<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS2111</td>
<td>Technical English - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA2111</td>
<td>Mathematics - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH2111</td>
<td>Engineering Physics - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY2111</td>
<td>Engineering Chemistry - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE2111</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>GE2112</td>
<td>Fundamentals of Computing and Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE2115</td>
<td>Computer Practice Laboratory -I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>GE2116</td>
<td>Engineering Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>*</td>
<td>Physics & Chemistry Laboratory I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL : 26 CREDITS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Laboratory classes on alternate weeks for Physics and Chemistry. The lab examinations will be held only in the second semester (including the first semester experiments also).
AIM:
To encourage students to actively involve in participative learning of English and to help them acquire Communication Skills.

OBJECTIVES:
1. To help students develop listening skills for academic and professional purposes.
2. To help students acquire the ability to speak effectively in English in real-life situations.
3. To inculcate reading habit and to develop effective reading skills.
4. To help students improve their active and passive vocabulary.
5. To familiarize students with different rhetorical functions of scientific English.
6. To enable students write letters and reports effectively in formal and business situations.

UNIT I
12
General Vocabulary - changing words from one form to another - Adjectives, comparative adjectives – Adverbs - Active and passive voice – Tenses - simple present, present continuous - Adverb forms – Nouns – compound nouns - Skimming and scanning - Listening and transfer of information – bar chart, flowchart - Paragraph writing, description – Discussing as a group and making an oral report on the points discussed, conversation techniques - convincing others.

Suggested activities:
2. Changing sentences from active to passive voice & vice versa.
3. Skimming, cloze exercises, exercises transferring information from text to graphic form – bar charts, flow charts.
4. Writing descriptions using descriptive words & phrases, and technical vocabulary.
5. Role play, conversation exercises, discussions, oral reporting exercises
 Any other related relevant classroom activity.

UNIT II
12

Suggested Activities:
1. a. Vocabulary activities using prefixes and suffixes.
 b. Exercises using questions – asking & answering questions.
2. Scanning the text for specific information
3. Listening guided note-taking - Writing paragraphs using notes, giving suitable headings and subheadings for paragraphs. Using expressions of comparison and contrast.
4. Discussion activities and exploring creative ideas.
 Any other related relevant classroom activity
UNIT III

Suggested activities:
1. a. Providing appropriate context for the use of tenses
2. Listening and note-taking
3. (a) Writing sentence definitions, instructions
 (b) Identifying the discourse links and sequencing jumbled sentences / writing instructions.
4. Speaking exercises, discussions, role play exercises using explaining, convincing and persuasive strategies
 Any other related relevant classroom activity

UNIT IV
Modal verbs and Probability – Concord subject verb agreement – Correction of errors - Cause and effect expressions – Extended Definition - Speaking about the future plans.

Suggested activities:
1. a. Making sentences using modal verbs to express probability
 b. Gap filling using relevant grammatical form of words.
2. Writing extended definitions
3. Speaking - role play activities, discussions, extempore speaking exercises speculating about the future.
4. Any other related relevant classroom activity

UNIT V

Suggested activities:
1. a) Sentence completion exercises using ‘If’ conditionals.
 b) Gap filling exercises using gerunds and present participle forms
2. Reading comprehension exercises.
3. Role play, discussion, debating and speaking activities for stating, discussing problems and suggesting solutions.
4. Planning a tour, Writing a travel itinerary. Writing letters to officials and to the editor in formal/official contexts.
 Any other related relevant classroom activity

TOTAL: 60 PERIODS

TEXT BOOK:

REFERENCES:
EXTENSIVE READING:

NOTE:
The book given under Extensive Reading is meant for inculcating the reading habit of the students. They need not be used for testing purposes.

<table>
<thead>
<tr>
<th>MA2111</th>
<th>MATHEMATICS – I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

UNIT I MATRICES

UNIT II THREE DIMENSIONAL ANALYTICAL GEOMETRY

UNIT III DIFFERENTIAL CALCULUS
Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes – Evolute as envelope of normals.

UNIT IV FUNCTIONS OF SEVERAL VARIABLES

UNIT V MULTIPLE INTEGRALS
Double integration – Cartesian and polar coordinates – Change of order of integration – Change of variables between Cartesian and polar coordinates – Triple integration in Cartesian co-ordinates – Area as double integral – Volume as triple integral

TOTAL: 60 PERIODS

TEXT BOOK:
REFERENCES:

PH2111 ENGINEERING PHYSICS – I L T P C
3 0 0 3

UNIT I ULTRASONICS

UNIT II LASERS

UNIT III FIBER OPTICS & APPLICATIONS
Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – Double crucible technique of fibre drawing - Splicing, Loss in optical fibre – attenuation, dispersion, bending - Fibre optical communication system (Block diagram) - Light sources - Detectors - Fibre optic sensors – temperature & displacement - Endoscope.

UNIT IV QUANTUM PHYSICS
UNIT V CRYSTAL PHYSICS
Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – NaCl, ZnS, diamond and graphite structures – Polymorphism and allotropy - Crystal defects – point, line and surface defects- Burger vector.

TEXT BOOKS:

REFERENCES:

CY2111 ENGINEERING CHEMISTRY – I

AIM
To impart a sound knowledge on the principles of chemistry involving the different application oriented topics required for all engineering branches.

OBJECTIVES
- The student should be conversant with the principles water characterization and treatment of potable and industrial purposes.
- Principles of polymer chemistry and engineering applications of polymers
- Industrial applications of surface chemistry
- Conventional and non-conventional energy sources and energy storage devices and Chemistry of engineering materials

UNIT I WATER TECHNOLOGY
UNIT II POLYMERS AND COMPOSITES 9

UNIT III SURFACE CHEMISTRY 9

UNIT IV NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

UNIT V ENGINEERING MATERIALS 9

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
AIM
To develop graphic skills in students.

