Notice: Archived Document

The content in this document is provided on the FDA’s website for reference purposes only. It was current when produced, but is no longer maintained and may be outdated.
Scientific and Regulatory Challenges of Transdermal Drug Delivery Systems (TDDS) and Relevance of Quality-by-Design (QbD) Approach to Their Development

Presented to the Advisory Committee for Pharmaceutical Science and Clinical Pharmacology Hilton Washington/Silver Spring Hotel 8727 Colesville Road, Silver Spring, MD August 5, 2009

Ravi S. Harapanhalli, Ph.D. Principal Consultant and Director (Late Stage Service Line) PAREXEL Consulting Ravi.harapanhalli@parexel.com
301 634 8027 (Land); 301 233 3405 (Cell)
Talk Outline

- Major reported product quality problems
- Citizen petitions
- Significant innovations in patch design
- A roadmap for pharmaceutical development of TDDS
- Looking forward: QbD approaches
Major Product Quality Problems of TDDS

- Class I recalls of Fentanyl Reservoir patches from Innovator and generic manufacturers: (2004 to date)
- Problems of poor skin adhesion and cold-flow of an ADHD patch: 2006-2007
- Snowflakes (Drug crystallization) in a patch to treat Parkinson’s disease: 2008
- Safety concerns of a hormonal contraceptive patch (linked to quality drift?): 2003-2005

(FDA.gov, Medical News Today.Com and other internet sources)
Common Problems from Patients Perspective

- Patches do not stick
- Patches come off
- Patches leak
- Patches wrinkle
- Difficult to remove release liner from a patch
- Patch sticks inside the pouch
- Do not quite feel the effects of treatment
- Itchy feeling

Potential misuse with band aid or other overlays
Reactive Approaches to the Fix

- Increased sampling and end testing to weed out defective patches
- Changing drug coating rates
- Siliconization of inside of pouches and release liners to offset the problem of patch sticking due to cold flow
- Changing patch equilibration periods (curing) following manufacture
- Recommending use of overlays to offset stickiness problems
- Continuing with recalls
Flurry of Citizen Petitions

- Patch design for generics to be same as that of RLD
- Clinical trials for generic TDDS approvals
- Matrix patches not be approved because of safety
- Reservoir patches be removed from market as they carry manufacturing risk
- Require clinical studies using overlays to support their use on less sticky patches
Patch Design - Passive Patches

(a) Drug-in-adhesive: monolithic
- Impermeable backing
- Drug-adhesive matrix
- Rate-controlling membrane
- Adhesive
- Release liner

(b) Drug-in-adhesive: multilaminate

(c) Liquid reservoir
- Impermeable backing
- Drug-polymer matrix
- Drug reservoir
- Rate-controlling membrane
- Adhesive
- Release liner

(d) Polymer matrix
Reported Product Quality Defects, Complaints, and Recalls

Diagnosis: Design Risks & Manufacturing Risks

Inadequate Pharmaceutical Development Efforts

Manufacturing Controls & Monitoring?

Functional Testing to assure required performance?

ICH-Quality

Current Status of TDDS Vs FDA’s cGMP Initiatives for 21st Century

Dr. Nasr, FDA
Innovative Patch Designs

- Active delivery systems
 - Iontophoretic patches
 - Sonophoretic patches
- Microporation patches
- Abuse-deterrent patches
 - Antagonist layers
 - Taste-averting agents
 - Snort-averting agents
Evolution of Iontophoretic Drug Delivery Systems
Unique Advantages of TDDS

- Convenience and patient compliance
- Steady permeation of drugs across skin assures consistent serum levels.
- Lack of peaks and troughs
- Avoidance of first pass metabolism
- Patch may be quickly removed to stop drug’s undesired effects
 - Exception-Depot effect with some drugs
- Suited for delivery of drugs unstable in GI tract
- Ionic drugs may be delivered using active delivery technologies
- Less permeable and larger molecules may be delivered by microporation and other means of disrupting stratum corneum
Full Utility of TDDS Dosage Forms Requires Applications of Modern Science-based and Risk-based Approaches to Their Development
Factors Affecting Transdermal Delivery

