MAHATMA GANDHI UNIVERSITY

PRIYADARSINI HILLS
KOTTAYAM-686560

RESTRUCTURED SYLLABUS FOR POST-GRADUATE PROGRAMME UNDER CREDIT SEMESTER SYSTEM

IN

MATHEMATICS

(w.e.f 2012 Admission onwards)

MAHATMA GANDHI UNIVERSITY
KOTTAYAM
The present time is experiencing unprecedented progress in the field of Science and technology in which mathematics is playing a vital role; and so the curriculum and syllabi of any academic programme has to be systematically subjected to thorough revision so as to make them more relevant and significant.

Mahatama Gandhi University, in line with the proposals put forward by the University Grants Commission, has already brought about quality improvement in the Under Graduate Programmes by introducing the Choice Based Credit Semester and Grading System.

The University is also committed to prepare a comprehensive plan of action for introducing the CBCSS in the Post Graduate programmes as well. Various workshops with the participation of the teachers from affiliated colleges and inviting experts from other Universities were conducted at various institutions. The syllabus and curriculum we present here is the follow-up of such workshops.

We gratefully acknowledge the assistance and guidance received from the University and all those who have contributed in different ways in this venture.

It is recommended that the content of this syllabus be reviewed and adapted in the light of the consultative process, as well as during its application in future curriculum revision initiatives, and also the syllabus and curriculum be revised periodically.

I hope this restructured syllabus and curriculum would enrich the students.

Prof. Alexander K Samuel
Chairman Board of Studies (PG)
MASTER DEGREE PROGRAMME IN MATHEMATICS
Restructured under credit semester system

BOARD OF STUDIES
Mathematics (PG)
Mahatma Gandhi University
Kottayam

1. Prof. Alexander K Samuel, Principal,
 St. Thomas College, Kozhenchery (Chairman)

2. Prof. D. Salim Kumar, Associate Professor,
 Dept. of Mathematics, S.N.M College, Maliankara

3. Prof. J. Chandramohan, Associate Professor and Head,
 Dept. of Mathematics, St. Thomas College, Pala

4. Prof. B. Rema, Associate Professor and Head,
 Dept. of Mathematics, D.B. College, Thalayolaparampu

5. Prof. K.V. Neelakanda Sharma, Associate Professor and Head,
 Dept. of Mathematics, St. Paul’s College, Kalamassery.

6. Prof. V.N. Ramachandran Pillai, Associate Professor,
 Dept. of Mathematics, N.S.S. Hindu College, Changanassery.

7. Prof. P.V. Mathai, Associate Professor,
 Dept. of Mathematics, Maharaja’s College, Ernakulam.

8. Prof. P. Rajasekharan Pillai, Associate Professor,
 Dept. of Mathematics, D.B. Pampa College, Parumala

9. Prof. M.G. Mohanan Nair, Associate Professor,
 Dept. of Mathematics, S.V.R.N.S.S College, Vazhoor

10. Dr. C. Jayasri, Associate Professor,
 Dept. of Mathematics, University of Kerala, Kariavattom

11. Dr. P.T. Ramachandran, Associate Professor,
 Dept. of Mathematics, Calicut University, Calicut

External Expert: Dr. Sunny Kuriakose, Principal,
B.P.C College, Piravom.
1. SHORT TITLE

1.1. These Regulations shall be called Mahatma Gandhi University Regulations (2011) governing Post Graduate Programmes under the Credit Semester System (MGU-CSS-PG)

1.2 These Regulations shall come into force from the Academic Year 2012-2013 onwards.

2. SCOPE

2.1 The regulation provided herein shall apply to all regular post-graduate programmes, MA/MSc/MCom, conducted by the affiliated colleges/Institutions (Government/ Aided/unaided/ Self-financing, and Constituent colleges of Mahatma Gandhi University with effect from the academic year 2012-2013 admission onwards.

2.2 The provisions here in supersede all the existing regulations for the regular post-graduate programmes conducted by the affiliated colleges and centres of the Mahatma Gandhi University unless otherwise specified.

2.3 These shall not apply for the programme conducted in distance/ off campus and private registration mode which will continue to be in annual scheme.

3. DEFINITIONS

3.1 ‘University’ means Mahatma Gandhi University, Kottayam, Kerala

3.2 ‘Academic Committee’ means the Committee constituted by the Vice-Chancellor under this regulation to monitor the running of the Post-Graduate programmes under the Credit Semester System (MGU-CSS-PG)

3.3 ‘Programme’ means the entire course of study and Examinations.

3.4 ‘Duration of Programme’ means the period of time required for the conduct of the programme. The duration of post-graduate programme shall be of 4 semesters.

3.5 ‘Semester’ means a term consisting of a minimum of 90 working days, inclusive of examination, distributed over a minimum of 18 weeks of 5 working days each.

3.5(a) ‘Academic Week’ is a unit of 5 working days in which distribution of works is organised from day 1 to day 5, with 5 contact hours of 1 hour duration in each day. A sequence of 18 such academic week constitutes a semester.
3.5 (b) ‘Zero semester’ means a semester in which a student is permitted to opt out due to unforeseen genuine reasons.

3.6 ‘Course’ means a segment of subject matter to be covered in a semester. Each Course is to be designed variously under lectures / tutorials / laboratory or fieldwork / seminar / project / practical training / assignments/evaluation etc., to meet effective teaching and learning needs.

3.7 ‘Credit’ (Cr) of a course is a measure of the weekly unit of work assigned for that course in a semester.

3.8 ‘Course Credit’ One credit of the course is defined as a minimum of one hour lecture / minimum of 2 hours lab/field work per week for 18 weeks in a Semester. The course will be considered as completed only by conducting the final examination. No regular student shall register for more than 24 credits and less than 16 credits per semester. The total minimum credits, required for completing a PG programme is 80.

3.9 ‘Programme Core course’ Programme Core course means a course that the student admitted to a particular programme must successfully complete to receive the Degree and which cannot be substituted by any other course.

3.10 ‘Programme Elective course’ Programme Elective course means a course, which can be substituted, by equivalent course from the same subject and a minimum number of courses are required to complete the programme.

3.11 ‘Programme Project’ Programme Project means a regular project work with stated credits on which the student undergo a project under the supervision of a teacher in the parent department / any appropriate research center in order to submit a dissertation on the project work as specified.

3.12 ‘Plagiarism’ Plagiarism is the unreferenced use of other authors’ material in dissertations and is a serious academic offence.

3.13 ‘Tutorial’ Tutorial means a class to provide an opportunity to interact with students at their individual level to identify the strength and weakness of individual students.

3.14 ‘Seminar’ seminar means a lecture expected to train the student in self-study, collection of relevant matter from the books and Internet resources, editing, document writing, typing and presentation.

3.15 ‘Evaluation’ means every student shall be evaluated by 25% internal assessment and 75% external assessment.

3.16 ‘Repeat course’ is a course that is repeated by a student for having failed in that course in an earlier registration.
3.17 ‘Improvement course’ is a course registered by a student for improving his performance in that particular course.

3.18 ‘Audit Course’ is a course for which no credits are awarded.

3.19 ‘Department’ means any teaching Department offering a course of study approved by the University in a college as per the Act or Statute of the University.

3.20 ‘Parent Department’ means the Department which offers a particular post graduate programme.

3.21 ‘Department Council’ means the body of all teachers of a Department in a College.

3.22 ‘Faculty Advisor’ is a teacher nominated by a Department Council to coordinate the continuous evaluation and other academic activities undertaken in the Department.

3.23 ‘Course Teacher’ means the teacher who is taking classes on the course.

3.24 ‘College Co-ordinator means a teacher from the college nominated by the College Council to look into the matters relating to MGU-CSS-PG System

3.25 ‘Letter Grade’ or simply ‘Grade’ in a course is a letter symbol (A,B,C,D, E) which indicates the broad level of performance of a student in a course.

3.26 Each letter grade is assigned a ‘Grade point’ (G) which is an integer indicating the numerical equivalent of the broad level of performance of a student in a course.

3.27 ‘Credit point’ (P) of a course is the value obtained by multiplying the grade point (G) by the Credit (Cr) of the course P=G x Cr.

3.27(a) Extra credits are additional credits awarded to a student over and above the minimum credits required for a programme for achievements in co-curricular activities carried out outside the regular class hours, as decided by the university.

3.28 ‘Weight’ is a numerical measure quantifying the comparative range of an answer or the comparative importance assigned to different components like theory and practical, internal and external examinations, core and elective subjects, project and viva-voce etc.

3.29 ‘Weighted Grade Point’ is grade points multiplied by weight.

3.29(a)’ Weighted Grade Point Average’ (WGPA) is an index of the performance of a students in a course. It is obtained by dividing the sum of the weighted Grade Points by the sum of the weights of the grade points. WGPA shall be obtained for CE and ESE separately and then the combined WGPA shall be obtained for each course.
3.30 ‘Grade Point Average’ (GPA) is an index of the performance of a student in a course. It is obtained by dividing the sum of the weighted grade point obtained in the course by the sum of the weights of Course.

3.31 ‘Semester Grade point average’ (SGPA) is the value obtained by dividing the sum of credit points (P) obtained by a student in the various courses taken in a semester by the total number of credits taken by him/her in that semester. The grade points shall be rounded off to two decimal places. SGPA determines the overall performance of a student at the end of a semester.

3.32 ‘Cumulative Grade point average’ (CGPA) is the value obtained by dividing the sum of credit points in all the courses taken by the student for the entire programme by the total number of credits and shall be rounded off to two decimal places.

3.33 ‘Grace Grade Points’ means grade points awarded to course/s, as per the choice of the student, in recognition of meritorious achievements in NCC/NSS/Sports/Arts and cultural activities.

3.34 ‘Words and expressions’ used and not defined in this regulation but defined in the Mahatma Gandhi University Act and Statutes shall have the meaning assigned to them in the Act and Statute.

4. ACADEMIC COMMITTEE

4.1 There shall be an Academic Committee constituted by the Vice-Chancellor to manage and monitor the working of (MGU-CSS-PG) 2011.

