EPIDEMIOLOGIC PRINCIPLES: STUDY DESIGNS

July 23, 2004
Overview of Epidemiologic Study Designs

EXPERIMENTAL
- Random allocation of study subjects;
 - Investigator assigns treatment or exposure
 - Randomized Control Trials
 - Community Trials
 - Laboratory Trials

OBSERVATIONAL
- Investigators study people and exposures “in nature”

Comparison Group?
- NO
- YES

DESCRIPTIVE
- Correlational
- Case Series
- Case Reports
- Cross-Sectional
- Migrant studies

ANALYTIC
- Case-Control
- Cohort
Descriptive vs. Analytic Studies

- **Descriptive studies** provide information on patterns of disease occurrence
 - The descriptive statistics generated can be correlated with clinical observations or laboratory studies to generate hypotheses
 - Often provide clues about disease causation that can be pursued by more sophisticated research designs

- **Analytic studies** are designed specifically to test hypotheses that have usually been generated from descriptive studies
Person, Place and Time

The three critical dimensions for describing a health condition

- **Person**: demographic (i.e., age, gender, race) and other personal characteristics of the population under study

- **Place**: region, residence, workplace, topography, or location of rooms, buildings or other structures

- **Time**: seasonal patterns, secular trends, or acute changes in disease occurrence (i.e., epidemic)
In 2000, more African Americans were reported with AIDS than any other racial/ethnic group.
Description by Place
Rocky Mountain Spotted Fever, by county, 1993.

- Clear clustering of cases of RMSF along the east coast and in the south central U.S.
- Disease is not randomly distributed.

With the exception of the influenza pandemic of 1918, death rates due to infectious diseases decreased until around 1980, at which time several factors (including HIV-related mortality and antibiotic resistance) caused these rates to rise.

Source: Centers for Disease Control and Prevention, National Center for Infectious Diseases, 2002.
Description by Time and Place

Use of HepB vaccine in national immunization systems, 1996-2002 (March 2002)

In 1996

In 2002

Routine HepB implementation status

- Yes
- No

FIGURE 2. Number of AIDS cases among men who have sex with men (MSM), injection drug users (IDU), and persons exposed through heterosexual contact, by quarter-year of diagnosis in the United States, 1981-2000.

DESCRIPTIVE STUDY DESIGNS
Main Types of Descriptive Studies

(1) Correlational studies

(2) Case reports and case series

(3) Cross-sectional studies
Correlational Studies

Typically, an ecologic measure of exposure and an aggregate measure of disease or mortality are compared.

- Measure of association: correlation coefficient (r)
 - Linear association between exposure and outcome, ranging from -1 to 1

- Examples
 - Correlation of rate of a given disease and average amount of caloric intake, proportion of smokers, or median income
 - Death rates from coronary artery disease correlate with per capita cigarette sales
Uses of Correlational Studies

- To suggest disease causation
- To describe broad social and cultural attributes affecting health
- Surveillance
- To evaluate disease control measures
Correlation between fat intake and breast cancer by country

Incidence Rate per 100,000 Women

Per Capita Supply of Fat Calories

From Gordis, Epidemiology, Figure 13.4
Correlational Studies Summary

Advantages
- Quick and relatively inexpensive
- May be able to use readily available data
- Useful in hypothesis generation

Disadvantages
- Does not provide information about the relationship between risk factor levels and disease in individuals
- Ecologic fallacy - association observed between variables on an aggregate level does not necessarily represent the association at an individual level
Case Reports and Case Series

- Describe the experience of a single patient or a group of patients with similar diagnosis
 - Recall: Correlational studies consider whole populations

- Typically, an observant clinician reports an unusual feature of a disease, a patient’s exposure history, or unusual medical event
 - May lead to formulation of new hypotheses
 - A series of unusual cases may prompt further investigations with more rigorous study designs

- One of the most common types of studies published in medical journals
 - A systematic review (Fletcher and Fletcher 1979) found that case reports made up 1/3 of all articles
Case Series

Collections of individual case reports
- May occur in a relatively short time period

(1) Can indicate the beginning or presence of an epidemic

(2) Hypothesis formulation - through investigation of the experiences of the affected individuals

(3) Identification of possible causal factors - analytic study to compare experiences of the case series with a group of individuals who did not develop the disease
Early Epidemiology of AIDS

- Between Oct 1980 and May 1981, 5 cases of *Pneumocystis carinii* pneumonia were reported among young, previously healthy, homosexual men in L.A.
 - Previously occurred only in older, immunosuppressed cancer patients

- Also in 1981, an unprecedented number of cases of Kaposi’s sarcoma were diagnosed in young homosexual men
 - Previously seen almost exclusively in the elderly, and affected men and women equally

- CDC initiated a surveillance program
 - Established diagnostic criteria for this new syndrome
Early Epidemiology of AIDS

- Homosexual men were at high risk of developing this syndrome

- More case reports/case series suggested other risk factors for AIDS, including:
 - IV drug abuse, blood transfusions, hemophiliacs receiving blood products

- These descriptive data formed the basis for analytic studies
 - Case series suggested specific risk factors for development of AIDS
 - Sera from cases & controls led to ID of human immunodeficiency virus (HIV) as the causative agent
Case Report and Case Series Summary

Advantages

- Useful in the formulation of research hypotheses – suggestive of risk factors
- Important step in recognizing new diseases or risk factors

Disadvantages

- Case report is based on the experience of one individual
 - The presence of any “risk factor” may be coincidental
- Can’t use to test for valid statistical association (No comparison group)
- Can merely raise the question of an association
Cross-Sectional Studies

- General design:
 - Define a population and determine presence or absence of exposure, and presence or absence of disease for each individual
 - Each subject can be categorized into one of four possible subgroups

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Not Exposed</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>
Cross-Sectional Studies

- Exposure and disease outcome are determined simultaneously for each subject
 - Identify **prevalent** cases (the cases existed at the time of the study, but do not know their duration)
 - Measure prevalence, not incidence (new cases)
 - Also called a “prevalence study”

- Prevalence is a function of both incidence and duration of disease
 - **Prevalence = Incidence rate x Duration of disease**
 - So measures of association based on prevalent cases reflect both
 - The exposure’s effect on incidence
 - The exposure’s effect on duration or survival
Cross-Sectional Studies: Determining an Association

- Compare the **prevalence of disease** in persons with the exposure, \[
\frac{a}{a+b}\], with the prevalence of disease in persons without the exposure, \[
\frac{c}{c+d}\]

- Compare the **prevalence of exposure** in persons with the disease, \[
\frac{a}{a+c}\], with the prevalence of exposure in persons without the disease, \[
\frac{b}{b+d}\]

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Not Exposed</td>
<td>a+c</td>
<td>b+d</td>
</tr>
<tr>
<td></td>
<td>a+b</td>
<td>c+d</td>
</tr>
</tbody>
</table>
In a cross-sectional study, we identify prevalent (existing) cases rather than incident (new) cases.

- Prevalent cases may not be representative of all cases in this population

- If an association is observed, it may be with survival, or may be a result of the disease, rather than with risk of development of disease

- Incidence-prevalence bias
 - Prevalent cases include long-term survivors, who have a better average survival than that of incident cases (represent the full spectrum of disease severity)
The numerator for point prevalence will depend on when the cross-sectional study is conducted.

If the study was conducted in July, you would miss cases 1, 2 and 4 (the most severe or fatal cases).
Descriptive Studies Summary

Advantages

- Often uses routinely collected, readily available data
- Less expensive and time-consuming as compared to analytic studies
- Good for assessing prevalence and patterns of disease occurrence
- Useful in the formulation of research hypotheses – suggestive of risk factors

Disadvantages

- Usually cannot test epidemiologic hypotheses
- Lacks comparison group
- Cannot usually discern a temporal relationship between an exposure and disease
- Not useful for rare events
- May be subject to selection bias due to refusal, death, etc.
Early Leads from Descriptive Studies

<table>
<thead>
<tr>
<th>Clinical observation</th>
<th>Underlying association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatocellular carcinoma in young women</td>
<td>Exposure to high-dose oral contraceptives</td>
</tr>
<tr>
<td>Blindness in newborns</td>
<td>High ambient oxygen concentrations in incubators</td>
</tr>
<tr>
<td>Kaposi’s sarcoma in young men</td>
<td>Infection with HIV-1</td>
</tr>
<tr>
<td>Cataracts, heart defects, and deafness in newborns</td>
<td>Maternal infection with rubella during pregnancy</td>
</tr>
</tbody>
</table>
ANALYTIC STUDY DESIGNS
Validity in Epidemiologic Studies

- **Internal validity**: Does the study truly measure what it set out to measure?
 - **Bias**: Any systematic error (not random or by chance) in a study which leads to an incorrect estimate of the association between an exposure and disease (threat to internal validity)
 - **Chance**
 - **Confounding**

- **External validity**: Can results obtained using the study sample be generalized to a population?
Confounding

Exposure → Disease

Confounder

- Confounders are third variables that are associated with both the exposure and the disease.
- Confounders can distort the true association between disease and exposure.
ANALYTIC STUDY DESIGNS:
CASE-CONTROL STUDIES
Case Selection

- **Case definition**
 - e.g. lung cancer confirmed by biopsy

- **Prevalent vs. incident cases**
 - **Prevalent:**
 - No waiting
 - Risk factors may be more related to survival with disease than development (incidence) of disease
 - If many people die soon after diagnosis, may over-represent long term survivors

 - **Incident:**
 - Recruit new cases at time of disease occurrence
 - Better for making inference about association between risk factor and developing the disease
Control Selection

- Should be comparable to cases.
- Should have the potential to become cases (must be susceptible to the disease of interest)
- Possible control sources: population, neighborhood, friend, hospital
Odds ratio
= Odds of exposure among cases/Odds of exposure among controls
= \frac{ad}{bc}
Example: Alcohol Consumption and Laryngeal Cancer

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>160</td>
<td>90</td>
</tr>
<tr>
<td>No Alcohol</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Odds ratio = \(\frac{160 \times 110}{90 \times 40} = 4.89 \)