OBJECTIVES
To develop in students graphic skill for communication of concepts, ideas and design of engineering products and expose them to existing national standards related to technical drawings.

Concepts and conventions (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING
Curves used in engineering practices:
Conics – Construction of ellipse, Parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of squad and circle – Drawing of tangents and normal to the above curves.
Free hand sketching:
Representation of Three Dimensional objects – General principles of orthographic projection – Need for importance of multiple views and their placement – First angle projection – layout views – Developing visualization skills through free hand sketching of multiple views from pictorial views of objects.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES
Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – Projection of polygonal surface and circular lamina inclined to both reference planes.

UNIT III PROJECTION OF SOLIDS
Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method.

UNIT IV SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES
Sectioning of above solids in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other – Obtaining true shape of section.
Development of lateral surfaces of simple and truncated solids – Prisms, pyramids, cylinders and cones – Development of lateral surfaces of solids with cylindrical cutouts, perpendicular to the axis.

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS
Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones.
Perspective projection of prisms, pyramids and cylinders by visual ray method.
TEXT BOOKS:

REFERENCES:

Publication of Bureau of Indian Standards:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. Whenever the total number of candidates in a college exceeds 150, the University Examination in that college will be conducted in two sessions (FN and AN on the same day) for 50 percent of student (approx) at a time.
GE2112 FUNDAMENTALS OF COMPUTING AND PROGRAMMING L T P C
 3 0 0 3

AIM :
To provide an awareness to Computing and Programming

OBJECTIVES :
• To enable the student to learn the major components of a computer system
• To know the correct and efficient ways of solving problems
• To learn to use office automation tools
• To learn to program in C

UNIT I INTRODUCTION TO COMPUTERS
Generations – Classification of Computers – Basic Computer organization – Number
Systems

UNIT II COMPUTER SOFTWARE
Computer Software –Types of Software – Software Development Steps – Internet
Evolution - Basic Internet Terminology – Getting connected to Internet Applications.

UNIT III PROBLEM SOLVING AND OFFICE APPLICATION SOFTWARE
Planning the Computer Program – Purpose – Algorithm – Flow Charts – Pseudocode -
Application Software Packages- Introduction to Office Packages (not detailed commands
for examination).

UNIT IV INTRODUCTION TO C
Overview of C – Constants, Variables and Data Types – Operators and Expressions –
Managing Input and Output operators – Decision Making - Branching and Looping.

UNIT V FUNCTIONS AND POINTERS
Handling of Character Strings – User-defined Functions – Definitions – Declarations -
Call by reference – Call by value – Structures and Unions – Pointers – Arrays – The
Preprocessor – Developing a C Program : Some Guidelines

TOTAL: 45 PERIODS

TEXT BOOKS:

REFERENCES:
 (2005).
LIST OF EXERCISES

a) Word Processing
1. Document creation, Text manipulation with Scientific notations.
2. Table creation, Table formatting and Conversion.
4. Drawing - flow Chart

b) Spread Sheet
5. Chart - Line, XY, Bar and Pie.
6. Formula - formula editor.
7. Spread sheet - inclusion of object, Picture and graphics, protecting the document and sheet.
8. Sorting and Import / Export features.

Simple C Programming *
10. Arrays
11. Structures and Unions
12. Functions

TOTAL: 45 PERIODS

* For programming exercises Flow chart and pseudocode are essential

HARDWARE / SOFTWARE REQUIRED FOR A BATCH OF 30 STUDENTS

Hardware
- LAN System with 33 nodes (OR) Standalone PCs – 33 Nos.
- Printers – 3 Nos.

Software
- OS – Windows / UNIX Clone
- Application Package – Office suite
- Compiler – C
OBJECTIVES
To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.

GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:
 Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.
(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:
 Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:
(a) Preparation of arc welding of butt joints, lap joints and tee joints.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays, funnels, etc.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and vee – fitting models.
GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE 10
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE 13
1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EOR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 45 PERIODS

REFERENCES:

SEMESTER EXAMINATION PATTERN

The Laboratory examination is to be conducted for Group A & Group B, allotting 90 minutes for each group, with a break of 15 minutes. Both the examinations are to be taken together in sequence, either in the FN session or in the AN session. The maximum marks for Group A and Group B lab examinations will be 50 each, totaling 100 for the Lab course. The candidates shall answer either I or II under Group A and either III or IV under Group B, based on lots.
Engineering Practices Laboratory

List of equipment and components

(For a Batch of 30 Students)

CIVIL

1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos

MECHANICAL

1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL

1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
 (b) Digital Live-wire detector 2 Nos

ELECTRONICS

1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply
PHYSICS LABORATORY – I

LIST OF EXPERIMENTS

1. (a) Particle size determination using Diode Laser
 (b) Determination of Laser parameters – Wavelength, and angle of divergence.
 (c) Determination of acceptance angle in an optical fiber.
2. Determination of thickness of a thin wire – Air wedge method
6. Determination of Hysteresis loss in a ferromagnetic material

• A minimum of FIVE experiments shall be offered.
• Laboratory classes on alternate weeks for Physics and Chemistry.
• The lab examinations will be held only in the second semester.

CHEMISTRY LABORATORY – I

LIST OF EXPERIMENTS

1. Estimation of hardness of Water by EDTA
2. Estimation of Copper in brass by EDTA
3. Determination of DO in water (Winkler’s method)
4. Estimation of Chloride in Water sample (Argentometric)
5. Estimation of alkalinity of Water sample
6. Determination of molecular weight and degree of polymerization using viscometry.

• A minimum of FIVE experiments shall be offered.
• Laboratory classes on alternate weeks for Physics and Chemistry.
• The lab examinations will be held only in the second semester.