4.2 The Committee consists of
(a) The Vice-Chancellor
(b) The Pro-Vice-Chancellor
(c) The Registrar
(d) The Controller of Examinations
(e) Two Teacher Syndicate members.

4.3 There shall be a subcommittee nominated by the Vice Chancellor to look after the day to day affairs of the ...MGU-CSS-PG 2011programme.

5. PROGRAMME STRUCTURE

5.1 Students shall be admitted into post graduate programme under the faculties.

5.2 The programme shall include two types of courses, Program Core (PC) courses and Program Elective (PE) Courses. There shall be a Program Project (PP) with dissertation to be undertaken by all students. The Programme will also include assignments, seminars / practical viva etc., if they are specified in the Curriculum.

5.3. There shall be various groups of Programme Elective courses for a programme such as Group A, Group B etc. for the choice of students subject to the availability of
facility and infrastructure in the institution and the selected group shall be the subject of specialization of the programme.

5.4 Project work

5.4.1. Project work shall be completed by working outside the regular teaching hours.

5.4.2. Project work shall be carried out under the supervision of a teacher in the concerned department.

5.4.3. A candidate may, however, in certain cases is permitted to work on the project in an industrial / Research Organization on the recommendation of the Supervisor. In

5.4.4 There should be an internal assessment and external assessment for the project work.

5.4.5. The external evaluation of the Project work is followed by presentation of work including dissertation and Viva-Voce.

5.4.6. The title and the credit with grade awarded for the program project should be entered in the grade card issued by the university.

5.5. Assignments: Every student shall submit one assignment as an internal component for every course with a weightage one. The Topic for the assignment shall be allotted within the 6th week of instruction.

5.6. Seminar Lecture: Every PG student shall deliver one seminar lecture as an internal component for every course with a weightage two. The seminar lecture is expected to train the student in self-study, collection of relevant matter from the books and Internet resources, editing, document writing, typing and presentation.

5.7. Every student shall undergo at least two class tests as an internal component for every course with a weightage one each. The weighted average shall be taken for awarding the grade for class tests.

5.8. The attendance of students for each course shall be another component of internal assessment as prescribed with weightage one.

5.9. No course shall have more than 4 credits.

5.10. Comprehensive Viva-voce shall be conducted at the end semester of the program comprehensive Viva-Voce covers questions from all courses in the programme.

6. ATTENDANCE

6.1. The minimum requirement of aggregate attendance during a semester for appearing the end semester examination shall be 75%. Condonation of shortage of
attendance to a maximum of 10 days in a semester subject to a maximum of two times during the whole period of post graduate programme may be granted by the University.

6.2 .If a student represents his/her institution, University, State or Nation in Sports, NCC, NSS or Cultural or any other officially sponsored activities such as college union / university union activities, he/she shall be eligible to claim the attendance for the actual number of days participated subject to a maximum of 10 days in a Semester based on the specific recommendations of the Head of the Department and Principal of the College concerned.

6.3 .A student who does not satisfy the requirements of attendance shall not be permitted to take the end Semester examinations.

7. BOARD OF STUDIES AND COURSES.

7.1 The PG Board of Studies concerned shall design all the courses offered in the PG programme. The Boards shall design and introduce new courses, modify or re-design existing courses and replace any existing courses with new/modified courses to facilitate better exposures and training for the students.

7.2 The syllabus of a course shall include the title of the course, contact hours, the number of credits and reference materials.

7.3 Each course shall have an alpha numeric code number which includes abbreviation of the subject in two letters, the semester number, the code of the course and the serial number of the course (‘C’ for Program Core course, ‘E’ for Program Elective course, ‘O’ for Open Elective course, ‘P’ for Practical and ‘D’ for Project/ Dissertation).

7.4 Every Programme conducted under Credit Semester System shall be monitored by the College Council.

8. REGISTRATION/ DURATION

8.1 .The duration of PG programmes shall be 4 semesters.

8.2 .The duration of each semester shall be 90 working days. Odd semesters from June to October and even semesters from December to April. There will be one month semester breaks each in November and May.

8.3 .A student may be permitted to complete the programme, on valid reasons, with in a period of 8 continuous semesters from the date of commencement of the first semester of the programmes.

9. ADMISSION

9.1 The admission to all PG programmes shall be as per the rules and regulations of the University
9.2 The eligibility criteria for admission shall be as announced by the University from time to time.
9.3 Separate rank lists shall be drawn up for reserved seats as per the existing rules.

9.4 The college shall make available to all students admitted a Prospectus listing all the courses offered including programme elective during a particular semester. The information provided shall contain title of the course and credits of the course.

9.5 There shall be a uniform academic and examination calendar prepared by the University for the Conduct of the programmes. The University shall ensure that the calendar is strictly followed.

9.6 There shall be provision for inter collegiate and inter University transfer in 3rd semesters within a period of two weeks from the date of commencement of the semester.

9.7 There shall be provision for credit transfer subject to the conditions specified by the Board of Studies concerned.

10. ADMISSION REQUIREMENTS

10.1 Candidates for admission to the first semester of the PG programme through CSS shall be required to have passed an appropriate Degree Examination of Mahatma Gandhi University as specified or any other examination of any recognized University or authority accepted by the Academic council of Mahatma Gandhi University as equivalent thereto.

10.2 The candidate must forward the enrollment form to the Controller of Examinations of the University through the Head of the Institution, in which he / she is currently studying.

10.3 The candidate has to register all the courses prescribed for the particular semester. Cancellation of registration is applicable only when the request is made within two weeks from the time of admission.

10.4 Students admitted under this programme are governed by the Regulations in force.

11. PROMOTION: A student who registers for the end semester examination shall be promoted to the next semester

12. EXAMINATIONS

12.1 There shall be University examination at the end of each semester.

12.2 Practical examinations shall be conducted by the University at the end of each semester.
12.3 Project evaluation and Viva-Voce shall be conducted at the end of the programme only. Practical examination, Project evaluation and Viva-Voce shall be conducted by two external examiners and one internal examiner.

12.4 End-Semester Examinations: The examinations shall normally at the end of each semester.

12.5 There shall be one end-semester examination of 3 hours duration in each lecture based course and practical course.

12.6 A question paper may contain short answer type/annotation, short essay type questions/problems and long essay type questions. Different types of questions shall have different weightage to quantify their range. Weightage can vary from course to course depending on their comparative importance, but a general pattern may be followed by the Board of Studies.

13. EVALUATION AND GRADING

13.1 Evaluation: The evaluation scheme for each course shall contain two parts; (a) internal evaluation and (b) external evaluation. 25% weightage shall be given to internal evaluation and the remaining 75% to external evaluation and the ratio and weightage between internal and external is 1:3. Both internal and external evaluation shall be carried out using direct grading system.

13.2 Internal evaluation: The internal evaluation shall be based on predetermined transparent system involving periodic written tests, assignments, seminars, Internal viva and attendance in respect of theory courses and based on written tests, lab skill/records/viva and attendance in respect of practical courses. The weightage assigned to various components for internal evaluation is as follows.

13.3 Components of Internal Evaluation

<table>
<thead>
<tr>
<th>Component</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Assignment---</td>
<td>1</td>
</tr>
<tr>
<td>ii) Seminar------</td>
<td>2</td>
</tr>
<tr>
<td>iii) Attendance---</td>
<td>1</td>
</tr>
<tr>
<td>iv) Two Test papers—</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Performance</th>
<th>Grade point (G)</th>
<th>Grade Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent</td>
<td>4</td>
<td>3.5 to 4.00</td>
</tr>
<tr>
<td>B</td>
<td>Very Good</td>
<td>3</td>
<td>2.5 to 3.49</td>
</tr>
<tr>
<td>C</td>
<td>Good</td>
<td>2</td>
<td>1.5 to 2.49</td>
</tr>
<tr>
<td>D</td>
<td>Average</td>
<td>1</td>
<td>0.5 to 1.49</td>
</tr>
<tr>
<td>E</td>
<td>Poor</td>
<td>0</td>
<td>0.00 to 0.49</td>
</tr>
</tbody>
</table>
13.4 Grades for Attendance

<table>
<thead>
<tr>
<th>% of attendance</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>>90%</td>
<td>A</td>
</tr>
<tr>
<td>Between 85 and 90</td>
<td>B</td>
</tr>
<tr>
<td>Between 80 and below 85</td>
<td>C</td>
</tr>
<tr>
<td>Between 75 and below 80</td>
<td>D</td>
</tr>
<tr>
<td>< 75</td>
<td>E</td>
</tr>
</tbody>
</table>

Assignment

<table>
<thead>
<tr>
<th>Component</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punctuality</td>
<td>1</td>
</tr>
<tr>
<td>Review</td>
<td>1</td>
</tr>
<tr>
<td>Content</td>
<td>2</td>
</tr>
<tr>
<td>Conclusion</td>
<td>1</td>
</tr>
<tr>
<td>Reference</td>
<td>1</td>
</tr>
</tbody>
</table>

Seminar

<table>
<thead>
<tr>
<th>Component</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area/ topic selected</td>
<td>1</td>
</tr>
<tr>
<td>Review/reference</td>
<td>1</td>
</tr>
<tr>
<td>Content</td>
<td>2</td>
</tr>
<tr>
<td>Presentation</td>
<td>2</td>
</tr>
<tr>
<td>Conclusion</td>
<td>1</td>
</tr>
</tbody>
</table>

Project evaluation

Internal

<table>
<thead>
<tr>
<th>Component</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Punctuality</td>
<td>1</td>
</tr>
<tr>
<td>Experimentation/ data collection</td>
<td>1</td>
</tr>
<tr>
<td>Compilation</td>
<td>1</td>
</tr>
<tr>
<td>Content</td>
<td>1</td>
</tr>
</tbody>
</table>
13.5 To ensure transparency of the evaluation process, the internal assessment grade awarded to the students in each course in a semester shall be published on the notice board at least one week before the commencement of external examination. There shall not be any chance for improvement for internal grade.

