Siemens Power Transmission and Distribution

What we have to offer

High Voltage
Components, switchgear and turnkey projects for power transmission > 52kV (AC and DC)

Transformers
Power transformers up to 1,300 MVA and 765kV, distribution transformers with oil or cast-resin insulation

Medium Voltage
Components, switchgear and turnkey projects for power transmission ≤ 52kV (AC and DC)

Energy Automation
Integrated control systems, protection and substation automation, telecontrol systems, power quality

Services
Network planning & consulting, asset maintenance and maintenance management for grids & networks, metering services
PTD Division
High Voltage overview

Air Insulated Switchgear (AIS)
- Circuit-breakers
- Arrestors, Bushings, Coils and Instrument Transformers
- Disconnectors

Gas Insulated Switchgear (GIS)

Highly Integrated Switchgear (HIS)

Gas Insulated Lines (GIL)

Reactive Power Compensation

High Voltage Direct Current (HVDC) Installations
Products and Solutions for High Voltage
AIS – Circuit Breakers
High-Voltage Circuit-Breaker
Product Characteristics

Type 3AP1 FG up to 245 kV
- For all applications: reliable and economical
- Stored energy Spring Drive Mechanism
- Self compression arc quenching principle
- Rated voltages up to 245 kV
- Rated short circuit breaking current up to 50 kA
- Type tested to the new IEC 62271-100
- Available for one or three pole operation (FG/FI)
- Delivered more than 50,000 breakers to more than 120 countries

Type 3AP1 FI up to 300 kV
- Stored energy Spring Drive Mechanism
- Self compression arc quenching principle
- Rated voltages up to 300 kV
- Rated short circuit breaking current up to 50 kA
- Type tested to the new IEC 62271-100
High-Voltage Circuit-Breaker
Product Characteristics

Type 3AP1 DTC 72.5 up to 245 kV
- One interrupter unit per pole
- Stored energy
 Spring Drive Mechanism
- Rated voltages
 up to 245 kV
- Rated short circuit
 breaking current
 up to 63 kA
- Type tested to the
 new IEC 62271-100
- Equipped with bushing
 type current transformers
- Ambient temperature range
 from +50° C down to -55° C
 with pure SF₆

Type 3AP2 FI up to 420 kV
- Stored energy
 Spring Drive Mechanism
- Self compression arc
 quenching principle
- Rated voltages
 up to 420 kV
- Rated short circuit
 breaking current
 up to 50 kA
- Type tested to the
 new IEC 62271-100
- Easy installation and
 commissioning:
 only few subassemblies
 Transportation costs are
 minimized
Products and Solutions for High Voltage Arrestors, Bushings, Coils & Instrument Transformers

Arrester
- HV: AIS (Porcellain, Polymer) & GIS; HVDC, FACTS
- MV: Distribution & Traction Vehicles

Coils
- Air Core Dry Type Reactors
- Line Traps
- Arc Suppression Coils

Bushings
- Air Core Dry Type Reactors
- Line Traps
- Arc Suppression Coils

Instrument Transformers
- Current Transformers
- Voltage Transformers
Products and Solutions for High Voltage
Disconnectors & Earthing Switches from 36 kV to 800 kV

<table>
<thead>
<tr>
<th>Type</th>
<th>Voltage Range</th>
<th>Current Capacity</th>
<th>Current Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre Break</td>
<td>72.5 kV – 550 kV</td>
<td>1250 A – 4000 A</td>
<td>31.5 kA – 63 kA</td>
</tr>
<tr>
<td>Pantograph</td>
<td>123 kV – 420 kV</td>
<td>3150 A</td>
<td>50 kA</td>
</tr>
<tr>
<td>Vertical Break</td>
<td>123 kV – 550 kV</td>
<td>1250 A – 6300 A</td>
<td>31.5 kA – 63 kA</td>
</tr>
<tr>
<td>Double Break</td>
<td>36 kV – 800 kV</td>
<td>1250 A – 5000 A</td>
<td>31.5 kA – 63 kA</td>
</tr>
<tr>
<td>Earthing Switch</td>
<td>123 kV – 550 kV</td>
<td>1250 A – 400 A</td>
<td>31.5 kA – 63 kA</td>
</tr>
<tr>
<td>Knee Type</td>
<td>123 kV – 550 kV</td>
<td>1250 A – 400 A</td>
<td>31.5 kA – 63 kA</td>
</tr>
</tbody>
</table>
Products and Solutions for High voltage
Gas Insulated Switchgear (GIS)

