WHAT'S IN A GSD?

The basis of this article, from Bob Lott, PhD, Founder of CI Informatics Ltd, comes from his experience trying to specify the Geometric Standard Deviation (GSD) calculation to software developers. Originally, he thought this would be a simple calculation. In reality it transpired to be a minefield of differing opinions and practices. This article is a “tip toe” across the issues Dr Lott encountered and questions some of the most common assumptions made.

Few analytical results can be taken as absolute values, and this is particularly true of a GSD!

WHAT IS A GSD?

The GSD or geometric standard deviation, together with the mass median aerodynamic diameter (MMAD), are the two metrics used to describe the aerodynamic particle size distribution (APSD) both of airborne particles/aerosols and those emitted by orally inhaled and nasal drug delivery devices.

In broad terms, the MMAD can be viewed as the “average particle size” while the GSD represents the spread of particle sizes either side of the “average”. So, the smaller the GSD, the narrower the size distribution is, and vice versa.

CALCULATION METHODOLOGY

MMAD and GSD are both classically calculated from a Log -Cumulative Mass % plot, such as those shown in Figures 1 and 4. Construction of this plot is well documented not least in the governing guidances.\(^1,2\)

The GSD is determined from the plot according to Equation 1:

\[
GSD = \sqrt{\frac{\text{Size X}}{\text{Size Y}}} = \left(\frac{\text{Size X}}{\text{Size Y}}\right)^{0.5}
\]

The Y-axis may be expressed as Cumulative Mass %, Z-Score, or Probits as in Figure 2. Mathematically these are equivalent scales and all three are in common use.

Issues arise around which calculation methodology should be used to process the data. In reality few people use the plot directly in this way, preferring to use some form of computational software to do the job. However the same question remains: what methodology should be used, regression, interpolation, or some other method?

TESTING FOR LOG-NORMALITY

First it must be noted that while an MMAD can be reported for any distribution, a GSD is only valid for Log-Normal distributions. It is therefore necessary to test if this is the case by performing a linear regression and ensuring the data is a good fit.

But what constitutes “a good fit”? The default position of available products is an \(R^2 >0.95\) which is probably too low given the limited number of data points evaluated. The pharmacopoeias do not give any guidance on this.

Then there is the matter of what data to use for the regression. The US Pharmacopeia, USP 601, infers that all the data should be used, whereas ISO 27427 states that only data between 10% and 90% Cumulative Mass should be used. Some software products only use the data between 15.87% (Probit 4) and 84.14% (Probit 6), while others offer all of the above as well as a dynamic approach that ensures the core data is always properly evaluated by a true regression (no fewer than three data points).

Let’s look at each in turn. Using all the data can afford too much weight to the extreme ends of the APSD distribution where recovered masses are generally the lowest and error the greatest.\(^3\) Using only data between 10% and 90% Cumulative Mass removes these “extreme ends”, but the 90% upper-limit can be counterproductive.

Consider Figure 3, the table containing example data generated from a Next Generation...
Applying the 90 Cumulative Mass % upper limit excludes the data point from Stage 2. However, Stage 2 contains >16% of all the recovered material and more than that found on Stage 5, which would be included. Therefore the argument that this point represents an “extreme end” is hard to justify. Indeed perversely the more material found on stage 2 the less likely the data will be used. This does not make much sense and it could be argued that arbitrary regression limits are not always helpful.

Using only data between 15.87% and 84.13% often renders the available data to just two points. The regression is therefore limited to an interpolation, guaranteed to the linearity. In some cases only one point will exist, rendering the regression analysis to a mere assumption.

A dynamic approach that takes the data point immediately below the 15.87% particle population, up to and including to the point immediately above the 84.13% particle population affords the benefits of excluding the extreme ends without applying arbitrary limits and ensures a proper regression is performed.

To sum up so far, there would appear to be a lack of consensus as to how we should decide if a GSD is even to be reported, let alone how it should be determined! For the sake of this article however let’s say we are all agreed and a GSD is to be calculated.

Since we have already performed a regression to determine whether or not a GSD should be reported, it would seem most sensible to use it to calculate the result. The only case the author can think of where it would not be sensible would be when an inappropriate regression methodology was used during the Log-Normal assessment.

INTERPOLATION

Good sound reasons exist why interpolation may be used for the calculation of MMAD, namely that it works well for Log-Normal and non Log-Normal distributions alike and is by far the simplest methodology to use in the latter case. To be clear we are talking here about interpolating the two data points above and below the 50% percentile (Probit 5). Applying these same arguments to calculation of the GSD is questionable, as 1) a GSD is not reported if these same arguments to calculation of the GSD are determined in this manner is not representative of the data in that region. This is simply because the method excludes the data point just below Z-Score = -1. Figure 4 contains comparative APSD data calculated from the distribution shown in Figure 4.

Data in brackets were not measured according to the method used, but were back-calculated for illustration purposes.

Note the data point just below Z-Score = -1 is Stage 5 of an NGI @30L/min, resulting in a cut-off diameter of 2.3 μm. Size Y calculated by regression agrees well with this and is the more accurate result.

Consider now if Size Y were interpolated and used with the MMAD to determine Size X (graphical equivalent of Equation 3). Size Y is found to be 2.33 which has good agreement with the nearest stage cut-off diameter mentioned above. However the GSD is determined as just 1.76. This discrepancy originates from a data set with an R² >0.99 (based on the four points shown in Figure 4). Applying this methodology to less linear data sets can only result in bigger inconsistencies. So although Equations 2 and 3 are true, they do not produce accurate results when misused in this way.

THEORETICAL EXTRAPOLATION

As Size X, Size Y and the MMAD all sit on the same straight line of a theoretically perfect Log-Normal distribution it can be shown that:

\[GSD = \frac{X}{MMAD} \] (Equation 2)

\[GSD = \frac{MMAD}{Y} \] (Equation 3)

However these are only true where the arguments of the equation are determined from the same linear regression data. If the MMAD and Size X are determined from independent interpolations there is a risk that the extrapolation to Size Y will not be sufficient to the data, as not all the relevant data has been taken into consideration. This is best seen with the aid an example Log-Cumulative Mass % plot, Figure 4.

Here the MMAD and Size X were found by independent interpolations on data bracketing Z-Score = 0 and 1 respectively. These two points are then themselves interpolated and the resultant line extrapolated to Z-Score = -1 to find Size Y. This is graphically identical to Equation 2.

From the plot it can be seen that Size Y determined in this manner is not representative of the data in that region. This is simply because the method excludes the data point just below Z-Score = -1. Figure 5 contains comparative APSD data calculated from the distribution shown in Figure 4.

Figure 2: Table showing Y-Scale equivalence values.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Mass (μg)</th>
<th>Cumulative Mass (μg)</th>
<th>Cumulative Mass %</th>
<th>Stage Fraction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Stage 7</td>
<td>0.04</td>
<td>0.04</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Stage 6</td>
<td>0.13</td>
<td>0.16</td>
<td>3.40</td>
<td>2.65</td>
</tr>
<tr>
<td>Stage 5</td>
<td>0.60</td>
<td>0.77</td>
<td>15.83</td>
<td>12.42</td>
</tr>
<tr>
<td>Stage 4</td>
<td>1.58</td>
<td>2.35</td>
<td>48.43</td>
<td>32.61</td>
</tr>
<tr>
<td>Stage 3</td>
<td>1.29</td>
<td>3.63</td>
<td>75.01</td>
<td>26.57</td>
</tr>
<tr>
<td>Stage 2</td>
<td>0.80</td>
<td>4.43</td>
<td>91.53</td>
<td>16.52</td>
</tr>
<tr>
<td>Stage 1</td>
<td>0.41</td>
<td>4.85</td>
<td>100.00</td>
<td>8.47</td>
</tr>
</tbody>
</table>
Using the regression data in Figure 5, Equations 2 and 3 give coherent results. This is because both Size X and Y are determined on an equal basis so there is no bias for one data point over the other.

CONCLUSIONS

If all distributions were perfectly Log-Normal, all the methodologies discussed would give the same result, but this is not that case and a GSD is only ever an approximation. However some approximations have greater mathematical integrity resulting in more accurate results, than others.

Given the variety of practices and regulatory requirements within the global respiratory drug delivery industry, it is important for computational tools to offer the flexibility to meet these varying demands.

<table>
<thead>
<tr>
<th>Methodology</th>
<th>MMAD (μm)</th>
<th>Size X</th>
<th>Size Y</th>
<th>GSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>4.35</td>
<td>8.58</td>
<td>2.21</td>
<td>1.97</td>
</tr>
<tr>
<td>Interpolation</td>
<td>4.12</td>
<td>7.96</td>
<td>2.13</td>
<td>1.93</td>
</tr>
<tr>
<td>Theoretical Equ. 2</td>
<td>4.12</td>
<td>8.52</td>
<td>(1.52)</td>
<td>2.07</td>
</tr>
<tr>
<td>Theoretical Equ. 3</td>
<td>4.12</td>
<td>(7.2)</td>
<td>2.33</td>
<td>1.76</td>
</tr>
</tbody>
</table>

Figure 5: APSD results obtained from Figure 4 using alternate calculation approaches.

REFERENCES

2. ISO 27427:2009(E), “Anaesthetic and respiratory equipment nebulizing systems and components”.

ABOUT THE AUTHOR

Dr Bob Lott is founder of CI Informatics Ltd and has worked closely with S-Matrix Corporation (Eureka, CA, US) to bring Fusion Inhaler Testing (FIT) to the respiratory marketplace. CI Informatics is the European distributor for all S-Matrix products including Quality by Design (QbD) solutions for respiratory product development. Visit www.ciinformatics.co.uk for more information.