13.6 The course teacher and the faculty advisor shall maintain the academic record of each student registered for the course which shall be forwarded to the University through the college Principal and a copy should be kept in the college for at least two years for verification.

13.7 External evaluation: The external Examination in theory courses is to be conducted by the University with question papers set by external experts. The evaluation of the answer scripts shall be done by examiners based on a well-defined scheme of valuation. The external evaluation shall be done immediately after the examination preferably through Centralized Valuation.

13.8 Photocopies of the answer scripts of the external examination shall be made available to the students for scrutiny on request and revaluation/scrutiny of answer scripts shall be done as per the existing rules prevailing in the University.

13.9. The question paper should be strictly on the basis of model question paper set by BOS and there shall be a combined meeting of the question paper setters for scrutiny and finalisation of question paper. Each set of question should be accompanied by its scheme of valuation.

13.10. DIRECT GRADING SYSTEM Direct Grading System based on a 5 - point scale is used to evaluate the performance (External and Internal Examination of students)

13.11. DIRECT GRADING SYSTEM

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Performance</th>
<th>Grade point (G)</th>
<th>Grade Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Excellent</td>
<td>4</td>
<td>3.5 to 4.00</td>
</tr>
<tr>
<td>B</td>
<td>Very Good</td>
<td>3</td>
<td>2.5 to 3.49</td>
</tr>
<tr>
<td>C</td>
<td>Good</td>
<td>2</td>
<td>1.5 to 2.49</td>
</tr>
<tr>
<td>D</td>
<td>Average</td>
<td>1</td>
<td>0.5 to 1.49</td>
</tr>
<tr>
<td>E</td>
<td>Poor</td>
<td>0</td>
<td>0.00 to 0.49</td>
</tr>
</tbody>
</table>
13.12. The overall grade for a programme for certification shall be based on CGPA with a 7-point scale given below

<table>
<thead>
<tr>
<th>CGPA</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.80 to 4.00</td>
<td>A+</td>
</tr>
<tr>
<td>3.50 to 3.79</td>
<td>A</td>
</tr>
<tr>
<td>3.00 to 3.49</td>
<td>B+</td>
</tr>
<tr>
<td>2.50 to 2.99</td>
<td>B</td>
</tr>
<tr>
<td>2.00 to 2.49</td>
<td>C+</td>
</tr>
<tr>
<td>1.50 to 1.99</td>
<td>C</td>
</tr>
<tr>
<td>1.00 to 1.49</td>
<td>D</td>
</tr>
</tbody>
</table>

A separate minimum of C Grade for internal and external are required for a pass for a course. For a pass in a programme a separate minimum grade C is required for all the courses and must score a minimum CGPA of 1.50 or an overall grade of C and above.

13.13 Each course is evaluated by assigning a letter grade (A, B, C, D or E) to that course by the method of direct grading. The internal (weightage =1) and external weightage =3) components of a course are separately graded and then combined to get the grade of the course after taking into account of their weightage.

13.14 A separate minimum of C grade is required for a pass for both internal evaluation and external evaluation for every course.

13.15 A student who fails to secure a minimum grade for a pass in a course will be permitted to write the examination along with the next batch. There will be no supplementary examination.

13.16 After the successful completion of a semester, Semester Grade Point Average (SGPA) of a student in that semester is calculated using the formula given below. For the successful completion of semester, a student should pass all courses and score a minimum SGPA of 1.50. However, a student is permitted to move to the next semester irrespective of her/his SGPA. For instance, if a student has registered for ‘n’ courses of credits C1, C2,Cn in a semester and if she/he has scored credit points P1, P2..............,Pn respectively in these courses, then SGPA of the student in that semester is calculated using the formula. SGPA= (P1+P2+...............+Pn)/(C1+C2+...............+Cn)

CGPA = [(SGPA)1*S1 + (SGPA)2*S2 + (SGPA)3*S3 + (SGPA)4*S4]/(S1+S2+S3+S4)

Where S1, S2, S3, and S4 are the total credits in semester1, semester2, semester3 and semester 4

13.17 Pattern of questions
Questions shall be set to assess knowledge acquired, standard application of knowledge, application of knowledge in new situations, critical evaluation of knowledge and the ability to synthesize knowledge. The question setter shall ensure that questions covering all skills are set. He/she shall also submit a detailed scheme of evaluation along with
the question paper. A question paper shall be a judicious mix of short answer type, short essay type/ problem solving type and long essay type questions.

Weight: Different types of questions shall be given different weights to quantify their range as follows.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Type of questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Short answer type questions</td>
</tr>
<tr>
<td>2.</td>
<td>Short essay(problem solving type questions)</td>
</tr>
<tr>
<td>3.</td>
<td>Long essay type questions</td>
</tr>
</tbody>
</table>

14. GRADE CARD

14.1 The University under its seal shall issue to the students, a grade card on completion of each semester, which shall contain the following information.

a) Name of the University.
b) Name of college
c) Title of the PG Programme.
d) Name of Semester
e) Name and Register Number of students
f) Code number, Title and Credits of each course opted in the semester, Title and Credits of the Project Work
g) Internal, external and Total grade, Grade Point (G), Letter grade and Credit point (P) in each course opted in the semester.
h) The total credits, total credit points and SGPA in the semester.

14.2 The Final Grade Card issued at the end of the final semester shall contain the details of all courses taken during the entire programme including those taken over and above the prescribed minimum credits for obtaining the degree. The Final Grade Card shall show the CGPA and the overall letter grade of a student for the entire programme.

15. AWARD OF DEGREE
The successful completion of all the courses with ‘C+’ grade shall be the minimum requirement for the award of the degree

16. MONITORING COMMITTEE
There shall be a Monitoring Committee constituted by the Vice-chancellor to monitor the internal evaluations conducted by institutions. The Course teacher, Faculty Advisor, and the College Coordinator should keep all the records of the internal evaluation, for at least a period of two years, for verification.

17. GRIEVENCE REDRESSAL COMMITTEE
17.1 College level: The College shall form a Grievance Redress Committee in each Department comprising of course teacher and one senior teacher as members and the Head of the Department as Chairman. The Committee shall address all grievances relating to the internal assessment grades of the students. There shall be a college level Grievance Redress Committee comprising of Faculty advisor, two senior teachers and
two staff council members (one shall be an elected member) and the Principal as Chairman.

17.2 University level: The University shall form a Grievance Redress Committee as per the existing norms.

18. TRANSITORY PROVISION
Not withstanding anything contained in these regulations, the Vice-Chancellor shall, for a period of three year from the date of coming into force of these regulations, have the power to provide by order that these regulations shall be applied to any programme with such modifications as may be necessary.

19. REPEAL
The Regulations now in force in so far as they are applicable to programmes offered by the University and to the extent they are inconsistent with these regulations are hereby repealed. In the case of any inconsistency between the existing regulations and these regulations relating to the Choice Based Credit Semester System in their application to any course offered in a College, the latter shall prevail. Models of distribution of course and credit are given in the following tables. BOS can make appropriate changes subject to the following conditions.

1. Total credit of the programme shall be 80
2. The minimum credit of a course is 2 and maximum credit is 4
3. Semester-wise total credit can vary from 16 to 24
4. Number of courses per semester can be decided by the BOS concerned.
5. The credits of Projects, Dissertations and viva-voce can be prescribed by the BOS.

M.Sc Mathematics programme

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Teaching Hrs.</th>
<th>Credits</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>PC- 1</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 2</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 3</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 4</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 5</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>PC- 6</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>PC- 7</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 8</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 9</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 10</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>PC- 11</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>PC- 12</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 13</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 14</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PC- 15</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
- PC means Programme core
- PE means programme electives
- A list of elective papers will given by the Board of Studies. Each College can select a group of four electives according to their infrastructure facilities. X, Y, Z and K represent the numbers of the elective courses in the ascending orders.
- All students shall submit the project before the end of the fourth semester external examination
- The external evaluation of the project will be done by the viva-voce board
- Viva-voce (PV) means the comprehensive viva-voce based on all the core courses.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Type of Questions</th>
<th>Weight</th>
<th>Number of questions to be answered</th>
<th>Total weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short answer type questions (½ to 1 page)</td>
<td>1</td>
<td>5 out of 8</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Short essay type questions (1 to 2 page)</td>
<td>2</td>
<td>5 out of 8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Long essay type questions</td>
<td>5</td>
<td>3 out of 6</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Weight - 30

SDE / PRIVTE POST-GRADUATE STUDY CANDIDATES
SDE candidates and private-registered candidates for post-graduate examination will continue to be under the annual scheme. They will however be following the restructured syllabi with the difference that they will have no internal evaluation component in their scheme of examination. The total marks 2200(100 marks for each paper) will follow for these candidates. The first year examination will be for 1000 marks for 10 courses in Semester I and Semester II and the second year examination for 1100 marks(for 11 courses) of 100 marks each consisting of 5 core courses in Semester III and 1 core course in Semester IV and 5 electives selected from the set of electives in Semester IV. (The above candidates
will have the option to choose an elective paper in lieu of the project/dissertation as the 5th elective. Candidates electing to write a dissertation can do so under the guidance of college teachers approved by the SDE/Board of studies. The viva voce at the end of the second year examination will account for 100 marks. The existing regulations relating to conduct the course and examinations will be applicable to these candidates.

The SDE/Board of studies will identify the cluster of papers – four papers and an additional one for candidates who do not opt for the dissertation - to be studied in the second year, in addition to the six core papers.

The following question paper pattern (in setting each paper) will be followed for the above categories.