Rated short-circuit breaking current (kA)

Voltage (kV)

8DR1
8DQ1
HIS 8DQ1
8DN9
HIS 8DN8
8DN8

80 72.5 63 50 40 25 0
123 145 300 362 420 550 800
Gas Insulated Switchgear (GIS)
8DN8.2 switchgear

- Rated voltage: up to 145 kV
- Rated frequency: 50 / 60 Hz
- Rated power frequency withstand voltage (1 min): up to 275 kV
- Rated lightning impulse withstand voltage (1,2/50 µs): up to 650 kV
- Rated busbar current: up to 3150 A
- Rated feeder current: up to 3150 A
- Rated breaking current: up to 40 kA
- Rated short-time current: up to 40 kA
- Leakage rate per year and gas compartment: < 0.5 %
- Bay width: 800 mm
- Bay height: 2850 mm
- Bay depth: 3500 mm
- Bay weight: 3 t
Gas Insulated Switchgear (GIS)

8DN9 switchgear

- Rated voltage: up to 245 kV
- Rated frequency: 50 / 60 Hz
- Rated power frequency withstand voltage (1 min): up to 460 kV
- Rated lightning impulse withstand voltage (1,2/50 µs): up to 1050 kV
- Rated busbar current: up to 3150 A
- Rated feeder current: up to 3150 A
- Rated breaking current: up to 50 kA
- Rated short-time current: up to 50 kA
- Leakage rate per year and gas compartment: < 0.5 %
- Bay width: 1500 mm
- Bay height: 3500 mm
- Bay depth: 4700 mm
- Bay weight: 5 t
Products and Solutions for High voltage
Highly Integrated Switchgear (HIS)

- Compact
- Low cost
- Modular
- Suitable for in- and outdoor use

<table>
<thead>
<tr>
<th>Savings HIS*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site price</td>
<td>60 %</td>
</tr>
<tr>
<td>Civil works</td>
<td>20 %</td>
</tr>
<tr>
<td>Secondary cables</td>
<td>35 %</td>
</tr>
<tr>
<td>Steel structures</td>
<td>30 %</td>
</tr>
<tr>
<td>Earthing</td>
<td>70 %</td>
</tr>
<tr>
<td>Erection, tests,</td>
<td>70 %</td>
</tr>
<tr>
<td>commissioning</td>
<td></td>
</tr>
</tbody>
</table>

* compared to air insulated switchgear
Domaine d’utilisation des installations moyenne tension

Niveau de production et Réseau de Transport

Niveau de distribution primaire

Niveau de distribution secondaire

Basse tension
Medium Voltage: Overview

Primary distribution switchgear
- Gas-insulated (SF6)
 - NX PLUS C
 - NX PLUS
 - 8DA/8DB
- Air-insulated
 - NX AIR
 - NX AIR M
 - NX AIR P
 - SIMOPRIME

Secondary distribution switchgear
- Gas-insulated (SF6)
 - 8DH10
 - 8DJ10/8DJ20
- Air-insulated
 - SIMOSEC

Components
- Vacuum tubes
- Vacuum circuit-breakers
- Vacuum contactors
- Other Components

MV DC-Multifunctional Link
- SIPLINK
Medium Voltage Products for Primary Distribution

