spin column.

My protein sample contains glycerol. Will this affect the performance of the NoEndo spin columns?

Glycerol does not impact upon the performance of the NoEndo column.
Troubleshooting Assistant

The sample does not flow easily through the spin column

- Pre-filter the sample just before loading onto the NoEndo spin column to prevent the NoEndo resin being clogged with the sample.
- Increase the spin time or spin speed for the sample loading step.

The recovery of target protein is low

- Some proteins have high affinity for endotoxin.
- There may be interactions between the resin and the protein. If the protein is phosphorylated or acidic, pI of the target protein and the buffer pH needs to be considered. Ideally, the pH of the buffer should be 1 pH unit below the pI of the protein to ensure that the protein has a net positive charge. Data is presented below to show that recovery of an acidic and phosphorylated protein e.g. RBP can be improved by changing the buffer composition.

![Riboflavin-Binding Protein with different pH buffers & concentrations](image)

- The NoEndo resin has a cationic functional group which may act as a very weak anionic exchanger at pH values above the pI of the protein. This could lead to slight binding of the target protein which can be minimised by increasing the ionic strength of the buffer up to 0.5M NaCl.
- Avoid Tris as Tris can cause lower protein recovery.
- The addition of EDTA (up to 20 mM) and arginine (0.5 M) can enhance protein recovery without affecting endotoxin removal.

Poor resolution of the target protein

- The sample volume or concentration may be too large for the capacity of the resin plug. In this case, reduce the sample load or sample volume.
- The sample may also need to be filtered carefully.
High levels of endotoxin in my sample

- Avoid freeze – thawing as this increases the formation of endotoxin micelles which can be more difficult to remove.
- 0.1M glycine can cause minor reductions in endotoxin removal.
- The presence of metal ions (Ca$^{2+}$, Mg$^{2+}$ and Cu$^{2+}$) in the sample can hinder the removal of endotoxin.
- Up to 0.3 M NaCl is compatible with endotoxin removal.

Disclaimer:

This product is for research use only and is not intended for use in clinical diagnosis. No claims beyond replacement of unacceptable material or refund of purchase price shall be allowed.

Technical support:

Contact Generon technical support for assistance:

Tel: +44 (0)1753 866-511
Fax: +44 (0)1753 20-88-99
Email: info@generon.co.uk
Web: www.generon.co.uk
Mail: Generon Ltd, 12 Rawcliffe House, Howarth Road, Maidenhead, Berkshire, SL6 1AP, UK.

FPLC® is a registered trademark of Amersham Biosciences

NoEndo and FlowGo are trademarks of Generon Ltd.
Glossary

Affinity Chromatography – Chromatographic separation based on a specific interaction between an immobilised ligand and a binding site on a macromolecule.

Bed volume – The total volume occupied by the chromatographic packed bed. It is also referred to as the column volume or CV.

Endotoxin – A heat-stable pyrogenic toxin present in the intact bacterial cell. Endotoxins are lipopolysaccharide complexes that occur in the cell wall.

EU/ml – A quantification of endotoxin levels relative to a specific quantity of reference endotoxin. 1 EU/ml is approximately equal to 0.1 ng/ml.

EU - The unit EU (endotoxin unit) describes the biological activity of LPS.

Freeze-thawing – A method that is sometimes used to break open cells by successive periods of slow freezing and thawing. Ice crystals are generated during the freezing stage, which disrupt the cells when they melt during thawing. The method, however, is slow and releases a limited amount of subcellular components.

Isoelectric point – The pH at which the protein has no net charge.

LAL - Limulus amebocyte lysate (LAL) is an aqueous extract of blood cells (amoebocytes) from the horseshoe crab, *Limulus polyphemus*. LAL reacts with bacterial endotoxin.

Micelles – These are lipid molecules that arrange themselves in a spherical form in aqueous solutions.

Monoclonal Antibodies – Monoclonal antibodies are monospecific antibodies that are the same because they are made by identical immune cells that are all clones of a unique parent cell.

Recombinant Protein - Proteins that result from the expression of recombinant DNA within living cells are termed recombinant proteins.

Turbidometric assay - A method for determining the concentration of a substance in a solution by measuring the loss in intensity of a light beam through a solution that contains suspended particulate matter.

Viral Vectors - Viral vectors are agents commonly used by molecular biologists to deliver genetic material into cells.

References

Product Ordering Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Product Code</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus NoEndo S 2 column kit</td>
<td>GEN-NoE2S</td>
<td>2 spin columns</td>
</tr>
<tr>
<td>Proteus NoEndo HC 2 column kit</td>
<td>GEN-NoE2HC</td>
<td>2 HC spin columns</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– 2 spin columns, 2 centrifuge tubes, 2 resin cartridges, 1 insertion tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus NoEndo S 12 column kit</td>
<td>GEN-NoE12S</td>
<td>12 spin columns</td>
</tr>
<tr>
<td>Proteus NoEndo HC 12 column kit</td>
<td>GEN-NoE12HC</td>
<td>12 HC spin columns</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– 12 spin columns, 12 centrifuge tubes, 12 resin cartridges, 1 insertion tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus NoEndo S 48 column kit</td>
<td>GEN-NoE48S</td>
<td>48 spin columns</td>
</tr>
<tr>
<td>Proteus NoEndo HC 48 column kit</td>
<td>GEN-NoE48HC</td>
<td>48 HC spin columns</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– 48 spin columns, 48 resin cartridges, 1 insertion tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loose Resin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NoEndo HC Resin (25 ml loose resin)</td>
<td>GEN-NoE025ML</td>
<td>25 mL HC resin</td>
</tr>
<tr>
<td>NoEndo HC Resin (100 ml loose resin)</td>
<td>GEN-NoE100ML</td>
<td>100 mL HC resin</td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty spin/batch columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus '1-step batch' spin column pack</td>
<td>GEN-1S808</td>
<td>8 pack</td>
</tr>
<tr>
<td>(2 ml resin, 20 ml sample volume)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empty FPLC columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteus 1 ml FliQ column</td>
<td>GEN-FliQ1</td>
<td>1 column</td>
</tr>
<tr>
<td>Proteus 5 ml FliQ column</td>
<td>GEN-FliQ5</td>
<td>1 column</td>
</tr>
<tr>
<td>Proteus 10 ml FliQ column</td>
<td>GEN-FliQ10</td>
<td>1 column</td>
</tr>
<tr>
<td>Proteus 20 ml FliQ column</td>
<td>GEN-FliQ20</td>
<td>1 column</td>
</tr>
<tr>
<td>Empty scalable columns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 ml Single step column with bottom frit</td>
<td>9452086-10</td>
<td>10 pack</td>
</tr>
<tr>
<td>25 ml Single step column with bottom frit</td>
<td>9452088-10</td>
<td>10 pack</td>
</tr>
<tr>
<td>50 ml Single step column with bottom frit</td>
<td>9452090-10</td>
<td>10 pack</td>
</tr>
<tr>
<td>100 ml Single step column with bottom frit</td>
<td>9452092-10</td>
<td>10 pack</td>
</tr>
<tr>
<td>Ultrafiltration concentrators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vivaspin 20 (10 kDa MWCO, 12 pc)</td>
<td>VS2001</td>
<td>12 pack</td>
</tr>
<tr>
<td>Vivaspin 20 (10 kDa MWCO, 48 pc)</td>
<td>VS2002</td>
<td>48 pack</td>
</tr>
</tbody>
</table>