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Type of Questions</th>
<th>Marks</th>
<th>Number of questions to be answered</th>
<th>Total marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Short answer type questions (½ to 1 page)</td>
<td>3</td>
<td>5 out of 8</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Short essay type questions (1 to 2 page)</td>
<td>8</td>
<td>5 out of 8</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Long essay type questions</td>
<td>15</td>
<td>3 out of 6</td>
<td>45</td>
</tr>
</tbody>
</table>

Grand total for a paper 100

M.Sc. MATHEMATICS PROGRAMME

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>Programme code</th>
<th>Course code</th>
<th>Name of the course</th>
<th>Marks</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC 1</td>
<td>MT01C01</td>
<td>Linear Algebra</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>PC 2</td>
<td>MT01C02</td>
<td>Basic Topology</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>PC 3</td>
<td>MT01C03</td>
<td>Measure Theory and Integration</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>PC 4</td>
<td>MT01C04</td>
<td>Graph Theory</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>PC 5</td>
<td>MT01C05</td>
<td>Complex Analysis</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PC 6</td>
<td>MT02C06</td>
<td>Abstract Algebra</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>PC 7</td>
<td>MT02C07</td>
<td>Advanced Topology</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>PC 8</td>
<td>MT02C08</td>
<td>Advanced Complex Analysis</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>PC 9</td>
<td>MT02C09</td>
<td>Partial Differential Equations</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>PC 10</td>
<td>MT02C10</td>
<td>Real Analysis</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PC 11</td>
<td>MT03C11</td>
<td>Multivariate Calculus and Integral</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>
Transforms

12 PC 12 MT03C12 Functional Analysis 100 90
13 PC 13 MT03C13 Differential Geometry 100 90
14 PC 14 MT03C14 Number Theory and Cryptography 100 90
15 PC 15 MT03C15 Optimization Techniques 100 90

Semester – 4

16 PC 16 MT04C16 Spectral Theory 100 90

Elective Courses

17 PE 1 MT04E01 Analytic Number Theory 100 90
18 PE 2 MT04E02 Combinatorics 100 90
19 PE 3 MT04E03 Classical Mechanics 100 90
20 PE 4 MT04E04 Probability Theory 100 90
21 PE 5 MT04E05 Mathematical Economics 100 90
22 PE 6 MT04E06 Mathematics for Computing 100 90
23 PE 7 MT04E07 Operations Research 100 90
24 PE 8 MT04E08 Special Functions 100 90
25 PE 9 MT04E09 Theory of Wavelets 100 90
26 PE 10 MT04E10 Signal Theory 100 90
27 PE 11 MT04E11 Commutative Algebra 100 90
28 PE 12 MT04E12 Fractional Calculus 100 90
29 PE 13 MT04E13 Algorithmic Graph Theory 100 90
30 PE 14 MT04E14 Coding Theory 100 90
31 PE 15 MT04E15 Complex Algebraic Curves 100 90
32 PE 16 MT04E16 Algebraic Geometry 100 90
33 PE 17 MT04E17 Fractal Geometry 100 90
34 PE 18 MT04E18 Lie Algebras 100 90
35 PE 19 MT04E19 Algebraic Topology 100 90
36 PE 20 MT04E20 Financial Mathematics 100 90
37 PP MT04P01 Project / Dissertation 100 ---------
38 PV MT04V01 Viva-voce 100 ---------

Semester - 1

PC 1 MT01C01

LINEAR ALGEBRA

Module 1: Vector spaces, subspaces, basis and dimension
(Chapter 2, 2.1, 2.2, 2.3 of the text)
(Proof of theorems excluded)
Co-ordinates, summary of row-equivalence
(Chapter 2 - 2.4 & 2.5 of the text)

Module 2: Linear transformations, the algebra of linear transformations, isomorphism, representation of transformations by matrices, linear functionals, double dual, transpose of a linear transformation.
(Chapter 3 - 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 & 3.7 of the text)

Module 3: Determinants: Commutative Rings, Determinant functions, Permutation and uniqueness of determinants, Additional properties of determinants.
(Chapter 5 - 5.1, 5.2, 5.3 & 5.4 of the text)

Module 4: Introduction to elementary canonical forms, characteristic values, annihilatory polynomials, invariant subspaces, simultaneous triangulations, simultaneous diagonalisation, direct sum decompositions, invariant direct sums
(Chapter 6 - 6.1, 6.2, 6.3, 6.4, 6.5 & 6.6 of the text)

Question paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short</td>
<td>Short</td>
<td>Long</td>
</tr>
<tr>
<td></td>
<td>questions</td>
<td>essays</td>
<td>essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

PC 2 MT01C02
BASIC TOPOLOGY

Module 1: Definition of a topological space – examples of topological spaces, bases and sub bases – sub spaces.
Basic concepts: closed sets and closure – neighborhood, interior and accumulation points
(Chapter 4 Section 1, 2, 3, 4 - Chapter 5 Section -. 1 and 2 of the text.
5.2.11 & 5.2.12 excluded.) (24 hours)

Module 2: Continuity and related concepts: making functions continuous, quotient spaces.
Spaces with special properties: Smallness condition on a space
(Chapter 5. Section 3 and 4 of the text, 5.3.2(4) excluded)
(Chapter 6 Sec. 1 of the text) (22 hours)

Module 3: Connectedness: Local connectedness and paths
(Chapter 6 Section 2 & 3 of the text) (22 hours)

Module 4: Separation axioms: Hierarchy of separation axioms – compactness and separation axioms
(Chapter – 7 Section 1 & 2 of the text)
(2.13 to 2.16 of section 2 excluded) (22 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-

PC 3

MEASURE THEORY AND INTEGRATION

Pre-requisites: Algebras of sets, the axiom of choice and infinite direct products, open and closed sets of real numbers.

(Chapter 1 - section 4, 5
Chapter 2 - section 5 of Text 1). (5 hours)

(No questions shall be asked from this section)

Module 1: Lebesgue measure: introduction, outer measure, measurable sets and Lebesgue measure, & non-measurable sets, measurable functions.

(Chapter 3 - Sec. 1 to 5. of Text 1) (20 hours)

Module 2: Lebesgue integral: the Riemann integral, he Lebesgue integral of a bounded function over a set of finite measures, the integral of a non-negative function, the general Lebesgue integral, differentiation of monotone functions.

(Chapter 4 - Sec. 1 – 4. of Text 1
Chapter 5 - Sec. 1. of Text 1) (20 hours)

Module 3: Measure and integration: measure spaces, measurable functions, Integration, general convergence theorems, signed measures, the Radon-Nikodym theorem, outer measure and measurability, the extension theorem.

(Chapter 11 - Sec. 1 to 6 of Text 1
Chapter 12 - Sec. 1& 2 of Text 1) (20 hours)

Module 4: Convergence: convergence in measure, almost uniform convergence, measurability in a product space, the product measure and Fubini’s theorem.

(Chapter 8 - Sec. 7.1 & 7.2 of Text 2
Chapter 10 - Sec. 10.1& 10.2 of Text 2) (25 hours)

Question paper pattern
<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-

PC 4

MT01C04

GRAPH THEORY

Text : R.Balakrishnan and K. Ranganathan, A Text book of Graph Theory, Springer

Module: -1 Basic results and directed graphs

Basic concepts, sub graphs, degrees of vertices, Paths and connectedness
automorphism of a simple graph, line graphs, basic concepts and tournaments.

Connectivity
Vertex cuts and edge cuts, connectivity and edge connectivity, blocks.
(Chapter 1 Sections 1.1 to 1.5 and 1.6 (Up to 1.6.3)
Chapter 2 Sections 2.1 and 2.2
Chapter 3 Sections 3.1 to 3.3 of the text) (20 hours)

Module: - 2 Trees:
Definition, characterization and simple properties, centres and centroids, counting the number of spanning trees, Cayley’s formula, applications
Module:- 3

Independent Sets, Eulerian Graphs; Hamiltonian Graphs and Vertex Colouring, Vertex independent sets and vertex coverings, edge independent sets, Eulerian graphs, Hamiltonian graphs, vertex colourings, critical graphs, triangle free graphs.

Module:- 4:

Edge colouring and planarity- Edge colouring of graphs, planar and non planar graphs, Euler formula and its consequences, K5 and K3,3 are non planar graphs, dual of a plane graph. the four colour theorem and Heawood five colour theorem.

Question Paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

1. John Clark and Derek Allan Holton, A First Look at Graph Theory, Allied Publishers.
2. Douglas B West, Introduction to Graph Theory, Prentice Hall of India
3. F.Harary, Graph Theory, Addison-Wesley, 1969.
COMPLEX ANALYSIS

Module 1: Analytic functions as mappings.
Conformality: arcs and closed curves, analytic functions in regions, conformal mapping, length and area.
Linear transformations: linear group, the cross ratio, symmetry, oriented circles, family of circles.
Elementary conformal mappings: the use of level curves, a survey of elementary mappings, elementary Riemann surfaces.
(Chapter 3 – sections 2, 3 and 4. of the text) (20 hours.)

Module 2: Complex Integration
Fundamental theorem: line integrals, rectifiable arcs, line integrals as functions of arcs, Cauchy’s theorem for a rectangle, Cauchy’s theorem in a disk.
Cauchy’s integral formula: the index of a point with respect to a cloud curve, the integral formula, higher derivatives.
(Chapter 4 – Sections 1 and 2. of the text.) (20 hours.)

Module 3: Local properties of analytical functions: removable singularities, Taylor’s theorem, zeroes and poles, the local mapping, the maximum principle.
The general form of Cauchy’s theorem: chains and cycles, simple connectivity, homology, general statement of Cauchy’s theorem, proof of Cauchy’s theorem, locally exact differentiation, multiply connected regions.
(Chapter 4 – Sections 3 and 4. of the text) (25 hours.)

Module 4: Calculus of Residues: the residue theorem, the argument principle, evaluation of definite integrals.
Harmonic functions: definition and basic properties, the mean value property, Poisson’s formula, Schwarz theorem, the reflection principle.
(Chapter 4 – Sections 5 and 6 of the text) (25 hours.)

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
References:
2. Cartan. H (1973), Elementary theory of Analytic functions of one or several variable, Addison Wesley.
3. Conway J.B, Functions of one Complex variable, Narosa publishing.