SF$_6$-Insulated Switchgear

8DA
- Type-tested, single-phase encapsulation, metal-clad
- Proved design, Single Busbar
- Modular design with standard enclosures allows single- and double phase applications
- More than 15 years of operating experience

8DB
- Type-tested, single-phase encapsulation, metal-clad
- Proved design, Double Busbar
- Modular design with standard enclosures
- Busbars and busbar-disconnectors in separate gas compartments
- More than 15 years of operating experience

Delivery Program

<table>
<thead>
<tr>
<th>8DA</th>
<th>8DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 40.5 kV</td>
<td>up to 40 kA</td>
</tr>
<tr>
<td>up to 4000 A</td>
<td>up to 40.5 kV</td>
</tr>
<tr>
<td>up to 40 kA</td>
<td>up to 4000 A</td>
</tr>
</tbody>
</table>
Medium Voltage Products for Primary Distribution
Air-Insulated Switchgear (AIS)

NX AIR
- Type-tested, IEC 62271-200, metal-clad, loss of service continuity category: LSC 2B, partition class: PM, internal arc classification: IAC A FLR ≤40 kA, 1s
- Single- and double busbar (back/back, front/front)
- Vacuum circuit-breaker withdrawable
- Vacuum contactor withdrawable
- Max. renewed availability by modular design
- Selective shutdown by bushing type transformers and pressure resistant compartments
- Max. operating safety by self-explanatory logical operating elements
- Maintenance intervals > 10 years

NX AIR M
- Type-tested, IEC 62271-200, metal-clad, loss of service continuity category: LSC 2B, partition class: PM, internal arc classification: IAC A FLR ≤25 kA, 1s
- Single- and Double Busbar (back/back, front/front)
- Vacuum circuit-breaker withdrawable
- Max. renewed availability by modular design
- Selective shutdown by bushing type transformers and pressure resistant compartments
- Max. operating safety by self-explanatory logical operating elements
- Maintenance intervals > 10 years

<table>
<thead>
<tr>
<th>Delivery Program</th>
<th>Delivery Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 12 kV</td>
<td>up to 25 kA</td>
</tr>
<tr>
<td>up to 40 kA</td>
<td>up to 2500 A</td>
</tr>
<tr>
<td>up to 2500 A</td>
<td>up to 2500 A</td>
</tr>
</tbody>
</table>
Medium Voltage Products for Secondary Distribution

SF₆-Insulated Switchgear

8DJ10
- Type-tested
- Independent of climate
- Maintenance-free
- Block-type construction, for 3-6 bays
- Hermetically-sealed welded switch-gear enclosures
- Compact and clear design
- No sealings
- Highest Quality Level
- Shortest Delivery Periods
- Smallest floor space for substations

8DJ20
- Type-tested
- Independent of climate
- Maintenance-free
- Block-type construction, for 1-5 bays
- Hermetically-sealed welded switch-gear enclosures
- Compact and clear design
- No sealings
- Highest Quality Level
- Shortest Delivery Periods

Delivery Program
- up to 24 kV up to 25 kA up to 630 A

© Siemens AG 2006

Power Transmission and Distribution
Independent power producers (wind generators, solar plants)

Large-scale industry with in-plant generation

Manufacturing, trade, small industry without in-plant generation

City

Large-scale power plant

Consumers with sensitive processes

Hospital

New Switching Technologies for Distribution Systems Improves Cost-Effectiveness, Availability and Power Quality
High reliability

Excellent field experience with more than 2 million vacuum interrupters

Tailormade development

Wide product range for any application

For use in

LV and MV circuit-breakers, load-break switches and contactors

Autoreclosers

Transformer Tap Changers

<table>
<thead>
<tr>
<th>Delivery Program</th>
<th>up to 65 kA</th>
<th>up to 2500 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>690 up to 1300 V</td>
<td>up to 65 kA</td>
<td>up to 2500 A</td>
</tr>
<tr>
<td>7.2 up to 40.5 kV</td>
<td>up to 72 kA</td>
<td>up to 6300 A</td>
</tr>
</tbody>
</table>
• Power transformers

