The Las Vegas Valley Water District is a not-for-profit agency.
Water.
You depend on it every day.

That’s why it’s important to know the facts. The Water District’s 2015 Water Quality Report explains where your water comes from, what’s in it, how it’s treated and delivered and more. When it comes to understanding your drinking water, the facts should be clear.

We make this report available to all customers in accordance with the Safe Drinking Water Act, and we encourage you to be confident in the bottom line:

Water delivered by the Las Vegas Valley Water District meets or surpasses all State of Nevada and federal Safe Drinking Water Act standards.

We post the report and additional water-quality analyses and summaries on lvwv.com. This report, all analyses and summaries are based on data collected during the 2014 calendar year, unless noted otherwise.

We are committed to ensuring your water quality, reliability and security. If you have questions about the 2015 Water Quality Report, please contact us via lvwv.com or see the last page of this report for more contacts and consumer resources.

Call to request a printed copy of this report: 702-822-8400
Where does my water come from?

Lake Mead (below right) supplies nearly 90 percent of the water used by Las Vegas Valley Water District customers. Virtually all water in Lake Mead originates as snowmelt in the Rocky Mountains that flows down the Colorado River.

The remaining water—about 10 percent—comes from wells that tap a deep groundwater aquifer beneath the Las Vegas Valley.

Groundwater is used primarily between May 1 and Oct. 1 annually to meet peak water demand; in addition, several groundwater wells operate Oct. 1–March 31 to reduce trihalomethane levels in key areas and ensure compliance with state and federal water-quality requirements. If you live or work within several miles of the Water District’s offices at Charleston and Valley View boulevards, or in the northwest valley, you may receive a blend of treated Lake Mead water and groundwater.

Groundwater in the aquifer is naturally recharged by precipitation in the Spring Mountains and the Sheep Range. Treated water from Lake Mead supplements this natural recharge and helps keep aquifer levels stable.

Why do I hear about water quality in the media, even when tap water meets standards?

Water delivered by the Las Vegas Valley Water District meets or surpasses federal and state drinking-water standards, which are set after extensive review of the best-available science and public health needs. However, technological advances may change how both the media and customers define or perceive “water quality.”

Here’s one example: Scientists now can detect contaminants in as little as a few parts per trillion—equal to a few drops of water in 20 Olympic-size swimming pools. Decades ago, this wasn’t possible. At low levels, these contaminants generally are not harmful in drinking water, yet their detection alone may raise concern. Removing all contaminants simply because they are detected would be very costly, and in most cases, would not increase public-health protection.

Water-related illnesses have dropped dramatically in recent decades, thanks to Safe Drinking Water Act standards and advanced treatment methods such as ozonation. Stricter pollution controls also have reduced the amount of potential contaminants accessing water supplies.

Are there any health precautions for the public?

Some people may be more vulnerable to contaminants in drinking water than the general population. Those with compromised immune systems such as cancer patients undergoing chemotherapy, people who have had organ transplants, those with HIV/AIDS or other immune-system disorders, some elderly and infants can be particularly at risk from infections. Similarly, pregnant women should be especially careful about everything they consume. These people should seek advice from their health-care providers about drinking water.

Call the Safe Drinking Water Hotline at 800-426-4791 for Environmental Protection Agency/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants.

Lake Mead’s Sources

- 97% Colorado River
- 1.5% Las Vegas Wash
- 1.45% Virgin River
- 0.05% Muddy River
How we treat and test your water

Treatment
Safe Drinking Water Act standards are designed to provide maximum protection for the public’s health. We treat water—according to these health-based standards—at the regional Southern Nevada Water Authority’s two advanced water treatment facilities. Here’s how:

- We treat water withdrawn from Lake Mead with small quantities of a disinfectant to destroy invasive quagga mussels, which do not impact water quality but can plug pumping equipment and pipelines.
- Water then is sent to the Alfred Merritt Smith Water Treatment Facility or the River Mountains Water Treatment Facility, where we treat water with ozone to kill microscopic organisms that may be present.
- A multistage filtration system then is used to remove particles from the water.
- As water leaves the treatment facilities, we add chlorine to protect it on the way to your tap. Water also is treated to control lead and copper corrosion in pipelines.