Semester 2

PC 6 MT02C05

ABSTRACT ALGEBRA

Module 1: Direct products and finitely generated Abelian groups, fundamental theorem (without proof), Applications
Rings of polynomials, factorisation of polynomials over a field.
(Part II – Section 11) & (Part IV – Sections 22 & 23) (25 hours)

Module 2: Introduction to extension fields, algebraic extensions, Geometric constructions. Finite fields.
(Part VI – Section 29, 31 – 31.1 to 31.18, 32, 33) (25 hours)

Module 3: Sylow’s theorems (without proof), Applications of sylow theory
Automorphism of fields, the isomorphism extension theorem
(proof of the theorem excluded)
(Part VII Sections 36 & 37) (Part X – Sections 48 & 49, 49.1 to 49.5)
Module 4: Splitting fields, separable extensions, Galois theory
(Part X – Sections 50, 51, 53 -53.1 to 53.6) (20 hours)

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

2. Hungerford, Algebra, Springer

PC 7

MT02C07 ADVANCED TOPOLOGY

Text Book: K.D. Joshi, Introduction to General Topology, Wiley Eastern Ltd.

Module 1: – Urysohn Characterisation of Normality – Tietze Characterisation of Normality.
(Chapter 7 Section-.3 and 4 of the text.)
(Proof of 3.4, 4.4, and 4.5 excluded)
Products and co-products: Cartesian products of families of sets
– Product Topology – Productive properties.

Chapter 11. Section 1 (Proof of theorem 1.4 & 1.12 excluded), Section 3

Section 4(from 4.1 to 4.7) of the text

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short</td>
<td>Short</td>
<td>Long</td>
</tr>
<tr>
<td>questions</td>
<td>essays</td>
<td>essays</td>
<td>essays</td>
</tr>
<tr>
<td>Module I</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-
ADVANCED COMPLEX ANALYSIS

Module 1: Elementary theory of power series: sequences, series, uniform convergence, power series, Abel’s limit theorem.

Power series expansions: Weierstrass’ theorem, the Taylor’s series, the Laurent’s series

Partial fractions and factorisation: partial fractions, infinite products, canonical products, the gamma functions.

(Chapter 2, Section 2 - Chapter 5, Sections 1, 2.1 to 2.4 of the text) (25 hours)

Module 2: Entire functions: Jenson’s formula, Hadamard’s theorem (without proof)

the Riemann zeta function: the product development, extension of ξ to the whole plane, the functional equation, the zeroes of zeta function.

Normal families: Equi continuity, normality and compactness, Arzela’s theorem (without proof)

(Chapter 5 - Sections 3, 4, 5.1, 5.2, and 5.3 of the text) (25 hours)

Conformal mappings of polygons: the behavior of an angle, the Schwarz-Christoffel formula (Statement only).

A closer look at harmonic functions: functions with mean value property, Harnack’s principle.

The Dirichlet problem: sub harmonic functions, solution of Dirichlet problem (statement only)

(Chapter 6 Section 1, 2.1, 2.2, 3, 4.1 & 4.2 of the text) (20 hours)

Module 4: Elliptic functions: simply periodic functions, representation of exponentials, the Fourier development, functions of finite order

Doubly periodic functions: The period module, unimodular transformations, the canonical basis, general properties of elliptic functions.

The Weierstrass theory: the Weierstrass function, the functions ξ(y) and σ(y), the differential equation.

Analytic continuation: the Weierstrass theorem, Germs and Sheaves, sections and Riemann surfaces, analytic continuation along arcs, homotopic curves.
(Chapter 7 Sections 1, 2, 3.1, 3.2, 3.3
Chapter 8 Sections 1.1 to 1.5 of the text) (20 hours)

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:
2. Cartan. H (1973), Elementary theory of Analytic functions of one or several variable, Addison Wesley.
3. Conway J.B, Functions of one Complex variable, Narosa publishing.

PC 9 MT02C09

PARTIAL DIFFERENTIAL EQUATIONS

Text Book:- Ian Sneddon, Elements of partial differential equations, Mc Graw Hill

Book Company.

Module:-1. Methods of solutions of \(\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R} \). Orthogonal trajectories of a system of curves on a surface. Pfaffian differential forms and equations. Solution of Pfaffian differential equations in three variables. Partial differential equations. Origins of first order partial differential equation. Cauchy’s problem for first order equation. Linear equations of first order. Integral surfaces passing through a given curve. Surfaces orthogonal to a given system of surfaces. (Sections 1.3 to 1.6 & 2.1 to 2.6 of the text) (25 hours)

Module:-2. Nonlinear partial differential equation of the first order. Cauchy’s method of characteristics. Compatible systems of first order equations. Charpits
Method. Special types of first order equations. Solutions satisfying given conditions. Jacobi's method. (Section 2.7 to 2.13 of the text) (25 hours)

Module:-3 The origin of second order equations. Linear partial differential equations with constant coefficients. Equations with variable coefficients. Characteristic curves of second order equations. (Section 3.1, 3.4, 3.5, 3.6 of the text) (20 hours)

Question paper pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-
1. Phoolan Prasad and Renuka Ravindran, Partial differential Equations, New Age International (p) Limited
2. K Sankara Rao, Introduction to Partial Differential Equations, Prentice-Hall of India
3. E.T Copson, Partial differential equations, S.Chand & Co

PC 10 MT02C10

REAL ANALYSIS

Pre-requisites
A quick review on continuity, uniform continuity, convergence of sequence and series. (5 hours.)

(No question shall be asked from this section.)

Module 1: Functions of bounded variation and rectifiable curves

Introduction, properties of monotonic functions, functions of bounded variation, total variation, additive property of total variation, total variation on (a, x) as a functions of x, functions of bounded variation expressed as the difference of increasing functions, continuous functions of bounded variation, curves and paths, rectifiable path and arc length, additive and continuity properties of arc length, equivalence of paths, change of parameter.

(Chapter 6, Section: 6.1 - 6.12. of Text 1) (20 hours.)

Module 2: The Riemann-Stieltjes Integral

Definition and existence of the integral, properties of the integral, integration and differentiation, integration of vector valued functions.

(Chapter 6 - Section 6.1 to 6.25 of Text 2) (20 hours.)

Module 3: Sequence and Series of Functions

Discussion of main problem, uniform convergence, uniform convergence and continuity, uniform convergence and integration, uniform convergence and differentiation, the Stone-Weierstrass theorem (without proof).

(Chapter 7 Section. 7.7 to 7.18 of Text 2) (25 hours.)

Module 4: Some Special Functions

Power series, the exponential and logarithmic functions, the trigonometric functions, the algebraic completeness of complex field, Fourier series.

(Chapter 8 - Section 8.1 to 8.16 of Text 2) (20 hours.)

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:
3. S.C. Malik, Savitha Arora, Mathematical Analysis, New Age International Ltd.

Semester – 3

PC 11

MT03C11

MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

Text 1: Tom APOSTOL, Mathematical Analysis, Second edition, Narosa Publishing House.

Module 1: The Weirstrass theorem, other forms of Fourier series, the Fourier integral theorem, the exponential form of the Fourier integral theorem, integral transforms and convolutions, the convolution theorem for Fourier transforms.

(Chapter 11 Sections 11.15 to 11.21 of Text 1) (20 hours.)

Module 2: Multivariable Differential Calculus

The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives, An application of complex-valued functions, the matrix of a linear function, the Jacobian matrix, the chain rate matrix form of the chain rule.

(Chapter 12 Sections. 12.1 to 12.10 of Text 1) (20 hours.)

Module 3: Implicit functions and extremum problems, the mean value theorem for differentiable functions, a sufficient condition for differentiability, a sufficient condition for equality of mixed partial derivatives, functions with non-zero Jacobian determinant, the inverse function theorem (without proof), the implicit function theorem (without proof), extrema of real-valued functions of one variable, extrema of real-valued functions of several variables.

Chapter 12 Sections-. 12.11 to 12.13. of Text 1

Chapter 13 Sections-. 13.1 to 13.6 of Text 1 (25 hours.)

Module 4: Integration of Differential Forms

Integration, primitive mappings, partitions of unity, change of variables, differential forms, Stokes theorem (without proof)

Chapter 10 Sections. 10.1 to 10.25, 10.33 of Text 2 (25 hours.)
Question Paper Pattern

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

References:
1. Limaye Balmohan Vishnu, Multivariate Analysis, Springer.
2. Satish Shirali and Harikrishnan, Multivariable Analysis, Springer.

PC 12 MT03C12

FUNCTIONAL ANALYSIS

Module 1
Vector Space, normed space. Banach space, further properties of normed spaces, finite dimensional normed spaces and subspaces, compactness and finite dimension, linear Operators, bounded and continuous linear operators.
(Chapter 2 - Sections 2.1 – 2.7 of the text) (20 hours)

Module 2
Linear functionals, linear operators and functionals on finite dimensional spaces, normed spaces of operators. dual space, inner product space. Hilbert space, further properties of inner product space.
(Chapter 2 - Section 2.8 to 2.10, chapter 3 - Sections 3.1 to 3.2 of the text) (20 hours)

Module 3
Orthogonal complements and direct sums, orthonormal sets and sequences, series related to orthonormal sequences and sets, total orthonormal sets and sequences. representation of functionals on Hilbert spaces, Hilbert adjoint operators, Self adjoint, unitary and normal operators.
Module 4

Zorn’s lemma, Hahn- Banach theorem, Hahn- Banach theorem for complex vector spaces and normed spaces, adjoint operators, reflexive spaces, category theorem (Statement only), uniform boundedness theorem

(Chapter 4 – Sections 4.1 to 4.3, 4.5 to 4.7 of the text) (25 hours)

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References

PC 13 MT03C13

DIFFERENTIAL GEOMETRY

Text Book: John A. Thorpe, Elementary Topics in Differential Geometry

Module 1: Graphs and level sets, vector fields, the tangent space, surfaces, vector fields on surfaces, orientation.
(Chapters 1 to 5 of the text) (15 hours)

Module 2: The Gauss map, geodesics, Parallel transport,

(Chapters 6, 7 & 8 of the text) (20 hours)

Module 3: The Weingarten map, curvature of plane curves, Arc length and line integrals

(Chapters 9, 10 & 11 of the text) (25 hours)

Module 4: Curvature of surfaces, Parametrized surfaces, local equivalence of surfaces and Parametrized surfaces.

