A Message from the New Jersey American Water President

To Our Valued Customer:

New Jersey American Water is proud to be your local water service provider, and I am pleased to share some very good news about the quality of your drinking water. As you read through our Annual Water Quality Report, you will see that we continue to supply water that meets or surpasses all state and federal water quality standards. **Better yet, the price you pay for this high-quality water service remains less than a penny per gallon.**

New Jersey American Water has experienced professionals, the right technologies in use, and a demonstrated commitment to replacing and upgrading our infrastructure so that you can be assured that your drinking water is of the highest standards.

Please take the time to review this report. It provides details about the source and quality of your drinking water using the data from water quality testing conducted for your local system between January and December 2015.

Sincerely,

William M. Varley
President, New Jersey American Water

This report contains important information about your drinking water. If you do not understand it, please have someone translate it for you.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

이 보고서에는 귀하의 식수에 관한 중요한 정보가 포함되어 있습니다. 이해가 어려우시면 누군가를 범역해 주십시오.

Our Commitment to Quality

Once again we proudly present our annual water quality report which details the results of water quality testing completed from January to December 2015. The purpose of this report is to raise your understanding of drinking water and awareness of the need to protect our drinking water sources. Included in this report are details about where your water comes from, what it contains, and how our water quality results compare to federal and state standards.

We are pleased to tell you that we had no Safe Drinking Water Act violations again in 2015. We are committed to delivering the best quality drinking water. To that end, we remain vigilant in meeting the challenges of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

We want you to be informed about your drinking water. For more information about this report, or for any questions relating to your drinking water, please contact our 24-hour Customer Call Center toll-free at 1-800-272-1325.
Share This Report:
Landlords, businesses, schools, hospitals and other groups are encouraged to share this important water quality information with water users at their location who are not customers. Additional copies of this report are available by contacting customer service at 1-800-272-1325.

About New Jersey American Water
New Jersey American Water, a subsidiary of American Water (NYSE: AWK), is the largest investor-owned water utility in the state, providing high-quality and reliable water and/or wastewater services to approximately 2.7 million people.

About American Water
American Water is the largest and most geographically diverse publicly traded U.S. water and wastewater utility company. Marking its 130th anniversary this year, the company employs 6,700 dedicated professionals who provide regulated and market-based drinking water, wastewater and other related services to an estimated 15 million people in 47 states and Ontario, Canada. More information can be found by visiting www.amwater.com.

How to Contact Us
Thank you… for allowing us to continue to provide your family with quality drinking water this year. We ask that all our customers protect our water sources. Please call our Customer Call Center toll-free at 1-800-272-1325 if you have questions:

New Jersey American Water
131 Woodcrest Road
P.O. Box 5079
Cherry Hill, NJ 08034
www.amwater.com

Water Information Sources
New Jersey Department of Environmental Protection,
Bureau of Safe Drinking Water:
(609) 292-5550 • www.state.nj.us/dep

New Jersey Board of Public Utilities:
(973) 648-2350 • Two Gateway Center, Newark, NJ 07102
Division of Customer Relations:
1-800-624-0241 • www.state.nj.us/bpu

US Environmental Protection Agency:
www.epa.gov/safewater

Safe Drinking Water Hotline: 1-800-426-4791
American Water Works Association: www.awwa.org
Centers for Disease Control and Prevention: www.cdc.gov

Public Participation
How You Can Get Involved
Customers can participate in decisions that may affect the quality of water by:

- Reading the information provided in bill inserts and special mailings
- Contacting the company directly with questions or to discuss issues
- Responding to company requests for participation in focus groups and roundtables
- Attending open houses conducted by the company
- Responding to survey requests

Where Your Water Comes From
Protecting Your Water Source
Atlantic Division - PWSID # 0119002
New Jersey American Water - Atlantic Division is a public community water system consisting of 24 wells and 1 purchased surface water supply from Atlantic City Municipal Utilities Authority.

This system’s source water comes from Atlantic City “800-foot” sand aquifer, Kirkwood-Cohansey water-table aquifer system.

What is S.W.A.P.

SWAP (Source Water Assessment Program) is a program of the New Jersey Department of Environmental Protection (NJDEP) to study existing and potential threats to the quality of public drinking water sources throughout the state. Sources are rated depending upon their contaminant susceptibility.