• Distribution transformers with oil or cast-resin insulation
Siemens Transformers at all Levels of Transmission and Distribution

- Generator transformer
- Shunt reactor
- HVDC
- Phase angle regulator
- System interconnecting transformer
- Special purpose transformers for industrial application
- Oil-immersed distribution transformer
- Voltage regulator
- GEAFOL cast-resin transformer
- Traction transformer

TLM
Siemens Transformer Life Management (condition assessment, life-extension, on-site-services, monitoring, ...)

Siemens Transformers at all Levels of Transmission and Distribution
Ratings from 10 MVA up to 1.100 MVA / 1200 kV

Three-phase and single-phase
Distribution Transformers

GEAFOL

- Cast-resin distribution transformers
- Ratings from 50 kVA up to 40 MVA
- Possibility for on-line tapchanger
- Static converter transformers
Distribution Transformers

Oil-immersed

- Ratings from 50 up to 4,000 kVA
 (TUNORMA and TUMETIC)
PTD Division
Energy Automation

- Information and network control technology
- Protection and substation automation, telecontrol systems, power quality
Energy Automation
Strong products and brands on all levels

Energy Market Mgmt.
- EMM
- FDWH
- PROPHET Solutions
- AMIS
- ...

Communications & networking
- PLC
- Modems
- ...

Tools
- SICAM TOOLBOX
- IMM
- DIGSI...

System control centers
- Spectrum PowerCC
- SINAUT Spectrum

Station control & automation
- SICAM PAS
- SAT 1703 / SAT 230

RTU’s
- SAT 1703
- SICAM eRTU / miniRTU
- TG 805 / TG 5700

Protection/Power Quality/Bay Control
- SIPROTEC
- REYROLLE
- BC 1703 ACP
- SIMEAS

© Siemens AG 2006
LE BUT DE LA PROTECTION SELECTIVE EST:
- Assurer la continuité de service du réseau d'énergie, par élimination de l’élément défaillant et de lui seul
- Eviter des dégâts au niveau des équipements affectés par les défauts (câbles, transformateurs...)
LE SYSTÈME DE PROTECTION =

TI/TP + Relais + Disjoncteur

Sélectif, rapide, fiable
SIPROTEC 4 - What does it mean?

SIPROTEC 4 is a family of numerical Protection, Control- and Automation Devices from SIEMENS
<table>
<thead>
<tr>
<th>Protection Type</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/C protection</td>
<td>7SJ6</td>
</tr>
<tr>
<td>Distance protection</td>
<td>7SA6</td>
</tr>
<tr>
<td>Line differential protection</td>
<td>7SD5 / 7SD6</td>
</tr>
<tr>
<td>Transformer diff. protection</td>
<td>7UT6</td>
</tr>
<tr>
<td>Generator protection</td>
<td>7UM6</td>
</tr>
<tr>
<td>Station protection</td>
<td>7SS52</td>
</tr>
</tbody>
</table>
SIPROTEC 4

O/C protection
7SJ6
Time-overcurrent protection

Criteria for fault: overcurrent

Criteria for selectivity: time
Time-overcurrent protection Characteristics

Tripping characteristic of a two stage time-overcurrent protection device - definite time

![Diagram](image-url)
Time-overcurrent protection Characteristics

Tripping characteristic of a time-overcurrent protection device - inverse time

Characteristics:
- IEC
- ANSI
- user defined
Time-overcurrent protection Application

As main protection

Used as:

1. Line protection
 Selectivity by time-grading

2. Motor protection
 with short circuit- and overload protection, start protection, start inhibit

3. Transformer protection
 for network transformers with short circuit- and overload protection, Inrush-stabilisation
Time-overcurrent protection Application

Main protection as line protection

Advantage: simple device, only current transformers are necessary
Disadvantage: near infeed higher tripping time
Reverse Interlocking Application