(Chapters 12, 14 & 15 of the text). (30 hours)

Question paper pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-

1. Serge Lang, Differential Manifolds
5. Goursat, Mathematical Analysis, Vol – 1(last two chapters)

PC 14

MT03C14

NUMBER THEORY AND CRYPTOGRAPHY

Module 1: **Some topics in Elementary Number Theory**: Time estimates for doing arithmetic, divisibility and the Euclidean algorithm, congruences, Some applications to factoring.

(Chapter – I Sections 1, 2, 3 & 4 of the text) (28 hours)

Module 2: **Finite Fields and Quadratic Residues**: Finite fields, quadratic residues and reciprocity

(Chapter – II Sections 1 & 2 of the text) (14 hours)

Module 3: **Public Key**: The idea of public key cryptography, **RSA**, Discrete log.

(Chapter – IV Sections 1, 2 & 3 of the text) (25 hours)

Module 4: **Primality and Factoring**: Pseudo primes, The rho method, Fermat factorization and factor bases, the quadratic sieve method.

(Chapter – V Sections 1, 2, 3 & 5 of the text) (23 hours)

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Reference Books:

Optimization Techniques

Module I: INTEGER PROGRAMMING
(Chapter 6; sections: 6.1 – 6.10 of text – 1) (20 hours)

Module II: SENSITIVITY ANALYSIS; FLOW AND POTENTIALS IN NETWORKS
(Chapter – 5 & 7 Sections 5.1 to 5.9 & 7.1 to 7.9, 7.15 of text - 1) (25 hours)

Module III: THEORY OF GAMES
(Chapter 12; Sections: 12.1 – 12.9 of text – 1) (20 hours)

Module IV: NON- LINEAR PROGRAMMING
(Chapter 8; Sections: 8.1 – 8.14 of text – 2) (25 hours)

Question Paper Pattern
<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Reference:

Semester – 4

PC 16

MT04C16

SPECTRAL THEORY

Module I

Strong and weak convergence, convergence of sequence of operators and functionals, open mapping theorem, closed linear operators, closed graph theorem, Banach fixed point theorem

(Chapter 4 - Sections 4.8, 4.9, 4.12 & 4.13 - Chapter 5 – Section 5.1 of the text)

(25 hours)
Module 2
Spectral theory in finite dimensional normed space, basic concepts, spectral properties of bounded linear operators, further properties of resolvent and spectrum, use of complex analysis in spectral theory, Banach algebras, further properties of Banach algebras.
(Chapter 7 - Sections 7.1 to 7.7 of the text) (25 hours)

Module 3
Compact linear operators on normed spaces, further properties of compact linear operators, spectral properties of compact linear operators on normed spaces, further spectral properties of compact linear operators, unbounded linear operators and their Hilbert adjoint operators, Hilbert adjoint operators, symmetric and self adjoint linear operators
(Chapter 8 - Sections 8.1 to 8.4 - Chapter 10 Sections 10.1 & 10.2 of the text) (20 hours)

Module 4
Spectral properties of bounded self adjoint linear operators, further spectral properties of bounded self adjoint linear operators, positive operators, projection operators, further properties of projections
(Chapter 9 - Sections 9.1, 9.2, 9.3, 9.5, 9.6 of the text) (20 hours)

Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:
ELECTIVE COURSES

PE 1

ANALYTIC NUMBER THEORY

Module 1 Arithmetic Functions Dirichlet Multiplication and Averages of Arithmetical functions
Introduction to Chapter1 of the text, the Mobius function $\mu(n)$, the Euler totient function $\phi(n)$, a relation connecting $\mu(n)$ and $\phi(n)$, the Dirichlet product of arithmetical functions, Dirichlet inverses and Mobius inversion formula, the Mangoldt function $\Lambda(n)$, multiplicative e functions and Dirichlet multiplication, the inverse of completely multiplicative functions, the Lioville’s function $\lambda(n)$, the divisor function $\sigma_a(n)$, generalized convolutions, formal power series, the Bell series of an arithmetical function, Bell series and Dirichlet multiplication.
Introduction to Chapter2 of the text, the big oh notation, asymptotic equality of functions, Euler’s summation formula, some elementary asymptotic formulas, the average order of $d(n)$, The average order of the divisor function $\sigma_a(n)$, average order of $\phi(n)$, an application of distribution of lattice points visible from the origin, average order of $\mu(n)$ and $\Lambda(n)$, the partial sums of a Dirichlet product, application to $\mu(n)$ and $\Lambda(n)$.
(Chapter 2 sections 2.1 to 2.17 and Chapter 3 sections 3.1 to 3.11 of the text) (30 hours)

Module 2 Some Elementary Theorems on the Distribution of Prime Numbers
Introduction to Chapter4, Chebyshev’s functions $\psi(x)$ and $\theta(x)$, relation connecting $\theta(x)$ and $\pi(x)$, some equivalent forms of prime number theorem, inequalities of $\pi(n)$ and $\psi(n)$, Shapiro’s Tauberian theorem, applications of Shapiro’s theorem, an asymptotic formula for the partial sum $\sum_{p<x} \left(\frac{1}{p} \right)$.
(Chapter 4 sections 4.1 to 4.8 of the text) (15 hours)

Module 3 Congruences
Definition and basic properties of congruences, residue classes and complete residue systems, liner congruences, reduced residue systems and Euler – Fermat theorem, Polynomial congruences modulo p, Lagrange’s theorem, applications of Lagrange’s theorem, simultaneous linear congruences, the Chinese reminder theorem, applications of Chinese reminder theorem, polynomial congruences with prime power moduli
(Chapter 5 sections 5.1 to 5.9 of the text) (30 hours)
Module 4 **Primitive roots and partitions**

The exponent of a number mod m. Primitive roots, Primitive roots and reduced systems, The non existence of Primitive roots mod 2^α for $\alpha \geq 3$, The existence of Primitive roots mod p for odd primes p, Primitive roots and quadratic residues.

Partitions – Introduction, Geometric representation of partitions, Generating functions for partitions, Euler’s pentagonal-number theorem.

(Chapter 10 sections 10.1 to 10.5 & Chapter 14 sections 14.1 to 14.4 of the text) (15 hours)

Question Paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

COMBINATORICS

Module I Permutations and Combinations

Two basic counting principles, Permutations, Circular permutations, Combinations, The injection and bijection principles, Arrangements and selection with repetitions, Distribution problems

(Chapter I of the text) (20 hours)

Module II The Piegeonhole Principle and Ramsey Numbers

Introduction, The piegeonhole principle, More examples, Ramsey type problems and Ramsey numbers, Bounds for Ramsey numbers

(Chapter 3 of the text) (20 hours)
Module III Principle of Inclusion and Exclusion

Introduction, The principle, A generalization, Integer solutions and shortest routes
Surjective mappings and Sterling numbers of the second kind, Derangements and a
generalization, The Sieve of Eratosathenes and Euler ϕ-function.
(Chapter -4 Sections 4.1 to 4.7 of the text) (25 hours)

Module IV Generating Functions
Ordinary generating functions, Some modelling problems, Partitions of integer,
Exponential generating functions

Recurrence Relations
Introduction, Two examples, Linear homogeneous recurrence relations, General
linear recurrence relations, Two applications
(Chapter 5, 6 Sections 6.1 to 6.5) (25 hours)

<table>
<thead>
<tr>
<th>Question Paper Pattern</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-

CLASSICAL MECHANICS

(Butter worth – Heinenann)
Module 1: Generalized coordinates, the Principle of least action, Galileo’s relativity principle, the Lagrangian for a free particle, Lagrangian for a system of particle, energy, momentum, centre of mass, angular momentum, motion in one dimension, determination of the potential energy from the period of oscillation, the reduced mass, motion in a central field.
(Section 1 to 9, 11 to 14 of the text)

Module 2: Free oscillation in one dimension, angular velocity, the inertia tensor, angular momentum of a rigid body, the equation of motion of a rigid body, Eulerian angle, Euler’s equation.
(Section 21, 31 to 36 of the text)

Module 3: The Hamilton’s equation, the Routhian, Poisson brackets, the action as a function of the coordinates, Maupertui’s principle.
(Section 40 to 44 of the text)

Module 4: The Canonical transformation, Liouville’s theorem, the Hamiltonian – Jacobi equation, separation of the variables, adiabatic invariants, canonical Variables
(Section 45 – 50 of the text)

References
1. M. G. Calkin, Lagrangian and Hamiltonian Mechanics, Allied
2. Herbert Goldstein, Classical mechanics, Narosa
3. K C Gupta, Classical mechanics of particles and Rigid Bodies, Wiley Eastern

PE 4 MT04E04

PROBABILITY THEORY

All questions shall be based on the relevant portions of the reference books given in the end of each module

Module - 1
Discrete Probability (Empirical, Classical and Axiomatic approaches), Independent events, Bayes theorem, Random variables, and distribution functions (univariate and multivariate), Expectation and moments, marginal and conditional distributions. Probability Inequalities (Chebychev, Markov), Modes of convergence, Weak and Strong laws of large numbers (Khintchine’s Weak Law, Kolmogrov Strong Law, Bernaulli’s Strong Law) Central Limit theorem (Lindeberg-Levy theorem).

References.
Module – 2
Standard discrete and continuous univariate distributions (Binomial, Poisson, Negative binomial, Geometric, Exponential, Hypergeometric, Normal, Rectangular, Cauchy’s, Gamma, Beta), Multivariate normal distribution, Wishart distribution and their properties.

References.
For univariate distributions, refer the book

For Multivariate distributions, refer the book

Module – 3

References.
For Estimation, refer the book

For Tests of Hypothesis, refer the book

Module - 4
Gauss-Markov models, estimability of parameters, best linear unbiased estimators, Analysis of variance and covariance. One way and two way classification with one observation per cell.

