POLE FITTINGS
TRANSMISSION
This illustration shows a complete intermediate pole installation with three-phase steel crossarm for up to 35 deg line deviation as Fig. 1 BS 1320:1946.
SECTION 1
POLE FITTINGS (TRANSMISSION)

Intermediate pole installation with three-phase wood crossarm for up to 35 deg maximum line deviation as Fig. 2 BS 1320: 1946

Intermediate pole installation with three-phase steel crossarm as Fig. 3 BS 1320: 1946
Note: This pole is to be used
(1) On line deviations of 35 to 60 deg
(2) At railway or canal crossings if duplicate insulators are required
(3) Where it is necessary to provide wider conductor spacing than the normal 2ft 6in.

Section pole installation with three-phase steel crossarm as Fig. 4 BS 1320: 1946.
SECTION 1
POLE FITTINGS (TRANSMISSION)

Terminal pole installation with three phase steel crossarm as Fig. 5
BS 1320: 1946.

Isolating switchgear pole installation for line deviations up to 35 deg as Fig. 6
BS 1320: 1946.

Isolating switchgear pole installation with three phase steel crossarm for line deviations above 35 deg as Fig. 7 BS 1320: 1946.

NOTE:
NO WOODEN INSULATOR TO BE FITTED IN ANY STAY ATTACHED TO THIS POLE.
Tee-off pole installation with three-phase steel crossarm as Fig. 8
BS 1320: 1946
SECTION 1
POLE FITTINGS (TRANSMISSION)

Intermediate P. O. cradle pole installation as Fig. 9 BS 1320: 1946 for line deviations up to:
(a) 60 deg for 0.025 in² copper and
(b) 35 deg for 0.05 in² copper
Section P.O. cradle pole installation as Fig. 10 BS 1320: 1946 for line deviations above:
(a) 60 deg for 0.025 in² copper and
(b) 35 deg for 0.05 in² copper

Terminating thimble Part No. 1016
as Fig. 16 BS 1320: 1946.
Material: Galvanised malleable cast iron or gunmetal.

Binding in stirrup Part No. 1017
as Fig. 17 BS 1320: 1946 for angle poles
Material:
Stirrup: Hard drawn copper
Binding wire and tape: Soft copper
SECTION 1
POLE FITTINGS (TRANSMISSION)

Binding-in stirrup Part No. 1018
as Fig. 18 BS 1320: 1946
for straight line poles.

Material:
Stirrup: Hard drawn copper
Binding wire and tape: Soft copper

Line connector Part No. 1019
as Fig. 19 BS 1320: 1946.

Material:
Body and nut: Copper 65%, zinc 34%,
tin 1%
Nut pad: Copper 100%

<table>
<thead>
<tr>
<th>Type</th>
<th>Size of copper conductor (in)</th>
<th>Dimensions (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>0.025</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>3/8</td>
</tr>
</tbody>
</table>

Clevis-ended socket adaptor
Part No. 1020 as Fig. 20 BS 1320: 1946.

Material:
Adaptor: Galvanised malleable cast iron
Pin: Galvanised mild steel
Split Pin: Copper (3/16 in. dia)

Shackle Part No. 1021 as Fig. 21
BS 1320: 1946.

Material:
Shackle: Galvanised mild steel
Split pin: Copper (3/16 in. dia)
Security clip: Phosphor-bronze
(not illustrated)
SECTION 1
POLE FITTINGS (TRANSMISSION)

Insulator hook Part No. 1022
as Fig. 22 BS 1320: 1946.
Material: Galvanised mild steel

Terminating strap Part No. 1023
as Fig. 23 BS 1320: 1946
Material: Galvanised mild steel

Eyebolt Part No. 1024
as Fig. 24 BS 1320: 1946
Material: Galvanised mild steel
1024 = 7½”
1024-1 = 12”

Eye Part No. 1025 as Fig. 25
BS 1320: 1946.
Material: Galvanised mild steel
A. Three-phase steel crossarm
Part No. 1028 as Fig. 26 BS 1320: 1946.
Material: Galvanised mild steel.
Note: For use on section poles.

B. Three-phase steel crossarm
Part No. 1027 as Fig. 27 BS 1320: 1946.
Material: Galvanised mild steel.
Note: For use on intermediate poles.
(1) At straight line positions, with 3ft 6in. conductor spacing.
(2) At line deviations between 35 and 60 deg (0.025 in² only).
(3) Where duplicate pin insulators are required.

C. Three-phase steel crossarm
Part No. 1026 as Fig. 26 BS 1320: 1946.
Material: Galvanised mild steel.
Note: For use on intermediate poles.
(1) At straight line positions, with 2ft 6in. conductor spacing.
(2) At line deviations up to 35 deg, with 2ft 6in. conductor spacing.

Three-phase steel crossarm
Part No. 1029 as Fig. 28 BS 1320: 1946
Material: Galvanised mild steel.
Note: For use on terminal poles.