1. Outgoing protection initiates and blocks the infeed protection stage within 50 ms

2. Infeed protection gives a trip after 50 ms since no outgoing feeder has picked up and blocked the infeed protection
O/C protection with motor protection

7SJ61

- Over current protection (Phase/Earth)
- Inrush Blocking
- Motor Protection
- Overload Protection
- Unbalanced Load Protection
- Auto reclosure
- Trip Circuit Supervision
- Breaker Failure Protection
- Lock out

4 CT inputs
Distance protection
Why impedance protection?

Situation: Meshed network and two infeeds
Directional overcurrent time relays

```
0.6s  0.3s  0.6s  0.3s  0.6s
```

non-selective trip
Localization of short-circuits by means of an impedance measurement:

- fault on the protected line Z_1

- fault outside the protected line Z_2

selectivity
Distance measurement (principle)

6 loops: 3 phase-phase loops and 3 phase-ground loops

phase-phase-loop: \[U_{L1-L2} = Z_L (I_{L1} - I_{L2}) \]

The same applies to the remaining loops

\[Z_L = R_L + j X_L \]
\[Z_E = R_E + j X_E \]
Distance measurement (principle)

The same applies to the remaining loops

Phase-ground-loop:

\[U_{L1} = I_{L1} \cdot (R_L + jX_L) - I_E \cdot (R_E + jX_E) \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{L1})</td>
<td>Measured voltage</td>
</tr>
<tr>
<td>(I_{L1})</td>
<td>Measured current</td>
</tr>
<tr>
<td>(I_E)</td>
<td>Measured current</td>
</tr>
</tbody>
</table>

\[Z_L = R_L + jX_L \]

\[Z_E = R_E + jX_E \]
Numerical filtered phasor measurement

1. Fast operation ⇒ Use short data window
2. High accuracy ⇒ High selectivity
3. Signal distortion does not cause delay or maloperation
Fourier analysis of measured values

Sampled measuring values

\[i_{(k-n+i)} \]

Resulting phasor

\[I_{(k)} = I_{S(k)} + j \cdot I_{C(k)} \]

\[j \cdot I_{C(k)} \]

\[I_{S(k)} \]

\[\phi \]

\[\sin \frac{2\pi \cdot i}{n} \]

\[\cos \frac{2\pi \cdot i}{n} \]
Load and short-circuit impedances

Distance relay operating characteristic

Fault area

Phase - Phase Fault

\[R_R \approx R_F / 2 \]

Phase - Earth Fault

\[R_R \approx R_F / (1 + R_E/R_L) \]

Minimum Load Impedance:
Minimum voltage \(0.9 \) Un
Maximum current \(1.1 \) In
Maximum angle \(\pm 30^\circ \)
Graded distance zones

Grading rules:

\[
\begin{align*}
Z_1 &= 0.85 \, Z_{AB} \\
Z_2 &= 0.85 \, (Z_{AB} + 0.85 \, Z_{BC}) \\
Z_3 &= 0.85 \, (Z_{AB} + 0.85 \, (Z_{BC} + 0.85 \, Z_{CD}))
\end{align*}
\]

Safety margin is 15%:
- line error
- CT, VT error
- measuring error
Determination of fault direction

Fault location

Where is the fault?

current / voltage diagram

impedance diagram

The impedance also shows the direction, but
Fault detection techniques

Over-current fault detection

- Voltage dependant over-current fault detection
- Voltage and angle dependant over-current fault detection

Impedance fault detection

Not in 7SA522
Impedance zones of digital relays

Distance zones
Inclined with line angle ϕ
Angle α prevents overreach of Z1 on faults with fault resistance that are fed from both line ends

Fault detection
no fault detection polygon: the largest zone determines the fault detection characteristic
simple setting of load encroachment area with R_{\min} and φ_{Load}
Zone grading chart, radial feeder

Grading according to the recommendation with the safety margin of 15%.