The odds of alcohol consumption are 4.89 times greater among those with laryngeal cancer than the odds of alcohol consumption among those without laryngeal cancer.
Matching

- A technique to reduce potential confounding
 - The process of selecting controls so that they are similar to cases on certain specific characteristics, such as age, race, gender
 - Cannot measure the effects of matching variables

- Group (frequency) vs. individual (matched pairs) matching
 - Group: Proportion of cases and controls with a matching characteristic is the same
 - Individual: For each case a control is selected who is identical to the case on matching characteristics
Bias in Case-control Studies

Selection bias: Systematic error due to differences in characteristics between those selected for a study and those not selected

Example: Hospitalized cases
Bias in Case-control Studies

Recall bias: Systematic error due to differences in accuracy or completeness of reporting of past events or experiences

Example: Mothers of children with birth defects
Case-control Study Summary

- **Advantages**
 - Rare diseases
 - Relatively smaller sample sizes
 - Cost/time effective

- **Disadvantages**
 - Can’t directly calculate incidence
 - Control selection is challenging
 - Subject to bias
ANALYTIC STUDY DESIGNS:
COHORT STUDIES
Cohort Study: General Design

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Disease</th>
<th>No Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>No Exposure</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

1. Subjects are defined on the basis of exposure status
2. Subjects are followed over time to assess disease development
Group Selection

Exposed

• Select a sample of the population
 – Good for relatively common exposures, such as cigarette smoking or coffee drinking

• Select based on special exposure
 – Individuals in certain occupations
 – Individuals who have undergone a particular medical process
 – Individuals living near a suspected environmental hazard

Unexposed

• Should be similar to the exposed group with respect to all factors that may be related to the disease except the exposure under investigation
Prospective vs. Retrospective Cohort Study Designs

10-year follow-up period

PROSPECTIVE
- 2004: Investigator begins the study
- Selection of exposed & unexposed participants
- Follow-up
- 2014: End of Follow Up

RETROSPECTIVE
- 1994: Investigator begins the study
- Follow-up
- 2004: End of Follow Up
Example: Retrospective Cohort Study

- From medical records, identify a group of women who were using OCPs 10 years ago and a group of women who were not using OCPs
- Interview the women or use medical records to determine their history of heart disease from the point of OCP use to the present
Main Threats to Validity in Cohort Studies

• **Differential loss to follow-up**
 – Example: Some participants given a new antibiotic might have such poor outcomes that they are unable to complete questionnaires or return for examination. Their disappearance would make the new antibiotic look better than it is.

• **Biased assessment of exposure and/or outcome**
 – Example: If the exposed group in an occupational setting has periodic health examinations, and rate of disease is compared with that of the general population, a biased estimated could result because of greater opportunity to have the disease diagnosed among the exposed.
Measures of Association: Cohort Study

Need to know the frequency of disease in the absence of exposure (baseline or background rate) to determine relative risk

- **Risk Ratio**
 - Ratio of the cumulative incidence among exposed to the cumulative incidence among unexposed, using count data

- **Rate Ratio**
 - Ratio of the incidence rate among exposed to the incidence rate among unexposed, using person-time data

- **Survival Analysis**
 - Compare time to disease diagnosis in exposed and unexposed
 - Life table analysis
 - Hazard Ratio

Indicate the likelihood of developing the disease in the exposed group relative to those who are not exposed.
Example: Risk of hip fracture among those with low BMD in 5 years of follow-up

<table>
<thead>
<tr>
<th>Low BMD</th>
<th>Hip Fracture</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>230</td>
<td>400</td>
<td></td>
<td>630</td>
</tr>
<tr>
<td>No</td>
<td>110</td>
<td>369</td>
<td></td>
<td>479</td>
</tr>
<tr>
<td>Total</td>
<td>340</td>
<td>769</td>
<td></td>
<td>1,109</td>
</tr>
</tbody>
</table>

Risk Ratio (Relative Risk) = CI_e / CI_u = (230/630) / (110/479) = 1.59

The risk of developing hip fractures was 1.59 times higher in those with low bone mineral density compared to those with normal bone mineral density during this 5-year follow-up study.
Cohort Studies Summary

Advantages

- Study new or rare exposures
- Maintain temporal sequence between exposure & outcome
- Directly calculate measures of risk, incidence rate, survival
- Assess the various effects of a particular exposure
- Avoid bias in the exposure measurement
- Better for studying natural history of disease following exposure

Disadvantages

- Likely to be large and expensive
- Inefficient for studying rare diseases
- Potentially long duration of follow-up for some outcomes
- Loss to follow up of subjects
- Must account for secular trends in technology, behaviors, etc.
- Exposures can change through study
- Difficult to measure confounding variables
Classification of Study Designs

Did investigator assign exposures?

Yes
- Experimental study
 - Random allocation?
 - Yes: Randomised controlled trial
 - No: Non-randomised controlled trial

No
- Observational study
 - Comparison group?
 - Yes: Analytical study
 - No: Descriptive study