Single-phase steel crossarm
Part No. 1030 as Fig. 30 BS 1320: 1946
Material: Galvanised mild steel.
Note: For use on intermediate and section poles
(1) At straight line positions, with 3ft 6in. conductor spacing.
(2) At line deviations up to 35 deg, with 3ft 6in. conductor spacing.
Also on terminal poles at line terminations, 0.025 in² conductor only.

Single-phase steel crossarm
Part No. 1031 as Fig. 31 BS 1320: 1946
Material: Galvanised mild steel.
Note: For use on intermediate poles
(1) At straight line positions, with 3ft 6in. conductor spacing.
(2) At line deviations between 35 and 60 deg (0.025 in² only).
(3) Where duplicate pin insulators are required.
Also on section poles at line deviations of 35 deg and over, with 3ft 6in. conductor spacing.
SECTION 1
POLE FITTINGS (TRANSMISSION)

Single-phase steel crossarm
Part No. 1032 as Fig. 32 BS 1320: 1946.
Material: Galvanised mild steel.
Note: For use on terminal poles at line terminations, 0.05 in² conductor.

Cradle crossarm Part No. 1033 as Fig. 33 BS 1320: 1946.
Material: Galvanised mild steel.

Crossarm tie-strap Part No. 1034 as Fig. 34 BS 1320: 1946.
Material: Galvanised mild steel.
(1 1/2 x 3/4 in. thick)

ALTERNATIVE CROSSARMS
Tubular type crossarms
Made to customer's specification.
Enquiries should include a fully dimensioned drawing or sketch.
Channel type crossarms

Made to customer's specification. Enquiries should include a fully dimensioned drawing or sketch.

Three-phase wooden crossarm
Part No. 1035 as Fig. 35 BS 1320: 1946
Material: Karri, jarrah, gurjun or oak (3 in. square)
Note: For use on intermediate poles
(1) At straight line positions, with 2ft 6in. conductor spacing.
(2) At line deviations up to 35 deg, with 2ft 6in. conductor spacing.

Single-phase wooden crossarm
Part No. 1036 as Fig. 36 BS 1320: 1946
Material: Karri, jarrah, gurjun or oak (3 in. square)
Note: (1) At straight line positions, with 3ft 6in. conductor spacing.
(2) At line deviations up to 35 deg, with 3ft 6in. conductor spacing.

Wooden crossarm strut
Part No. 1037 as Fig. 37 BS 1320: 1946
Material: Karri, jarrah, gurjun or oak (1 1/2 in. square)

Note: Each end mitred to 45 deg
Curved washer Part No. 1038 as Fig. 38 BS 1320: 1946.
Material: Galvanised malleable cast iron.
(2\(\frac{1}{2}\)in. square \(\times\) 1\(\frac{1}{4}\)in. thick min.).

Washer for wooden crossarm Part No. 1039 as Fig. 39 BS 1320: 1946.
Material: Galvanised mild steel.
(2\(\frac{1}{2}\)in. square \(\times\) 1\(\frac{1}{8}\)in. thick).

Socket for crossarm strut Part No. 1040 as Fig. 40 BS 1320: 1946.
Material: Galvanised mild steel.

Box washer for crossarm strut Part No. 1041 as Fig. 41 BS 1320: 1946.
Material: Galvanised mild steel.
(\(\frac{1}{16}\)in. thick).
Note: This fitting to be used in pairs.

Earth clip Part No. 1042 as Fig. 42 BS 1320: 1946
Material: 20 swg tinned copper.
Danger plate Part No. 1043
as Fig. 43 BS 1320: 1946.
Material: Vitreous enameled sheet iron
with white letters on red background.

Catch guard Part No. 1044
as Fig. 44 BS 1320: 1946.
Material: Galvanized mild steel.
(3/4 in. dia.)
Earth rod Part No. 1045 as Fig. 45
BS 1320: 1946.
Material: Galvanised wrought iron.
(1 in. dia.)

Standard Borer equivalent
Earth Rod Part No. 1045-1 as Fig. 45
Material: Galvanised mild steel
(1 in dia.)

Stay rod Part No. 1046 as Fig. 46
BS 1320: 1946
Material: Galvanised Mild steel.

<table>
<thead>
<tr>
<th>Type</th>
<th>Dimensions (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'X'</td>
<td>11\frac{1}{16}</td>
</tr>
<tr>
<td>'Y'</td>
<td>1\frac{3}{8} x \frac{6}{8}</td>
</tr>
<tr>
<td>A</td>
<td>\frac{1}{2} x \frac{1}{8}</td>
</tr>
<tr>
<td>B</td>
<td>1 x \frac{1}{12}</td>
</tr>
</tbody>
</table>
SECTION 1
POLE FITTINGS (TRANSMISSION)

Wooden stay insulator Part No. 1047
(Fig. 47 BS 1320: 1946)

Material:
Insulator: Karri, jarrah, or gurjun
(planed on all sides to 2in. square)
Note - Oak must not be used.
Fittings: Galvanised mild steel.

TYPICAL 'D' IRON AND
PIN ASSEMBLY Part No. 1048

Material: Hot dip galvanised mild steel
with zinc coating.
Sizes to customer’s drawings and
specifications.