\[
Z_1 = 0.85 \, Z_{AB}
\]
\[
Z_2 = 0.85 \, (Z_{AB} + 0.85 \, Z_{BC})
\]
\[
Z_3 = 0.85 \, [Z_{AB} + 0.85 \, (Z_{BC} + 0.85 \, Z_{CD})]
\]
Ring feeder: with grading against opposite end

The same grading from both sides
Line differential protection

7SD61 / 7SD52
Kirchhoff: \[I_1 + I_2 + I_3 + I_4 + I_5 = 0 \]
Trip Characteristic

Internal Fault
Trip Characteristic

\[I_D = |I_X + I_Y| \quad I_R = |I_X| + |I_Y| \]

\[I_D = |(+1) + (+1)| = 2 \quad I_R = |+1| + |+1| = 2 \]
Trip Characteristic

- **Ideal internal fault**: $\text{Idiff} = I_1$, $\text{Istab} = I_1$
 - Fault is on fault line

- **External fault**: $\text{Idiff} = 0$, $\text{Istab} = |I_1| + |I_2| + ... + |I_n|$
 - Fault is not on fault line

- **Security for CT deviations**

The diagram illustrates the relationship between Idiff and Istab for internal and external faults, showing the fault line where the conditions for ideal internal fault are met.
Differential Current due to CT-Saturation

Differential Current may cause maloperation in case of CT-saturation
Current transformer saturation

Saturation during steady-state current

Saturation during offset current
Line differential protection

- Current Comparison Protection for all applications for cables and overhead lines
- Two up to six line ends
- Handles transformers in the protected zone (integrated vector group matching)
- Direct connection to communication networks
- Communication via copper and ISDN networks
- Fault Locator
- Fast tripping (less than 15 ms)
- Automatic reclosure
SIPROTEC 4 Line differential protection

Configurations

over 3 line ends
No restrictions for communication

- Communication with …
 - direct FO connection up to 100 km
 - digital communication network (G703, X21)
 - ISDN-connection
 - 2 or 3 wire pilot wire (twisted, screened)
Topography detection, example

Ring topology

Partial current summation

I_1 + I_2

I_3 + I_1

I_1 + I_2

I_3 + I_1

I_1 + I_2

I_3 + I_1

connection to other devices
7SD52 V4.3 Line protection

Universal line protection for HV and EHV applications

- Line differential protection and distance protection in one device
- Comprehensive function mix for 2-6 line end applications
- Any combination of DIF and DIS, as main or backup protection
- Emergency / backup protection as additional backup level
- Full control functionality (graphic display)
Multifunctional Protection for Transformers and Generators 7UT6
Measuring Preprocessing, Example for CT Matching (Part 1)

$I_P1 = 500\text{A}$ (load current)

$I_P2 = 1833\text{A}$ (load current)

$S_N = 100\text{MVA}$

$U_{N1} = 110\text{kV}$

$U_{N2} = 30\text{kV}$

$1000/5\text{A}$

$2000/5\text{A}$

$winding 1$ $winding 2$

$I_{N, Trafo} = 525\text{A}$

$I_{N, Trafo} = 1924\text{A}$

$I_{N, Trafo} = 525\text{A}$

$I_{N, Trafo} = 1924\text{A}$

$I_{S1} = 2.5\text{A}$

$I_{S2} = 4.58\text{A}$

measured secondary currents

$I_{Diff} = ?$

$I_{Stab} = ?$
Method of Vector Group Determination

\[I_{L1,S2} = I_{L1} - I_{L2} \]

Vector group is \(Y_d 11 \)
SICAM PAS
System with IEC61850 and further services

100 Mbit/s switched and redundant Ethernet ring

Station unit
SICAM PCC

62.5µ or 50µ FO

DIGSI 4
Web-Monitor

Stand by connection

max. 6 devices per switch

Ethernet-Switch

Ethernet patch-cable

Goose Message

Info report