- Patch adhesion
- Physical state of drug
- Rate-limiting membranes
- Penetration enhancers
- Occlusive overlays
- Skin temperature and condition
- Depot effect
- Skin irritation/sensitization

To maintain required flux rate across skin at all times
A Roadmap to TDDS Development

- Drug selection and its polymorph control
- Adhesive selection (DoEs)
- Assessing and optimizing penetration enhancer(s)
- Crystal seeding studies
- Selection of patch design
- Stability assessment for compatibility, cold flow and crystallization
- Adhesion test battery to measure rheological and tape properties
- Flux studies using diffusion cells and preclinical animal models
- Flux studies in humans and establishment of IVIVR/IVIVC using flux rates measured by diffusion cells
- “Wear studies” as part of BE study arms to assess skin adhesion, cold flow, and effect of overlays
- Provisions for product quality defect reporting and analysis of defective patches
Pharmaceutical Development

- Rationale for component selection
 - Drug, its physical properties, polymorphism
 - Permeation enhancers
 - Adhesive
 - Solubilizers
 - Viscosity inducing agents (tackifiers)
 - Anti-oxidants
 - Release liners, backing layers, rate-controlling membranes

- Patch design and development

- Process design and development

- Basis for process scale up (continuous process)
Release Liners, Backing Layers, Rate-control Membranes

- Physical dimensions
- Degree of porosity and pore diameter
 - AQLs for pinholes Tensile
- Tensile and Elongation modulus
- MVTR/OTR (e.g. 10-20 g/m²/day)

Important attributes linked to process parameters- roll force, line speed, substrate tension and registration, and lamination pressure
Quality risks: fold-over defects, incorrect heat seal thickness, leakage, evaporation
Quality Target Product Profile (QTTPP) for Patches

- Adhesion to skin through intended duration of use (1-7 days) without additional overlays
- Easy removal from skin with no adhesive traces on skin
- Maintains the required drug flux throughout the wear period
- Use of overlays does not result in changes in drug flux
- No skin irritation and allergic reactions.
- Works under physically active lifestyle
- Moisture resistance (skin wearability, sweating, showers, sauna, etc.)
Franz Diffusion Cell for Skin Permeation Studies
Formulation optimization
 › Drug to penetration enhancer ratio
 › Additives
 › Crystallization inhibitors

Manufacturing changes

Effects of temperature and occlusion

Stability assessment of thermodynamic changes (crystallization), polymer cross-linking etc. impact drug flux

Scope to establish IVIVR/IVIVC to claim biowaivers
 › During IND stages
 › Major CMC changes
Deliberate Attempts to Prevent Cold Flow and Creep Properties

- Formulation optimization by DoEs
- Adhesion selection and control of its degree of cross-linking
 - resin component
 - polymer component and functional groups
 - molecular weights
 - resin-to-polymer ratios
- Addition of cohesive strengthening agents
 - nonionic surfactants,
 - fatty acid esters of glycerol,
 - metallic salts of fatty acids,
 - metallic salts of phosphoric acid

Undesired plasticizing effects of co-solvents, excipients, high drug loads, penetration enhancers on adhesive
Major Failure Modes

- Adhesion Failures (All designs)
- Leaks (Reservoir patches)
 - Stringer leak defects (heat seal area)
 - Fold over defects (heat seal area)
 - Misaligned cut defects (reservoir area)
- Cold flow (Matrix patches)
 - Leaves behind dark edges on skin
 - Develops wrinkles
 - Patch moves across the skin
 - Patch sticks to the inside of pouch
 - Patches elongate when forced out
 - Over-stick to release liners
 - Adhesive chips off with the release liner
CQAs for Pressure-sensitive Adhesives

- Tape properties
 - Tack: a measure of wettability
 - Shear/Creep resistance: a measure of resistance to flow
 - Adhesion strength: a measure of force required to peel

- Rheological properties
 - Viscous modulus (G')
 - Elastic modulus (G'')
 - Intrinsic Viscosity (η^*)

- Glass transition temperature (Tg)
- Molecular weight distribution
- Permeability
- Compatibility
- Stability
- Leachables
Rheologic measurements on native adhesive and the drug-in-adhesive formulation to assess changes in the visco-elastic properties of adhesive

- Elastic or storage modulus (G')
- Viscous or loss modulus (G'')
- Ratio of viscous to elastic modulus ($\tan \delta$)
- Intrinsic or complex viscosity

A design-of-experiments may be undertaken to optimize the transdermal formulation

Stability assessment of formulation
Dynamic Mechanical Thermal Analysis (Rheologic measurements)

Source: Rheometrics
Methods of Testing Tack
ASTM D2979
ASTM D3121

Rolling Ball

Polykine Tester

Loop Tack

Thumb Tack
Shear strength (D3654, PSTC-107)

Dynamic Testing

Static Testing
Peel Force
D3330, PSTC 101

From Release Liner

From Solid Substrate (SST/HDPE)

Measure force (N)
(1kg = 9.8N)
9N = 102g = 1 apple

Calculate
N / mm width
(mN/mm)
Solubility Assessments

- Assessment of solubility of drugs in individual patch components
 - Adhesive
 - Additive
 - Penetration enhancer
 - Solvent
 - Plasticizer

- Solubility in the investigational formulations
Solubility Assessments Contd..

- Prepare different drug concentrations in adhesives
- Make patches and store at ambient (25oC) and elevated temperatures (e.g. 50oC)
- Monitor for drug crystal growth over a few weeks
Crystal Seeding Studies

- Prepare drug and adhesive mixtures with wide range of drug concentrations
- Seed drug crystals of all polymorphs onto the surface.
- Observe growth or dissolution of the seeded drug crystals
- Can be predictors of potential crystallization during storage
TDDS Manufacturing Process Development

General Process Flow Diagrams

Reservoir System
- Drug Formulation Mixing
- Gel Dispensing
- Lamination
- Seal reservoir and die-cut
- Primary Package (pouch)

Drug-in-Adhesive System
- Drug and Adhesive Mixing
- Coating and Drying
- Lamination
- Conversion – rolls to patches (die-cutting)
- Primary Packaging (pouch)
Processing Steps

- Raw material controls
- Adhesive mixing operations
- Adhesive coating and drying
- Gel dispensing (Reservoir)
- Patch sealing process (Reservoir)
- Conversion (Matrix)/Coupon cutting
- Primary packaging
Manufacturing Process Controls and Continuous Monitoring

- Controls to minimize air entrapment in drug-adhesive or drug-polymer mix.
- Controls to maintain drug homogeneity and viscosity of the drug-adhesive or drug-polymer mix in gel pots.
- Engineering controls to guide webs during lamination to prevent fold-over defects.
- Establishing sensors for continuous monitoring of critical operations and for weeding out defective patches.
 - E.g. patch registration, heat seal thickness, pinholes, drug in heat seal area, etc.
- At-line testing for pouch seal integrity.
- 100% inspections by Vision system.
Critical Process Controls for TDDS Manufacture

- Laminator speed: range and target (e.g. 15 ft/min)
- Laminator roll pressure: range and target (e.g. 90-250 lbs)
- Payout #1 tension: range and target (e.g. 55 lbs)
- Payout #2 tension: range and target (e.g. 2 lbs)
- Upper rewind tension: range and target (e.g. 40 lbs)
- Laminate roll size limits (e.g. do not exceed 1000 ft/roll)
Conclusion

- Current state of TDDS manufacturing does not assure adequate product quality and results in frequent recalls and raises concerns of safety and potential for suboptimal effectiveness.

- Enhanced pharmaceutical development efforts and quality-by-design principles are needed to assure product quality of TDDS.

- Pharmaceutical development efforts should include deliberate efforts to minimize undesired drug crystallization, cold flow, lack of adhesion.

- Adequate functional testing battery should be included in ensuring desired product performance for TDDS.

- Manufacturing process should include adequate sensors and vision systems to continuously monitor and weed out defective patches.

- Newer TDDS technologies designed for delivery of polar and ionic drugs are even more complex to manufacture and raise additional risks.

- Industry and FDA should work together to appropriately implement ICH Q8, Q9, and Q10 principles to these products while fostering drug development.