Advanced computer technologies help the Las Vegas Valley Water District move water more quickly through the distribution system. This protects water quality and improves energy efficiency. The entire treatment process is designed to provide drinking water that meets or surpasses all state and federal Safe Drinking Water Act standards for water quality.

Because it is naturally filtered, water drawn from the Las Vegas Valley groundwater aquifer is simply treated with chlorine as it enters the distribution system.

Testing
We test your water for more contaminants than required by law. We also test many regulated and unregulated contaminants more frequently than required. To ensure water safety, we:

- Collected about 36,000 water samples in 2014 and conducted more than 327,000 analyses of those samples
- Continually monitor water quality in “real time” 24 hours a day, 365 days a year

We also conduct quality-control sampling of our distribution system. While not required, this sampling is important for identifying potential areas for improvement.

We manage 367 sampling stations where we draw water samples for required testing. Some stations are aboveground; others are installed in customers’ meter boxes to help ensure water quality is maintained all the way to your tap.
Water at a glance: understanding test results

THIS SUMMARY MAY HELP YOU BETTER UNDERSTAND THE 2014 TEST RESULTS ON THE FOLLOWING PAGES.

Regulated contaminants
The U.S. EPA requires water agencies to monitor for 91 regulated contaminants:

- 76 contaminants have “primary” standards. We must list them in this report if we detect them in our water supply. Primary standards are set to protect the public against consuming drinking-water contaminants at levels that present human-health risks.

- 15 contaminants have “secondary” standards to help water systems manage aesthetic considerations, such as water taste, color and odor. These contaminants, while regulated, are not considered risks to human health and are not required to be included in this report.

Unregulated contaminants
The EPA maintains Contaminant Candidate Lists that prioritize unregulated contaminants for potential regulation. To aid in this effort, large water systems—including the Las Vegas Valley Water District—are required to monitor for certain listed contaminants and provide information to the EPA. The “Additional Test Results” chart on the following page lists those results in compliance with the Unregulated Contaminant Monitoring Rule.

In 2014, we monitored for more than 50 unregulated contaminants, including substances such as pharmaceutical compounds and perchlorate, which currently have no “limits.” We also monitor for Cryptosporidium. The EPA requires water systems that treat surface water to ensure removal of this naturally occurring organism that can cause gastrointestinal distress. Cryptosporidium was not detected in any 2014 source-water samples.

Where may I learn more?
Visit lvvwd.com to access a complete Water Quality Summary, which shows all monitoring results, including data and information beyond what is required in this report. Or, contact our Water Quality Division at 702-258-3215.

Visit epa.gov/drink to learn more about the EPA’s nationwide Drinking Water Strategy and regulations.
Test Results

LVVWD Water Quality

These results represent levels in the treated water supply, based on 2014 data, except where noted. Visit lvvwd.com for more information.

Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Unit</th>
<th>MCL (EPA Limit)</th>
<th>MCLG (EPA Goal)</th>
<th>MINIMUM</th>
<th>MAXIMUM</th>
<th>AVERAGE</th>
<th>POSSIBLE SOURCES OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>10</td>
<td>N/A</td>
<td>N/D</td>
<td>0</td>
<td>0.03</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>0.03</td>
<td>0.09</td>
<td>0.1</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Beta Particles and Photon Emissions</td>
<td>ppb, um</td>
<td>50 (12)</td>
<td>0 (12)</td>
<td>N/D</td>
<td>5.7 (12)</td>
<td>3.5 (12)</td>
<td>Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation</td>
</tr>
<tr>
<td>Boron</td>
<td>ppm</td>
<td>10</td>
<td>0</td>
<td>N/A (groundwater is not treated with ozone)</td>
<td>1.6 (12)</td>
<td>1.2 (12)</td>
<td>By-product of drinking-water disinfection by ozonation</td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>1.3 (Action Level)</td>
<td>1.3 (Action Level)</td>
<td>0.1(16)</td>
<td>1.1(16)</td>
<td>0.7 (90th% value)</td>
<td>Erosion of natural deposits; discharge from metal refineries; discharge of drilling wastes</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>40</td>
<td>40</td>
<td>0.3</td>
<td>0.7</td>
<td>0.7</td>
<td>Naturally occurring element; used in making steel and other alloys; chromium-6 forms are used for chrome plating, dyes and pigments, leather tanning and wood preservation</td>
</tr>
<tr>
<td>Chromium (Total)</td>
<td>ppm</td>
<td>100 (14)</td>
<td>100 (14)</td>
<td>1.1</td>
<td>0.3</td>
<td>0.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation</td>
</tr>
<tr>
<td>Chromium (6)</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>0.05</td>
<td>0.85</td>
<td>0.2</td>
<td>Agriculture fertilizer used as a soil amendment; by-product of petroleum</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
<td>1.2</td>
<td>0.96</td>
<td>Naturally occurring element; used in making steel and other alloys; chromium-6 forms are used for chrome plating, dyes and pigments, leather tanning and wood preservation</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4.0 (MRL)</td>
<td>4.0 (MRL)</td>
<td>0.1</td>
<td>1.6</td>
<td>1.0</td>
<td>Erosion of natural deposits; discharge from metal refineries; discharge of drilling wastes</td>
</tr>
<tr>
<td>Free Chlorine Residue</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>38</td>
<td>LRAA (34</td>
<td>Naturally occurring in the environment</td>
</tr>
<tr>
<td>Haloacetic Acids</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>3</td>
<td>2 (90th% value)</td>
<td>By-product of drinking-water disinfection by ozonation</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>ppm</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
<td>Erosion of natural deposits; discharge from mines; component of petroleum</td>
</tr>
<tr>
<td>Iron</td>
<td>ppm</td>
<td>0.3 (RAA)</td>
<td>0.3 (RAA)</td>
<td>0</td>
<td>3 (RAA)</td>
<td>2 (90th% value)</td>
<td>Naturally occurring in the environment</td>
</tr>
<tr>
<td>Lead</td>
<td>ppm</td>
<td>N/A (15)</td>
<td>N/A (15)</td>
<td>0</td>
<td>3 (15)</td>
<td>2 (90th% value)</td>
<td>Erosion of natural deposits; discharge from mines; component of petroleum</td>
</tr>
<tr>
<td>Lead (Total)</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>3 (N/D)</td>
<td>2 (90th% value)</td>
<td>Erosion of natural deposits; discharge from mines; component of petroleum</td>
</tr>
<tr>
<td>Strontium</td>
<td>ppm</td>
<td>N/A</td>
<td>N/A</td>
<td>0.53</td>
<td>1.2</td>
<td>0.96</td>
<td>Erosion of natural deposits; discharge from mines; component of petroleum</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>95% of samples below 0.3 NTU (10)</td>
<td>N/A</td>
<td>Treatment Facility Monitoring</td>
<td>1.2</td>
<td>N/D</td>
<td>N/D</td>
</tr>
<tr>
<td>Uranium</td>
<td>ppm</td>
<td>30</td>
<td>0</td>
<td>N/D</td>
<td>3</td>
<td>2</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

FOOTNOTES:

1. Some Safe Drinking Water Act (SDWA) regulations require monitoring of the distribution system, while other SDWA regulations require monitoring at the entry points to the distribution system (LVVWD wells, raw water). Monitoring for Chromium (Total), in conjunction with UCMR3 Assessment Monitoring, is required under the authority of the Safe Drinking Water Act (SDWA).
2. The actual MCL for beta particles is 4 mrem/year. The U.S. EPA considers 50 mrem to be the level of concern for beta particles.
3. Annual monitoring not required, data from 2013.
4. Maximum levels greater than the MCL are allowable as long as the running annual average (RAA) does not exceed the MCL.
5. This is the highest running annual average (RAA) reported in 2014. Reports are filed quarterly.
6. Lead and copper are regulated by a Treatment Technique (TT) that requires systems to control the corrosiveness of their water. If more than 10% of tap-water samples exceed the Action Level, water systems must take additional steps. For copper the Action Level is 1.3 ppm, and for lead it is 15 ppb.
7. Maximum levels greater than the MCL are allowable as long as neither the RAA nor 184A exceed the MCL. Please see back cover for additional information related to a Trichloroethylene Estermen for the LVWSD.
8. Monitoring for this regulated contaminant was performed under the UCMR3 at lower detection limits than are required under current monitoring rules. Monitoring for Chromium (Total), in conjunction with UCMR3 Assessment Monitoring, is required under the authority provided in Section 1445(a)(1)(A) of the SDWA.
9. Chlorine is regulated by NRDG, with the goal stated as a MRLG.
10. By state law, the Southern Nevada Water Authority is required to fluoridate the municipal water supply. This law is not applicable to groundwater.
11. This value is the highest locational running annual average (LRAA) reported in 2014. Reports are filed quarterly.
12. While your drinking water meets EPA standards for nitrate, it does contain low levels of nitrate. Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause Blue Baby Syndrome. Nitrate levels may naturally vary from day to day and from source to source. If you are caring for an infant, you should ask your health care provider what level is safe for your child.
13. Maximum levels greater than the MCL are allowable as long as neither the RAA nor 184A exceed the MCL. Please see back cover for additional information related to a Trichloroethylene Estermen for the LVWSD.
14. Turbidity is regulated by a Treatment Technique (TT) that requires 95% of all samples taken after filtration each month must be less than 0.3 NTU. Maximum turbidity cannot exceed 1 NTU.
15. Monitoring for this contaminant was conducted to comply with the Unregulated Contaminant Monitoring Rule (UCMR) set by the U.S. EPA Safe Drinking Water Act (184A). Per the rule, monitoring is conducted within the Distribution System Only. Unregulated contaminant monitoring helps the EPA to determine where contaminant trends occur and whether the EPA should consider regulating those contaminants in the future. With the exception of Chromium (Total), these contaminants have no MCLs or MRLGs.
16. Monitoring for this regulated contaminant was performed under the UCMR at lower detection limits than are required under current monitoring rules. Monitoring for Chromium (Total), in conjunction with UCMR3 Assessment Monitoring, is required under the authority provided in Section 1445(a)(1)(A) of the SDWA.
Key terms

WE’VE DEFINED THESE WATER-QUALITY TERMS UNIQUE TO THE WATER INDUSTRY TO HELP YOU BETTER UNDERSTAND TEST RESULTS ON THE PREVIOUS PAGES.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

AMSWTF: Alfred Merritt Smith Water Treatment Facility

Disinfection by-product (DBP): A substance created by the chemicals or processes used to destroy potentially harmful microorganisms.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Millirem (mrem): One-thousandth of a rem (roentgen-equivalent-man), which is a unit of absorbed radiation dose that is adjusted for the biological effects equal to one rad of 250 kilovolt roentgen rays (dental roentgen rays require less than 100 kilovolts).

N/A: Not applicable

N/D: Not detected. Does not equate to zero, but refers to an amount below analytical reporting limits.

Nephelometric Turbidity Unit (NTU): A measurement of water’s clarity.

Ozonation: An advanced water treatment process that involves the addition of ozone, a very powerful gaseous disinfectant, to water to destroy bacteria, *Cryptosporidium* and other pathogens. Ozonation processes began at AMSWTF and RMWTF in 2003.

Part per billion (ppb): A unit used to describe the levels of detected contaminants. Equivalent to 1 cent in $10 million.

Part per million (ppm): A unit used to describe the levels of detected contaminants. Equivalent to 1 cent in $10,000.

Picocuries per liter (pCi/L): A measure of the radioactivity in water. Low levels of radiation occur naturally in many water systems, including the Colorado River.

RMWTF: River Mountains Water Treatment Facility

Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Turbidity: A measure of water clarity, which serves as an indicator of the treatment facility’s performance.
More about your source water

All water originates from a source. Sources for both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves minerals and—in some cases—other contaminants, and can pick up substances resulting from the presence of animals or from human activity.

