Diesel engine system design

Qianfan Xin
2.2 System design of engine performance, loading, and durability 115
2.3 The relationship between durability and reliability 119
2.4 Engine durability testing 120
2.5 Accelerated durability and reliability testing 122
2.6 Engine component structural design and analysis 123
2.7 System durability analysis in engine system design 123
2.8 Fundamentals of thermo-mechanical failures 125
2.9 Diesel engine thermo-mechanical failures 143
2.10 Heavy-duty diesel engine cylinder liner cavitation 160
2.11 Diesel engine wear 163
2.12 Exhaust gas recirculation (EGR) cooler durability 172
2.13 Diesel engine system reliability 177
2.14 References and bibliography 192

3 Optimization techniques in diesel engine system design 203
3.1 Overview of system optimization theory 203
3.2 Response surface methodology (RSM) 230
3.3 Advanced design of experiments (DoE) optimization in engine system design 257
3.4 Optimization of robust design for variability and reliability 266
3.5 References and bibliography 293

Part II Engine thermodynamic cycle and vehicle
powertrain performance and emissions in diesel engine system design

4 Fundamentals of dynamic and static diesel engine system designs 299
4.1 Introduction to diesel engine performance characteristics 299
4.2 Theoretical formulae of in-cylinder thermodynamic cycle process 305
4.3 Engine manifold filling dynamics and dynamic engine system design 316
4.4 Mathematical formulation of static engine system design 319
4.5 Steady-state model tuning in engine cycle simulation 337
4.6 References and bibliography 343

5 Engine–vehicle matching analysis in diesel powertrain system design 348
5.1 The theory of vehicle performance analysis 348

© Woodhead Publishing Limited, 2011
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Engine–vehicle steady-state matching in engine firing operation</td>
<td>355</td>
</tr>
<tr>
<td>5.3</td>
<td>Powertrain/drivetrain dynamics and transient performance simulation</td>
<td>368</td>
</tr>
<tr>
<td>5.4</td>
<td>Optimization of engine–vehicle powertrain performance</td>
<td>382</td>
</tr>
<tr>
<td>5.5</td>
<td>Hybrid powertrain performance analysis</td>
<td>383</td>
</tr>
<tr>
<td>5.6</td>
<td>References and bibliography</td>
<td>387</td>
</tr>
<tr>
<td>6</td>
<td>Engine brake performance in diesel engine system design</td>
<td>395</td>
</tr>
<tr>
<td>6.1</td>
<td>Engine–vehicle powertrain matching in engine braking operation</td>
<td>395</td>
</tr>
<tr>
<td>6.2</td>
<td>Drivetrain retarders</td>
<td>422</td>
</tr>
<tr>
<td>6.3</td>
<td>Exhaust brake performance analysis</td>
<td>424</td>
</tr>
<tr>
<td>6.4</td>
<td>Compression-release engine brake performance analysis</td>
<td>433</td>
</tr>
<tr>
<td>6.5</td>
<td>References and bibliography</td>
<td>458</td>
</tr>
<tr>
<td>7</td>
<td>Combustion, emissions, and calibration for diesel engine system design</td>
<td>462</td>
</tr>
<tr>
<td>7.1</td>
<td>The process from power and emissions requirements to system design</td>
<td>462</td>
</tr>
<tr>
<td>7.2</td>
<td>Combustion and emissions development</td>
<td>463</td>
</tr>
<tr>
<td>7.3</td>
<td>Engine calibration optimization</td>
<td>480</td>
</tr>
<tr>
<td>7.4</td>
<td>Emissions modeling</td>
<td>482</td>
</tr>
<tr>
<td>7.5</td>
<td>References and bibliography</td>
<td>490</td>
</tr>
<tr>
<td>8</td>
<td>Diesel aftertreatment integration and matching</td>
<td>503</td>
</tr>
<tr>
<td>8.1</td>
<td>Overview of aftertreatment requirements on engine system design</td>
<td>503</td>
</tr>
<tr>
<td>8.2</td>
<td>Diesel particulate filter (DPF) regeneration requirements for engine system design</td>
<td>512</td>
</tr>
<tr>
<td>8.3</td>
<td>Analytical approach of engine–aftertreatment integration</td>
<td>515</td>
</tr>
<tr>
<td>8.4</td>
<td>References and bibliography</td>
<td>518</td>
</tr>
<tr>
<td>Part III</td>
<td>Dynamics, friction, and noise, vibration and harshness (NVH) in diesel engine system design</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Advanced diesel valvetrain system design</td>
<td>529</td>
</tr>
<tr>
<td>9.1</td>
<td>Guidelines for valvetrain design</td>
<td>529</td>
</tr>
<tr>
<td>9.2</td>
<td>Effect of valve timing on engine performance</td>
<td>550</td>
</tr>
<tr>
<td>9.3</td>
<td>Valvetrain dynamic analysis</td>
<td>557</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2011
Contents

Chapter 9: Cam and Engine Valvetrain System Design
9.1 Cam profile design
9.2 Valve spring design
9.3 Analytical valvetrain system design and optimization
9.4 Variable valve actuation (VVA) engine performance
9.5 Variable valve actuation (VVA) for diesel homogeneous charge compression ignition (HCCI)
9.6 Cylinder deactivation performance
9.7 References and bibliography

Chapter 10: Friction and Lubrication in Diesel Engine System Design
10.1 Objectives of engine friction analysis in system design
10.2 Overview of engine tribology fundamentals
10.3 Overall engine friction characteristics
10.4 Piston-assembly lubrication dynamics
10.5 Piston ring lubrication dynamics
10.6 Engine bearing lubrication dynamics
10.7 Valvetrain lubrication and friction
10.8 Engine friction models for system design
10.9 References and bibliography

Chapter 11: Noise, Vibration, and Harshness (NVH) in Diesel Engine System Design
11.1 Overview of noise, vibration, and harshness (NVH) fundamentals
11.2 Vehicle and powertrain noise, vibration, and harshness (NVH)
11.3 Diesel engine noise, vibration, and harshness (NVH)
11.4 Combustion noise
11.5 Piston slap noise and piston-assembly dynamics
11.6 Valvetrain noise
11.7 Geartrain noise
11.8 Cranktrain and engine block noises
11.9 Auxiliary noise
11.10 Aerodynamic noises
11.11 Engine brake noise
11.12 Diesel engine system design models of noise, vibration, and harshness (NVH)
11.13 References and bibliography

© Woodhead Publishing Limited, 2011
Part IV Heat rejection, air system, engine controls, and system integration in diesel engine system design

12 Diesel engine heat rejection and cooling 825
12.1 Engine energy balance analysis 825
12.2 Engine miscellaneous energy losses 831
12.3 Characteristics of base engine coolant heat rejection 837
12.4 Cooling system design calculations 840
12.5 Engine warm-up analysis 853
12.6 Waste heat recovery and availability analysis 853
12.7 References and bibliography 854

13 Diesel engine air system design 860
13.1 Objectives of engine air system design 860
13.2 Overview of low-emissions design and air system requirements 862
13.3 Exhaust gas recirculation (EGR) system configurations 865
13.4 Turbocharger configurations and matching 871
13.5 Exhaust manifold design for turbocharged engines 883
13.6 The principle of pumping loss control for turbocharged exhaust gas recirculation (EGR) engines 885
13.7 Turbocompounding 892
13.8 Thermodynamic second law analysis of engine system 892
13.9 References and bibliography 899

14 Diesel engine system dynamics, transient performance, and electronic controls 909
14.1 Overview of diesel engine transient performance and controls 909
14.2 Turbocharged diesel engine transient performance 913
14.3 Mean-value models in model-based controls 914
14.4 Crank-angle-resolution real-time models in model-based controls 915
14.5 Air path model-based controls 915
14.6 Fuel path control and diesel engine governors 919
14.7 Torque-based controls 920
14.8 Powertrain dynamics and transient controls 921
14.9 Sensor dynamics and model-based virtual sensors 923
14.10 On-board diagnostics (OBD) and fault diagnostics 927
14.11 Engine controller design 927
14.12 Software-in-the-loop (SIL) and hardware-in-the-loop (HIL) 928
Contents

14.13 Cylinder-pressure-based controls 928
14.14 Homogeneous charge compression ignition (HCCI) controls 928
14.15 References and bibliography 928

15 Diesel engine system specification design and subsystem interaction 941
15.1 The process of system design analysis 941
15.2 Roadmap of fuel economy improvement 943
15.3 Critical mode design at various ambient conditions 946
15.4 Subsystem interaction and optimization 954
15.5 References and bibliography 969

16 Concluding remarks and outlook for diesel engine system design 976

Appendix: Statistics summary for probability analysis 983

Index 989