References.
Question paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

PE 5 MT04E05

MATHEMATICAL ECONOMICS

Module:-1 The theory of consumer behaviour- Introductory, Maximization of utility, Indifference curve approach, Marginal rate of substitution, Consumer’s equilibrium, Demand curve, Relative preference theory of demand, Numerical problems related to these theory part.

Module:-2 The production function:- Meaning and nature of production function, The law of variable proportion, Isoquants, Marginal technical rate of substitution, Producer’s equilibrium, expansion path, The elasticity of substitution, Ridge lines and economic region of production, Euler’s theorem, Cobb Douglas production function, The CES Production function, Numerical problems related to these theory parts.

Module:-3 Input – Output Analysis:- Meaning of input – output, main features of analysis, Assumptions, Leontief’s static and dynamic model, limitations, Importance and Applications of analysis, Numerical problems related to these theory parts..

(Chapter – 15. Sectios 15.1, 15.2, 15.3, 15.4, 15.5,15.6, 15.7, 15.8 & 15.9 of text - 1)

(20 hours)

(Chapter 6 Sections 6.1 to 6.5 of text 2) (20 hours)

Question paper pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-
5. Josef Hadar, Mathematical theory of economic behaviour, Addison-Wesley

PE 6

COMPUTING FOR MATHEMATICS

Textbooks

Module 2. Classes and Objects, Constructors and Destructors, Operator overloading and type conversions
(Chapters 5-7 of text 1) (25 hours)

Module 3. Inheritance: Extending classes, Managing console I/O operations
(Chapters 8 and 10 of text 1) (20 hours)

Module 4. Introduction to LaTeX: Getting started-Preparing an input file-The input
Changing the type style-Symbols from other languages -Mathematical formulas
Defining commands and environments. Other document classes-Books-Slides-
Letter
(Chapter 2,3,and 5 of Text 2) (20 hours)

For this course a record book of the practical work is to be kept. A maximum of 3 weightage is to be awarded for the record and it is to be awarded by a committee of the HOD and the teacher in charge of the course. These 3 weightage is the weightages of the assignment, seminar and the internal viva.

If this paper is offered by the SDE or for private candidates the same is to be maintained and shall be produced before the viva board. The viva board can reserve a maximum of 10 marks for this record book.

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References

OPRRATIONS RESEARCH
Module 1: INVENTORY MODELS

Introduction – Variables in an inventory problem – Objectives of inventory control –
The classical E.O.Q. without shortages – The classical E.O.Q. with shortages – The
Production Lot size (P.L.S) models – Nonzero Lead time – The Newsboy Problem (a
single period model) – Lot size reorder point model – Variable lead times – The
importance of selecting the right model.
(Chapter 8; Sections: 8.1 – 8.14 of text 1) (20 hours)

Module 2: QUEUING SYSTEMS

Why study queues? – Elements of a queueing model – Role of exponential
distribution (Derivation of exponential distribution; forgetfulness property) – Pure
Birth and Death models – Relationship between the exponential and Poisson
distributions – Generalized Queueing Models – Kendall notation – Poisson Queueing
Models – Single server models and multiple server models – Machine servicing
models – (M/M/R) : (GD/K/K) Model – (M/G/1) : (GD/) model – Pollaczek-
Khintchine (P - K) formula.
(Chapter 17; Sections: 17.1 – 17.9 of text – 2) (25 hours)

Module 3: DYNAMIC PROGRAMMING

Introduction - Minimum path problem – Single additive constraint, additively
separable return – Single multiplicative constraints, additively separable return -
Single additive constraint, multiplicatively separable return – Computational
economy in DP – Serial multistage models – Examples of failure – Decomposition – backward and forward recursions – Systems with more than one
constraint – Applications of D.P to continuous systems.
(Chapter: 10; Sections: 10.1 – 10.12 of text – 3) (20 hours)

Module 4: NETWORK SEQUENCING; SIMULATION MODELING

Problem of sequencing – Basic assumptions – Processing n jobs through two
machines – OptimumSequence (Johnson Bellman) Algorithm - Processing n jobs
through k machines – Processing of two jobs through k machines – Maintenance crew
scheduling.

Simulation – Generation of random variables – Monte Carlo simulation – Sampling
from probability distributions: 1. Inverse method, 2. Convolution method (&Box-
(Chapter: 12; Sections: 12.1 – 12.7 of text – 4

Chapter: 18- Sections: 18.1 – 18.6 of text – 2) (25 hours)
Question Paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

PE 8 MT04E08

SPECIAL FUNCTIONS

Module – 1

Infinite products:- Introduction, definition of an infinite product, a necessary condition for convergence, the associated series of logarithms, absolute convergence, uniform convergence.
The Gamma and Beta functions:- The Euler and Mascheroni constant γ, the Gamma function, a series for $\Gamma(z)$, evaluation of $\Gamma(1)$ and $\Gamma(1)$, the Euler product for $\Gamma(z)$, the difference equation $\Gamma(z + 1) = z\Gamma(z)$, the order symbols o and 0, evaluation of certain infinite products, Euler’s integral for $\Gamma(z)$, the Beta function, the value of $\Gamma(z)\Gamma(1 - z)$, the factorial function, Legendre’s duplication formulae, Gauss’ multiplication theorem, a summation formula due to Euler, the behavior of log $\Gamma(z)$ for large $|z|$

(Chapter 1 & 2 of text – Sections 1 to 22)

Module – 2

The hypergeometric function:- The function $F(a,b,c,z)$, a simple integral form, $F(a,b,c,1)$ as a function of the parameters, evaluation of $F(a,b,c,1)$, the contiguous function relations, the hypergeometric differential equation, logarithmic solution of the hypergeometric equation, $F(a,b,c,z)$ as a function of its parameters, elementary series multiplications, simple transformations, relation between functions of z and $1 - z$.
Module – 3

Generalized Hypergeometric Functions: The function pF_q, the exponential and binomial functions, a differential equation, other solutions of the differential equation, the contiguous function relations, a simple integral, the pF_q with unit argument.

The Confluent Hypergeometric Functions: Basic properties of the $1F_1$, Kummer’s first formula, Kummer’s second formula.

Module – 4

Legendre Polynomials: A generating function, Differential recurrence relations, the pure recurrence relation, Legendre’s differential equation, the Rodrigue’s formula, Bateman’s generating function, additional generating functions, Hypergeometric forms of $p_n(x)$, Brafman’s generating function, special properties of $p_n(x)$.

Hermite Polynomials: Definition of $H_n(x)$, recurrence relations, the Rodrigue’s formula, other generating functions, integrals.

Question paper pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

THEORY OF WAVELETS

Pre-requisites:- Linear Algebra, Discrete Fourier Transforms, Elementary Hilbert Space theorem. (No questions shall be asked from these sections.)

Module – 1:- Construction of Wavelets on \mathbb{Z}_N: The First Stage.
(Chapter – 3 Section 3.1 of the text) (20 hours)

Module – 2:- Construction of Wavelets on \mathbb{Z}_N: The Iteration Step, Examples – Haar, Shannon and Daubechies).
(Chapter – 3 Section 3.2 & 3.3 of the text) (20 hours)

Module – 3:- $l^2(\mathbb{Z})$, Complete Orthonormal sets in Hilbert Spaces, $L^2[-\pi, \pi]$ and Fourier Series.
(Chapter – 4 Section 4.1, 4.2 & 4.3 of the text) (20 hours)

Module – 4:- The Fourier Transform and Convolution on $l^2(\mathbb{Z})$, First-stage Wavelets on \mathbb{Z}, The Iteration step for Wavelets on \mathbb{Z}, Examples- Haar and Daubechies.
(Chapter – 4 Section 4.4, 4.5, 4.6 & 4.7 of the text) (30 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-

SIGNAL THEORY

Module – 1 General Concepts:
Definitions, Systems with Stochastic Inputs, The Power Spectrum, Discrete-Time Processes, Simple problems
(Chapter – 9, Sections 9.1 to 9.4 of the text) (22 hours)

Module – 2 Random Walks and Other Applications.
Random Walks, Poisson points and Shot Noise, Modulation.
(Chapter –10, Sections 10.1 to 10.3 of the text) (22 hours)

Module – 3 Spectral Representation
(Chapter – 11, Sections 11.1 to11.4 of the text) (24 hours)

Module – 4 Entropy
Introduction, Basic Concepts, Coding, Channel Capacity, Simple Problems.
(Proof of the channel Capacity theorem excluded)
(Chapter – 14, Sections 14.1, 14.2, 14.5 & 14.6 of the text) (22 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

References:–
Module: - 1 The Algebra-Geometry Lexicon – Hilbert’s Nullstellensatz
Maximal ideals, Jacobson Rings, Coordinate Rings, Simple problems.
(Chapter1 Sections 1.1, 1.2 & 1.3 of the text) (25 hours)

Module: - 2 Noetherian and Artinian Rings.
The Noether and Artin Properties for Rings and Modules, Noetherian Rings and Modules, Simple problems
(Chapter2 Sections 2.1 & 2.2, of the text) (20 hours)

Module: - 3 The Zariski Topology
Affine Varieties, Spectra, Noetherian and Irreducible Spaces, Simple problems.
(Chapter3 Sections 3.1, 3.2 & 3.3 of the text) (25 hours)

Module: - 4 A Summary of the Lexicon
True Geometry: Affine Varieties, Abstract Geometry : Spectra, Simple problems
(Chapter4 Sections 4.1 & 4.2, of the text). (20 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:

Module-1
Introduction
A Brief Historical Background
Fractional Integrals: Riemann-Liouville Fractional Integrals, Basic properties of Fractional Integrals, Illustrative Examples.
Riemann-Liouville Fractional Derivatives, Illustrative Examples.
(3.1, 3.2, 3.3 -3.3.1, 3.3.2, 3.3.3 - 3.4 - 3.4.1 of the text)

Module-2
The Weyl Integral: Basic properties of Weyl Integrals, Illustrative examples.
(3.5 - 3.5.1, 3.5.2, 3.6 - 3.6.1, 3.6.2, 3.6.3 of the text)