Susceptibility Ratings for New Jersey American Water — AWM Country Oaks

The table below illustrates the susceptibility ratings for the seven contaminant categories (and radon) for each source in the system. The table provides the number of wells and intakes that rated high (H), medium (M), or low (L) for each contaminant category. For susceptibility ratings of purchased water, refer to the specific water system’s source water assessment report. Source Water Assessment Reports and Summaries are available for public water systems at www.state.nj.us/dep/swap/ or by contacting the NJDEP’s Bureau of Safe Drinking Water at (609) 292-5550.

Contaminant Categories
DEP considered all surface water highly susceptible to pathogens, therefore all intakes received a high rating for the pathogen category. For the purpose of the Source Water Assessment Program, radionuclides are more of a concern for ground water than surface water. As a result, surface water...
intakes’ susceptibility to radionuclides was not determined and a low rating was assigned.

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

As a result of the assessments, DEP may customize (change existing) monitoring schedules based on the susceptibility ratings.

Source water protection is a long-term dedication to clean and safe drinking water. It is more cost effective to prevent contamination than to address contamination after the fact. Every member of the community has an important role in source water protection. NJDEP recommends controlling activities and development around drinking water sources whether it is through land acquisition, conservation easements or hazardous waste collection programs. We will continue to keep you informed of SWAP’s progress and developments.

Susceptibility Chart Definitions

Pathogens: Disease-causing organisms such as bacteria and viruses. Common sources are animal and human fecal wastes.

Nutrients: Compounds, minerals and elements that aid growth, that are both naturally occurring and man-made. Examples include nitrogen and phosphorus.

Volatile Organic Compounds: Man-made chemicals used as solvents, degreasers, and gasoline components. Examples include benzene, methyl tertiary butyl ether (MTBE), and vinyl chloride.

Pesticides: Man-made chemicals used to control pests, weeds and fungus. Common sources include land application and manufacturing centers of pesticides. Examples include herbicides such as atrazine, and insecticides such as chlordane.

Inorganics: Mineral-based compounds that are both naturally occurring and man-made. Examples include arsenic, asbestos, copper, lead, and nitrate.

Radionuclides: Radioactive substances that are both naturally occurring and man-made. Examples include radium and uranium.

Radon: Colorless, odorless, cancer-causing gas that occurs naturally in the environment. For more information go to http://www.nj.gov/dep/rpp/radon/index.htm or call (800) 648-0394.

Disinfection By-product Precursors: A common source is naturally occurring organic matter in surface water. Disinfection by-products are formed when the disinfectants (usually chlorine) used to kill pathogens react with dissolved organic material (for example leaves) present in surface water.

Our Water Research Efforts

Cryptosporidium is a protozoan found in surface water throughout the U.S. Although filtration removes *Cryptosporidium*, the most commonly used filtration methods cannot guarantee 100 percent removal. Ingestion of *Cryptosporidium* may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal-cramps. Most healthy individuals can overcome the disease within a few weeks. However, people with severely weakened immune systems have a risk of developing a life-threatening illness. We encourage such people to consult their doctors regarding appropriate precautions to take to avoid infection.

Cryptosporidium must be ingested to cause disease. It can also be spread through means other than drinking water. Researchers with American Water have developed a new, more accurate test for *Cryptosporidium* in water. For additional information regarding cryptosporidiosis and how it may impact those with weakened immune systems, please contact our customer service center at 1-800-272-1325 or speak with your personal health care provider.

Lead Education Statement

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. New Jersey American Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can...
minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

What’s in the Source Water Before We Treat It?

In general, the sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from the presence of animals or from human activities.

Substances That May Be Present in Source Water Include:

- Microbiological Contaminants: such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations or wildlife.
- Inorganic Contaminants: such as salts and metals which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and Herbicides: which may come from a variety of sources such as agriculture, urban storm water runoff and residential uses.
- Organic Chemical Contaminants: including synthetic and volatile organic chemicals which are by-products of industrial processes and petroleum production, and may also come from gas stations, urban storm water runoff and septic systems.
- Radioactive Contaminants: which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the EPA’s Safe Drinking Water Hotline at 1-800-426-4791.

What is Radon?

Radon is a radioactive gas that occurs naturally in some groundwater. It may pose a health risk when the gas is released from water into air, as occurs while showering, washing dishes and performing other household activities. Radon can move up through the ground and into a home through cracks in the foundation. Compared to radon entering the home through soil, radon entering through tap water is, in most cases, a small source of radon in indoor air.

Inhalation of radon gas has been linked to lung cancer, however the effects of radon ingested in drinking water are not yet clear. If you are concerned about radon in your home, tests are available to determine the total exposure level.

During testing in 2015, our water showed radon levels ranging from ND to 137 pCi/L in the Atlantic County System. The EPA is developing regulations to reduce radon in drinking water. Radon in the air is inexpensive to test and easy to correct. For additional information, call the EPA’s Radon Hotline at 1-800-SOS-RADON.

Do I Need to Take Special Precautions?

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline at 1-800-426-4791.
How Do I Read the Table of Detected Contaminants?

First, determine which table you should read by finding your town in the Towns Served by this System. Starting with the Contaminant, read across from left to right. A “Yes” under Compliance Achieved means the amount of the substance met government requirements. The column marked MCLG, Maximum Contaminant Level Goal, is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. The shaded column marked MCL, Maximum Contaminant Level, is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. The column marked Range Detected shows the highest and lowest test results for the year. The column marked Highest Level Detected shows the highest test results during the year. Typical Source shows where this substance usually originates. Compare the Range Detected values with the MCL column. To be in compliance, the Highest Level Detected must be lower than the MCL standard. Those substances not listed in the table were not found in the treated water supply.

As you can see from the table, our system had no MCL violations again this year. The footnotes and the definitions below will help you interpret the data presented in the Table of Detected Contaminants.

Table Definitions

90th Percentile Value: Of the samples taken, 90% of the values of the results were below the level indicated in the table.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

NA: Not applicable

ND (None Detected): Laboratory analysis indicates that the constituent is not present.

ppb (Parts per Billion): Corresponds to one part substance in one billion parts of water.

ppm (Parts per Million): Corresponds to one part substance in one million parts of water.

pCi/L (Picocuries per Liter): A measure of the radioactivity in water.

RUL: Recommended upper limit

Water Quality Statement

The data presented in the Table of Detected Contaminants is the same data collected to comply with U.S. Environmental Protection Agency and New Jersey state monitoring and testing requirements. We have learned through our testing that some contaminants have been detected, however, these contaminants were detected well below the levels set by the EPA to protect public health. To assure high quality water, individual water samples are taken each year for chemical, physical and microbiological tests. Tests are done on water taken at the source, from the distribution system after treatment and, for lead and copper monitoring, from the customer’s tap. Testing can pinpoint a potential problem so that preventative action may be taken. The Safe Drinking Water Act regulations allow monitoring waivers to reduce or eliminate the monitoring requirements for asbestos, volatile organic chemicals, and synthetic organic chemicals. Our system has received monitoring waivers for synthetic organic chemicals and asbestos.
Vulnerable Populations Statement

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial pathogens are available from the Safe Drinking Water Hotline (1-800-426-4791).

Atlantic County - PWS ID#NJ0119002

Table of Detected Contaminants - 2015

Towns Served By This System: Absecon | Egg Harbor Township | Galloway Township | Linwood | Northfield | Pleasantville | Pomona | Smithville | Somers Point | Wrangleboro

Those substances not listed in this table were not found in the treated water supply.

Regulated Substances

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium (2014)1</td>
<td>ppm</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>ND to 0.2</td>
<td>0.2</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Chromium (2014)1</td>
<td>ppb</td>
<td>Yes</td>
<td>100</td>
<td>100</td>
<td>ND to 7.3</td>
<td>7</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (2014)1</td>
<td>ppm</td>
<td>Yes</td>
<td>4</td>
<td>4</td>
<td>ND to 0.16</td>
<td>0.16</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Mercury (2014)1</td>
<td>ppb</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>ND to 0.5</td>
<td>0.5</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nickel (2014)1</td>
<td>ppb</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
<td>ND to 7</td>
<td>7</td>
<td>Nickel occurs naturally in soils, ground water and surface waters and is often used in electroplating, stainless steel and alloy products.</td>
</tr>
<tr>
<td>Nitrate</td>
<td>ppm</td>
<td>Yes</td>
<td>10</td>
<td>10</td>
<td>ND to 3.38</td>
<td>3.38</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Treatment By-Products Stage-2

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>ppb</td>
<td>Yes</td>
<td>NA</td>
<td>80</td>
<td>2.9 to 49</td>
<td>281</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Haloacetic Acids (THAA5)</td>
<td>ppb</td>
<td>Yes</td>
<td>NA</td>
<td>60</td>
<td>ND to 11</td>
<td>71</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>