Tap water, as well as bottled water, may reasonably be expected to contain at least small amounts of some contaminants—any substances that are not H₂O. It’s important to understand that the presence of contaminants does not necessarily indicate that water poses a health risk—particularly in light of claims made by some home water-treatment companies and reports about water quality or the environment.

Before the Las Vegas Valley Water District delivers your tap water, it undergoes a multistage treatment process. We test your water rigorously to ensure it meets strict Safe Drinking Water Act standards. Our goal is to effectively treat and manage contaminants that may be present in source (untreated) water, including:

- **Microbial contaminants**, such as viruses and bacteria, which may come from urban runoff, septic systems, wildlife, agriculture and domestic wastewater discharges;

- **Inorganic contaminants**, such as salts and metals, which can be naturally occurring or result from urban runoff, septic systems and industrial or domestic wastewater discharges;

- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban runoff and residential uses;

- **Organic chemical contaminants**, including synthetic or volatile organic chemicals, which are by-products of industrial processes and can come from gas stations, urban runoff and septic systems;

- **Radioactive contaminants**, which can be naturally occurring or the result of industrial activities.

To ensure tap-water safety, EPA regulations limit the amount of certain contaminants in water provided by public water systems. Learn more by calling the EPA Safe Drinking Water Hotline at **800-426-4791** or the Nevada Division of Environmental Protection at **775-687-9520**.

Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide similar protection for public health.

Source water assessment

The federal Safe Drinking Water Act was amended in 1996 and requires states to develop and implement source water assessment programs to analyze existing and potential threats to the quality of public drinking water throughout the state. A summary of the Las Vegas Valley Water District’s susceptibility to potential sources of contamination was initially provided by the state of Nevada in 2003. The summary of this source water assessment was first included in the LVVWD 2004 Water Quality Report and now may be accessed online at lvvwd.com.

Detailed information pertaining to the findings of the source water assessment is available for viewing in person Monday-Thursday, by appointment, at the Las Vegas Valley Water District, 1001 S. Valley View Blvd. Please call **702-258-3215** for an appointment. Additional information about the Nevada Source Water Assessment Program may be found at ndep.nv.gov/bsdw.
Questions and answers

WE’VE ANSWERED CUSTOMERS’ TOP QUESTIONS HERE. VISIT LVVWD.COM TO LEARN MORE ABOUT THE WATER-QUALITY TOPICS THAT MATTER TO YOU.

How hard is my water?
Las Vegas Valley Water District water is considered “very hard”—like many Western cities’ water supplies. Hardness is about 290 parts per million (ppm) or 17 grains per gallon. Hard water results from high levels of dissolved, nontoxic minerals—in our case, calcium and magnesium carried into Lake Mead from the mineral-dense Colorado River. These minerals don’t pose health risks or impact water quality, but the residue can be a nuisance.

Simple solutions may help: Consider laundry detergents with water-softening agents, dishwasher rinse aids, bath salts and lime- or mineral-dissolving cleaners. Minimize water residue by wiping countertops and fixtures dry instead of allowing water to evaporate.

Why is my water sometimes cloudy?
Cloudy or milky tap water can occur when air becomes trapped in the water—often during the groundwater pumping process, water pipeline maintenance or when groundwater is raised to the warmer surface. Cloudiness may impact your water’s appearance, but it does not affect safety or reduce water quality, and it won’t harm your home plumbing system.

To test if your cloudy water is due to trapped air, fill a glass with tap water and set it on the counter. Observe the water for a minute or two. As the air dissipates, water should start to clear up.

Should I be concerned about lead or copper in my drinking water?
The state of Nevada and the EPA require public education for lead and copper. The Water District actively monitors for both, and we provide this information to help you assess risks in your tap water.

If present at elevated levels, lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Water District is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your tap water, have your water tested by a private laboratory. For more information, call the EPA Safe Drinking Water Hotline, 800-426-4791, or visit epa.gov/drink.
Can you provide advice about treatment systems or bottled water?
Contact us for a free Consumer Reports® filter buying guide and fact sheets on home water-treatment systems. Call 702-258-3930 or visit snwa.com to request yours, courtesy of the Southern Nevada Water Authority.