Module-3
Mellin Transforms: Mellin Transform of the n^{th} Derivative, Illustrative Examples
Kober Operators: Erdelyl-Kober Operators
Generalized Kober Operators
(3.7 - 3.7.1, 3.7.2, 3.8 - 3.8.1, 3.9 of the text)

Module-4
Saigo Operators: Relations among the Operators, Power Function Formulae, Mellin Transform of Saigo Operators, Representation of Saigo Operators.
(3.10 - 3.10.1, 3.10.2, 3.10.3, 3.10.4 of the text)

Question paper pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-
(6) Lecture notes on Multivariable and Matrix variable calculus and Applications, Stochastic models, Edited by A.M. Mathai, Publication number – 40, SERC School notes, CMS, pala, Kerala.(phone- 04822-216317)

PE 13 MT04E13

ALGORITHMIC GRAPH THEORY

Text Book:- Gray Chartrand and O.R Oellermann , Applied and Algorithmic Graph Theory, Tata McGraw- Hill Companies Inc

Module 1: Introduction to Graphs and Algorithms
What is graph? The degree of a vertex. isomorphic graphs. subgraphs, degree sequences. connected graphs. cutvertices and blocks. special graphs. digraphs. algorithmic complexity. Search algorithms, sorting algorithms. greedy algorithms., representing graphs in a computer.
(Capter 1 Sections 1.1 to 1.9, Chapter 2 Sections 2.1, 2.2 , 2.3, 2.5 and 2.6 of the text) (24 hours)

Module 2: Trees, paths and distances
Properties of trees, rooted trees. Depth-first search: a tool for finding blocks,. breadth – first search, . the minimum spanning tree problem
Distance in a graphs, distance in weighted graphs, .the centre and median of a graph. activity digraphs and critical paths.
(Chapter 3 sections 3.1 to 3.6 , Chapter 4 sections 4.1 to 4.4 of the text) (22 hours)

Module 3: Networks
An introduction to networks. the max-flow min-cut theorem. the max-flow min-cut algorithm. connectivity and edge connectivity . Mengers theorem.
(Chapter 5 sections 5.1 , 5.2 , 5.3 , 5.5 and 5.6 of the text) (22 hours)

Module 4: Matchings and Factorizations
An introduction to matchings . maximum matchings in a bipartite graph,. Factorizations. Block Designs.
(Chapter 6 sections 6.1 , 6.2 , 6.4 and 6.5 of the text) (22 hours)

Question paper pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Reference:-
1. Alan Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985

CODING THEORY

Text :- Vera Pless 3rd Edition , Introduction to the theory of error coding codes, Wiley Inter Science

Module:-1 Introduction Basic Definitions Weight, Maximum Likelihood decoding Synarome decoding, Perfect Codes, Hamming codes, Sphere packing bound, more general facts.
 (chapter 1 & Chapter 2 Sections 2.1, 2.2, 2.3 of the text) (25 hours)

Module:-2 Self dual codes, The Golay codes, A double error correction BCH code and a field of 16 elements.
 (Chapter 2 Section 2.4 & Chapter 3 of the text) (20 hours)

Module:- 3 Finite fields
 (Chapter 4 of the text) (20 hours)

Module:- 4 Cyclic Codes, BCH codes)
 (Chapter 5 & Chapter 7 of the text) (25 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>
References:-

COMPLEX ALGEBRAIC CURVES

Module:- 1 Introduction and background - Relationship with other parts of Mathematics – Number theory, Singularities and the theory of knots, Complex analysis, Abelian Integrals – Real Algebraic Curves – Hilbert’s Nullstellensatz, Techniques for drawing real algebraic curves, Real algebraic curves inside complex real algebraic curves, Important examples of real algebraic curves.
(Chapter 1 of the text) (25 hours)

Module:- 2 Foundations - Complex real algebraic curves in \mathbb{C}^2, Complex projective spaces, Complex projective curves in \mathbb{P}_2, Affine and Projective curves, Exercises (Simple problems).
(Chapter 2 of the text) (20 hours)

Module:- 3 Algebraic Properties – Bezout’s theorem, Points of inflection and cubic curves, Exercises (simple problems)
(Chapter 3 of the text) (25 hours)

Module:- 4 Topological Properties – The degree – genus formula, Branched curves of \mathbb{P}_1, Proof of degree-genus formula, Exercises (Simple problems)
(Chapter 4 of the text – 4.1.1 & 4.1.2 excluded) (20 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total | 8 | 8 | 6 |
References:-
4. J.L.Coolidge, A treatise on algebraic plane curves, Dover(1959)

ALGEBRAIC GEOMETRY

Module:- 1 Guiding problems

Implicitization, Ideal membership, Interpolation

Division algorithm and Grobner bases

3 and chain conditions, Buchberger’s Criterion.

(Chapter 1 – Sections 1.1 to 1.3, Chapter – 2 Sections 2.1 to 2.5) (30 hours)

Module:- 2 Affine varieties

Ideals and varieties, Closed sets and the Zariski topology, Coordinate rings and morphisms, Rational maps, Resolving rational maps, Rational and unirational varieties.

(Chapter – 3 Sections 3.1 to 3.6) (22 hours)

Module:- 3 Elimination

Projections and graphs, Images of rational maps, Secant varieties, joins, and scrolls.

Resultants

Common roots of univariate polynomials, The resultant as a function of the roots, Resultants and elimination theory.

(Chapter – 4 Sections 4.1 to 4.3 Chapter – 5 Sections 5.1 to 5.3) (23 hours)

Module:- 4 Irreducible varieties

Existence of the decomposition, Irreducibility and domains, Doeminant morphisms.

Nullstellensatz
Statement of the Nullstellensatz, Classification of maximal ideals, Transcendence bases, Integral elements.

Primary decomposition

Irreducible ideals, Quotient ideals, Primary ideals.

(Chapter:- 6 Sections 6.1 to 6.3) Chapter – 7 Sections 7.1 to 7.4 Chapter – 8 Sections 8.1 to 8.3) (15 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-

FRACTAL GEOMETRY

Pre-requisites – Mathematical background – A quick revision
(Chapter 1 of the text).
No questions shall be asked from this section. (5 hours)

Module:- 1 Hausdorff measure and dimension
Hausdorff measure, Hausdorff dimension, Calculation of Hausdorff dimension-Simple examples, Equivalent definitions of Hausdorff dimension, Finer definitions of dimension.
Alternative definitions of dimension
Box counting dimension, Properties and problems of box counting dimension, Modified box counting dimension, Packing measures and dimension.
(Chapter 2 , 3 Sections 3.1 to 3.4 of the text.) (30 hours)

Module: 2 Techniques for calculating dimensions
Basic methods, Subsets of finite measure, Potential theoretic methods, Fourier transform methods.
Local structure of fractals
Densities, Structure of 1-sets, Tangents to s-sets.
(Chapter 4 & 5 of the text.) (25 hours)

Module:- 3 Projections of fractals
Projections of arbitrary sets, Projections of s-sets of integral dimension,
Products of fractals – Product formulae
(Chapter 6 & 7 of the text) (18 hours)

Module:- 4 Intersections of fractals
Intersection formulae for fractals, Sets with large intersection.
(chapter 8 of the text) (12 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Reference:-
LIE ALGEBRAS

Text:- James E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer

Module:- 1 Basic Concepts
 Definition and first examples, Ideals and homomorphisms, Solvable and nilpotent Lie Algebras.
 (Chapter I Sections 1, 2, & 3 of the text) (25 hours)

Module:- 2 Semi simple Lie Algebras
 Theorems of Lie and Cartan, Killing form, Complete reducibility of representations.
 (Chapter II Sections 4, 5, & 6 of the text) (20 hours)

Module:- 3 Root Systems
 Axiomatics, Simple roots and Weyl group, Classification.(proof of Classification theorem excluded)
 (Chapter III Sections 9, 10 & 11 of the text) (25 hours)

Module:- 4 Isomorphism and Conjugacy Theorems
 Isomorphism theorem, Cartan Algebras, Conjugacy theorems
 (Chapter IV Sections 14, 15, & 16 – 16.1 to 16.3 of the text) (20 hours)

Question paper Pattern

<table>
<thead>
<tr>
<th></th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References:-
ALGEBRAIC TOPOLOGY

Chapters 1-5 (All sections and Theorems)

Module 1

Geometric complexes and Polyhedra-Introduction-Examples- Orientations of geometric complexes-Chains-Cycles-boundaries and Homology groups-Examples of Homology groups-The structure of Homology groups-The Euler-Poincare Theorem-Pseudomanifolds and the Homology groups of S^0.

Module 2

Simplicial approximations-Induced homomorphisms on the Homology groups-The Brouwer fixed point Theorem and related results.

Module 3

The Fundamental group-The covering homotopy property for S^1-Examples of fundamental groups-the relation between H₁(K) and π₁(|K|).

Module 4

Covering spaces -Definition and some examples-Basic properties of covering spaces-Classification of covering spaces-Universal covering spaces.

Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Module III

<table>
<thead>
<tr>
<th>Module</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module IV</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

References

FINANCIAL MATHEMATICS

Module:-1 Pricing of Arbitrage
(Chapter:- 1 Section 1.1 to 1.6 of the text) (24 hours)

Module:- 2 Martingale Measures
(Chapter:- 2 Section 2.1 to 2.7 of the text) (22 hours)

Module:-3 The First Fundamental Theorem
The Separating Hyper Plane Theorem in \mathbb{R}^n, Construction of Martingale Measures, Path wise Description, Examples, General Discrete Models.
(Chapter:- 3 Section 3.1 to 3.5 of the text) (22 hours)

Module:- 4 Complete Markets
(Chapter:- 4 Section 4.1 to 4.6 of the text) (22 hours)
Question paper Pattern

<table>
<thead>
<tr>
<th>Module</th>
<th>Part A</th>
<th>Part B</th>
<th>Part C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Short questions</td>
<td>Short essays</td>
<td>Long essays</td>
</tr>
<tr>
<td>Module I</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module II</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Module III</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Module IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

References: