General Description
This demonstration board utilizes the AL1676 Buck LED driver-converter with single winding inductor providing a cost effective non-dimmable solution for offline high brightness LED applications. This user-friendly evaluation board provides users with quick connection to their different types of LEDs string. The demonstration board can be modified to adjust the LED output current and the number of series connected LEDs that are driven. A BOM, schematic and layout are included that describes the parts used on this demonstration board, along with measured performance characteristics. These materials can be used as a reference design.

Key Features
- Non-Dimmable
- Single winding inductor
- High efficiency >88%
- Non-isolate buck LED driver

Applications
- Retrofit LED Lamps
- High Voltage DC-DC LED Driver
- General Purpose Constant Current Source

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input Voltage</td>
<td>100-265V</td>
</tr>
<tr>
<td>Output Power</td>
<td>8.6W</td>
</tr>
<tr>
<td>LED Current</td>
<td>120mA</td>
</tr>
<tr>
<td>LED Voltage</td>
<td>72V</td>
</tr>
<tr>
<td>Power Factor</td>
<td>>0.97(Vin=120V<sub>AC</sub>)</td>
</tr>
<tr>
<td></td>
<td>>0.92(Vin=230V<sub>AC</sub>)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>>88%</td>
</tr>
<tr>
<td>XYZ Dimension</td>
<td>45x 24 x 13mm</td>
</tr>
<tr>
<td>ROHS Compliance</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Evaluation Board

Figure 1: Top View

Figure 2: Bottom View

Connection Instructions:
AC-L Input: White – Hot
AC-N Input: White – Neutral
DC LED+ Output: LED+ (Red)
DC LED- Output: LED- (Black)
Quick Start Guide

1. Preset the isolated AC source to 120VAC/230VAC.
2. Ensure that the AC source is switched OFF or disconnected.
3. Connect the anode wire of the LED string to the LED+ terminal of the evaluation board.
4. Connect the cathode wire of the LED string to the LED- terminal of the evaluation board.
5. Connect two AC line wires to the AC-L and AC-N terminals on the evaluation board.
6. Ensure that the area around the board is clear and safe, and preferably that the board and LEDs are enclosed in a transparent safety cover.
7. Turn on the main switch. LED string should light up with LED.

Caution: The AL1676 is a non-isolated design. All terminals carry high voltage during operation!
Figure 5: Schematic Circuit

Transformer Design
Bobbin and Core
EE10 Vertical 4+4 pin

Transformer Parameters
1. Primary Inductance (Pin2-Pin5, all other windings open): \(L_p = 1.67 \text{mH}, \pm 5\% @ 1\text{kHz} \)
2. Primary Winding Turns (Pin2-Pin5): \(N_p = 257 \text{Ts} \)

Transformer Winding Construction Diagram

<table>
<thead>
<tr>
<th>Item</th>
<th>Winding name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WD1-Primary Winding</td>
<td>Start at Pin 2, Wind 257 turns of (\Phi 0.15 \text{mm}) wire and finish on Pin 5</td>
</tr>
<tr>
<td>2</td>
<td>Insulation</td>
<td>2 Layers of insulation tape</td>
</tr>
</tbody>
</table>
Bill of Material

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Description</th>
<th>Package</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>68nF/400V, CL21, Pitch=7.5mm</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
<td>150nF/400V, CL21, Pitch=7.5mm</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C3</td>
<td>Ceramic Cap, 0.33uF/25V,X7R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C4</td>
<td>Ceramic Cap, 1uF/25V,X7R</td>
<td>0805</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>C5</td>
<td>E-Cap, 130°C,100uF/100V,10*16mm</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>C6</td>
<td>NC</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>BD1</td>
<td>Rectifier Bridge,HD06,0.8A/600V,Diodes Inc</td>
<td>SOPA-4</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>D1</td>
<td>Fast Recovery Diode, RS1J, 1A/600V,Diodes Inc</td>
<td>SMA</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>VR1</td>
<td>Varistor, 07D431</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>RF1</td>
<td>Fuse Resistor,10R, 5%, 1W</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>R1</td>
<td>SMD Resistor,30K, 5%, 1/8W</td>
<td>0805</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>R2</td>
<td>SMD Resistor,180K, 5%, 1/4W</td>
<td>1206</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>R3</td>
<td>SMD Resistor,180K, 5%, 1/4W</td>
<td>1206</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>R4</td>
<td>SMD Resistor,3.0R, 1%, 1/8W</td>
<td>0805</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>R5</td>
<td>SMD Resistor,3.6R, 1%, 1/8W</td>
<td>0805</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>R6</td>
<td>SMD Resistor,47K, 5%, 1/8W</td>
<td>0805</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>R8</td>
<td>SMD Resistor,100K, 5%, 1/4W</td>
<td>1206</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>L1</td>
<td>Inductor 4.7mH, 6*8mm</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>T1</td>
<td>EE10, Vertical, 4+4 pin,Single Winding,1.67mH</td>
<td>DIP</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>U1</td>
<td>AL1676-10B, high PFC Buck IC, Diodes Inc</td>
<td>SOIC-7</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>PCB</td>
<td>FR4 Single layer, 45*24mm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 19
Electrical Performance

- **Efficiency vs Input Voltage**
- **ILED vs Input Voltage**
- **PF vs Input Voltage**
- **THD vs Input Voltage**

The graphs show the performance metrics of the AL1676EV1 LED driver under varying input voltages from 100 to 265VAC.
Functional Waveform

LED Current Ripple
(Vin=230V_{AC}, Ripple=58mA)

Start-up Time
(Vin=100V_{AC}, Start-up time=481mS)

IC V_{DRAIN} Waveform
(Vin=265V_{AC}, V_{DRAIN} MAX=400V)

Output Diode V_R Waveform
(Vin=265V_{AC}, V_R MAX=393V)

LED Open Protection
(Vin=230V_{AC}, Y-VCC, R-Drain, B-Vout, G-I_{LED})

LED Short Protection
(Vin=230V_{AC}, Y-VCC, R-Drain, B-Vout)
Thermal Test

- **Top**

 (Vin=230V\textsubscript{AC}, Burn-in time=30min)

- **Bottom**

 (Vin=230V\textsubscript{AC}, Burn-in time=30min)

EMI Conduction Test

- **Line Terminal**

 (Vin=120V\textsubscript{AC}, Margin>14dB)

- **Neutral Terminal**

 (Vin=120V\textsubscript{AC}, Margin>14dB)
Line Terminal
(Vin=230VAC, Margin>10dB)

- Frequency: 12.4388783 MHz
- Level: 23.76 dBµV

Neutral Terminal
(Vin=230VAC, Margin>10dB)

- Frequency: 15.4828691 MHz
- Level: 33.77 dBµV
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body, or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com