While we can’t recommend specific brands, this information packet can help you make an informed choice—and perhaps save money.

If you choose to purchase bottled water, the U.S. EPA recommends that you carefully read labels to understand what you are buying. Bottled water is defined as a “food” and is under the authority of the U.S. Food and Drug Administration (FDA). The EPA—under stricter standards and more-frequent testing—regulates tap water.

Visit nsf.org or call the independent, not-for-profit NSF International Consumer Hotline, 800-673-8010, to learn if your bottled water meets FDA standards.

Do I need to use a water-treatment system?
Water-treatment systems aren’t essential for the vast majority of us, but may help address your aesthetic concerns, remove minerals that cause hard water or change tap-water’s taste. If you are pregnant or have a condition affecting your immune system, ask your physician whether a supplemental treatment system is appropriate.

Do you have tips to make my water taste better?
Try these tips to minimize the taste that comes from naturally occurring minerals and chlorine used in water treatment.

- Refrigerate a container of tap water overnight.
- Add a lemon slice to your water glass.
- Filter your water with an inexpensive activated-carbon filter.
For more information

Las Vegas Valley Water District
Website: lvvwd.com
Water Quality 702-258-3215
Public Information 702-258-3930
Customer Services 702-870-4194
Conservation (SNWA) 702-258-SAVE (7283)
en español: 702-258-AGUA (2482)

Environmental Protection Agency
Website: epa.gov/drink
Safe Drinking Water Hotline 800-426-4791

Nevada Division of Environmental Protection
Website: ndep.nv.gov/bsdw
Bureau of Safe Drinking Water 775-687-9520

Home Water-Treatment System Information
Website: nsf.org
NSF International Consumer Hotline 800-673-8010

Getting Involved
The Las Vegas Valley Water District Board of Directors meets at 9 a.m. on the first Tuesday of every month. Meetings are open to the public, offer a public-comment period and are held at the Clark County Government Center, 500 S. Grand Central Pkwy. In accordance with Nevada Open Meeting Law, agendas for regular meetings are properly posted and available at least three days before each meeting on lvvwd.com. Submit questions via the “Contact Us” form on lvvwd.com or by mail:

Las Vegas Valley Water District
Public Information Division
1001 S. Valley View Blvd., MS 780
Las Vegas, NV 89153

Noticia en español
Este reporte contiene información muy importante acerca de la calidad del agua. Para recibir una copia en español, llame al 702-258-3946 o visita la página web:

LVVWD Board of Directors
Mary Beth Scow, President
Steve Sisolak, Vice President
Susan Brager
Larry Brown
Tom Collins
Chris Giunchigliani
Lawrence Weekly

John Entsminger, General Manager

The Southern Nevada Water Authority: Meeting regional water needs
The Southern Nevada Water Authority is a not-for-profit agency responsible for drawing nearly all municipal water from Lake Mead, treating it to drinking-water standards and delivering it to the distribution systems of local water agencies, including the Las Vegas Valley Water District.

The SNWA also oversees long-term water and conservation planning. To learn more, visit snwa.com.

Public Notice for Extension
Trihalomethanes (THMs), which are regulated by the Safe Drinking Water Act, are disinfection by-products (DBPs) created when chlorine is used to disinfect water containing natural organic matter.

Effective April 1, 2012, the U.S. EPA revised regulations for disinfection by-products, which include THMs. While the Maximum Contaminant Level (MCL) of 80 ppb for THMs did not change, the method of calculating that level was revised. Water systems must now calculate a locational running annual average at each monitoring location (LRAA) to determine compliance with the MCL, rather than a running annual average (RAA) of the results obtained from samples at all monitoring locations system-wide.

The Las Vegas Valley Water District had always met the requirements of the prior DBP rule, but requested a two-year extension as allowed by federal law for compliance with the new rule. This extension, which was granted by the Nevada Division of Environmental Protection for the period April 1, 2012-March 31, 2014, has now passed and the Las Vegas Valley Water District is fully compliant with the current, Stage 2 Disinfectants and Disinfection Byproducts Rule for THMs.

Call 702-822-8400 to request a printed copy of this report.
We’ll mail it right out!