Volatile Organic Chemicals

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl-tert-butyl-ether (MTBE)</td>
<td>ppb</td>
<td>Yes</td>
<td>70</td>
<td>70</td>
<td>ND to 16.2</td>
<td>16.2</td>
<td>Leaking underground gasoline and fuel oil tanks, gasoline and fuel oil spills</td>
</tr>
</tbody>
</table>

Disinfectants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Compliance Achieved</th>
<th>MCLG</th>
<th>MCL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>Yes</td>
<td>MRDLG = 4</td>
<td>MRDL = 4</td>
<td>0.66 to 0.77</td>
<td>0.731</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Tap water samples were collected from 50 homes in the service area

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Action Level</th>
<th>MCLG</th>
<th>Amount Detected (90th Percentile)</th>
<th>Homes Above Action Level</th>
<th>Compliance Achieved</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (2014)1</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
<td>0.354</td>
<td>1</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead (2014)1</td>
<td>ppb</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>None</td>
<td>Yes</td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>

Secondary Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>Secondary RUL</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Typical Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppm</td>
<td>0.2</td>
<td>ND to 0.44</td>
<td>0.44</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Iron</td>
<td>ppm</td>
<td>0.3</td>
<td>ND to 0.40</td>
<td>0.401</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppm</td>
<td>0.05</td>
<td>0.016 to 0.026</td>
<td>0.0261</td>
<td>Naturally occurring</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>50</td>
<td>34.8 to 74.1</td>
<td>74.11</td>
<td>Naturally occurring</td>
</tr>
</tbody>
</table>
Unregulated Contaminant Monitoring Rule

New Jersey American Water participated in the Unregulated Contaminant Monitoring Rule. Unregulated contaminants are those for which the EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether regulation is warranted. For testing conducted in the Atlantic County System, the following substances were found.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Units</th>
<th>NJDEP Guidance Level</th>
<th>Range Detected</th>
<th>Highest Level Detected</th>
<th>Use or Environmental Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorate</td>
<td>ppb</td>
<td>NA</td>
<td>ND to 470</td>
<td>470</td>
<td>Agricultural defoliant or desiccant; disinfection byproduct; and used in production of chlorine dioxide.</td>
</tr>
<tr>
<td>Hexavalent Chromium</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.26</td>
<td>0.26</td>
<td>Naturally-occurring element; used in making steel and other alloys; chromium-3 or -6 forms are used for chrome plating, dyes and pigments, leather tanning, and wood preservation</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 8.1</td>
<td>8.1</td>
<td>Naturally-occurring element found in the earth’s crust and at low concentrations in seawater, and in some surface and ground water; cobaltous chloride was formerly used in medicine and as a germicide</td>
</tr>
<tr>
<td>Strontium</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 108.9</td>
<td>108.9</td>
<td>Naturally occurring element; commercial use of strontium has been in the faceplate glass of cathode-ray tube televisions to block x-ray emissions.</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.6</td>
<td>0.6</td>
<td>Naturally-occurring elemental metal; used as vanadium pentoxide which is a chemical intermediate and a catalyst</td>
</tr>
<tr>
<td>1,1 Dichloroethane</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.31</td>
<td>0.31</td>
<td>Halogenated alkane; used as a solvent</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.36</td>
<td>0.36</td>
<td>Used as a solvent in manufacturing and processing of paper, cotton, textile products, automotive coolant, cosmetics and shampoos.</td>
</tr>
</tbody>
</table>

1 The State of New Jersey allows us to monitor for certain contaminants less than once a year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative, are more than one year old.

2 This level represents the highest annual quarterly Locational Running Average calculated from the data collected.

3 This level represents the highest annual quarterly average calculated from the data collected.

4 The recommended upper limit for iron is based on unpleasant taste of the water and staining of the laundry. Iron is an essential nutrient, but some people who drink water with iron well above the recommended upper limit could develop deposits of iron in a number of organs of the body.

5 The recommended upper limit for manganese is based on staining of laundry. Manganese is an essential nutrient, and toxicity is not expected from levels which would be encountered in drinking water.

6 For healthy individuals, the sodium intake from water is not important because a much greater intake of sodium takes place from salt in the diet. However, sodium levels above the recommended upper limit may be of concern to individuals on a sodium restricted diet.