Chapter 15 Lipids
Lipids

Lipids are

- biomolecules that contain fatty acids or a steroid nucleus
- soluble in organic solvents, but not in water
- named for the Greek word *lipos*, which means “fat”
- extracted from cells using organic solvents
- an important feature in cell membranes, fat-soluble vitamins, and steroid hormones
Types of Lipids

There are different types of lipids.
1. Lipids such as waxes, fats, oils, and glycerophospholipids are esters that can be hydrolyzed to give fatty acids and alcohols.
2. Steroids are also lipids; they do not contain fatty acids and cannot be hydrolyzed. They are characterized by the steroid nucleus of four fused carbon rings.
Lipids are naturally occurring compounds that are soluble in organic solvents but not in water.
Fatty Acids

Fatty acids are

• long-chain carboxylic acids
• typically 12–18 carbon atoms
• insoluble in water
• saturated or unsaturated

Olive oil contains 84% unsaturated fatty acids and 16% saturated fatty acids.
Saturated and Unsaturated Fatty Acids

Fatty acids can be
- **saturated**, with all single C–C bonds
- **monounsaturated**, with one double C=C bond
- **polyunsaturated**, with more than one double C=C bond
Properties of Saturated Fatty Acids

Saturated fatty acids
- contain only single C–C bonds and fit close together in a regular pattern
- have strong attractions between long carbon chains
- have higher melting points and are usually solids at room temperature

In saturated fatty acids, the molecules fit closely together to give high melting points.
Properties of Unsaturated Fatty Acids

Unsaturated fatty acids
- contain one or more cis double C=C bonds
- have “kinks” in the fatty acid chains
- do not pack closely
- have few attractions between chains
- have low melting points
- are liquids at room temperature

In unsaturated fatty acids, molecules cannot fit closely together, resulting in lower melting points.
Melting Points of Some Saturated Fatty Acids

<table>
<thead>
<tr>
<th>Name</th>
<th>Carbon Atoms</th>
<th>Source</th>
<th>Melting Point (°C)</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauric acid</td>
<td>12</td>
<td>Coconut</td>
<td>43</td>
<td>(\text{CH}_3\text{--(CH}2\text{)}{10}\text{--COOH})</td>
</tr>
<tr>
<td>Myristic acid</td>
<td>14</td>
<td>Nutmeg</td>
<td>54</td>
<td>(\text{CH}_3\text{--(CH}2\text{)}{2}\text{--COOH})</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>16</td>
<td>Palm</td>
<td>62</td>
<td>(\text{CH}_3\text{--(CH}2\text{)}{14}\text{--COOH})</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>18</td>
<td>Animal fat</td>
<td>69</td>
<td>(\text{CH}_3\text{--(CH}2\text{)}{18}\text{--COOH})</td>
</tr>
</tbody>
</table>
Melting Points of Some Unsaturated Fatty Acids

<table>
<thead>
<tr>
<th>Name</th>
<th>Carbon Atoms</th>
<th>Source</th>
<th>Melting Point (°C)</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmitoleic acid</td>
<td>16</td>
<td>Butter</td>
<td>0</td>
<td>$\text{CH}_3-(\text{CH}_2)_5-\text{CH}≡\text{CH}-(\text{CH}_2)_2-\text{COOH}$</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>18</td>
<td>Olives, corn</td>
<td>13</td>
<td>$\text{CH}_3-(\text{CH}_2)_7-\text{CH}≡\text{CH}-(\text{CH}_2)_2-\text{COOH}$</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>18</td>
<td>Soybean, sunflower</td>
<td>−9</td>
<td>$\text{CH}_3-(\text{CH}_2)_4-\text{CH}≡\text{CH}-\text{CH}-(\text{CH}_2)_2-\text{COOH}$</td>
</tr>
<tr>
<td>Linolenic acid</td>
<td>18</td>
<td>Corn</td>
<td>−17</td>
<td>$\text{CH}_3-\text{CH}_2-\text{CH}≡\text{CH}-\text{CH}_2-\text{CH}≡\text{CH}-(\text{CH}_2)_2-\text{COOH}$</td>
</tr>
<tr>
<td>Arachidonic acid</td>
<td>20</td>
<td>Meat, eggs, fish</td>
<td>−50</td>
<td>$\text{CH}_3-(\text{CH}_2)_3-(\text{CH}_2-\text{CH}≡\text{CH})_4-(\text{CH}_2)_3-\text{COOH}$</td>
</tr>
</tbody>
</table>
Prostaglandins

• are hormone-like substances produced in cells
• are also known as eicosanoids, formed from arachidonic acid, the polyunsaturated fatty acid with 20 carbon atoms
• differ by the substituents attached to the five-carbon ring
• have many functions, such as lower or raising blood pressure and stimulating contraction and relaxation of uterine smooth muscle
Prostaglandins

When tissues are injured, arachidonic acid is converted to prostaglandins such as PGE and PGF that produce inflammation and pain in the area.
Prostaglandins: NSAIDs

The treatment of pain, fever, and inflammation is based on inhibiting the enzymes that convert arachidonic acid to prostaglandins.
Prostaglandins: NSAIDs

Nonsteroidal anti-inflammatory drugs (NSAIDs) block production of prostaglandins, decreasing pain and inflammation.

Aspirin (acetylsalicylic acid) Ibuprofen (Advil, Motrin) Naproxen (Aleve, Naprosyn)
Omega-3 Fatty Acids

Unsaturated fats such as those in vegetable oils and fish are recognized as more beneficial to health than saturated fats.

Vegetables contain omega-6 acids, meaning the first double bond occurs at carbon 6. Examples of omega-6 acids are linoleic and arachidonic acids.

Fish have high levels of omega-3 acids, meaning the first double bond occurs at carbon 3. Examples of omega-3 acids include linolenic, eicosapentaenoic, and docosahexaenoic acids.

Cold-water fish are a source of omega-3 fatty acids.
Omega-3 and Omega-6 Fatty Acids

Omega-6 Fatty Acids

- **Linoleic acid (LA)**
 \[\text{CH}_3\text{-(CH}_2\text{)}_4\text{-CH=CH-CH}_2\text{-CH=CH-(CH}_2\text{)}_7\text{-COOH} \]

 1 6

- **Arachidonic acid (AA)**
 \[\text{CH}_3\text{-(CH}_2\text{)}_4\text{-(CH=CH-CH}_2\text{)}_4\text{-(CH}_2\text{)}_2\text{-COOH} \]

 1 6

Omega-3 Fatty Acids

- **Linolenic acid (ALA)**
 \[\text{CH}_3\text{-CH}_2\text{-(CH=CH-CH}_2\text{)}_3\text{-(CH}_2\text{)}_6\text{-COOH} \]

 1 3

- **Eicosapentaenoic acid (EPA)**
 \[\text{CH}_3\text{-CH}_2\text{-(CH=CH-CH}_2\text{)}_5\text{-(CH}_2\text{)}_2\text{-COOH} \]

 1 3

- **Docosahexaenoic acid (DHA)**
 \[\text{CH}_3\text{-CH}_2\text{-(CH=CH-CH}_2\text{)}_6\text{-CH}_2\text{-COOH} \]

 1 3

© 2012 Pearson Education, Inc.
Waxes

Waxes are

- esters of saturated fatty acids and long-chain alcohols
- coatings that prevent loss of water by leaves of plants

<table>
<thead>
<tr>
<th>Table 15.2 Some Typical Waxes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Beeswax</td>
</tr>
<tr>
<td>Brazilian palm tree</td>
</tr>
<tr>
<td>Jojoba bush</td>
</tr>
</tbody>
</table>
Fats and Oils: Triacylglycerols

Fats and oils are
- also called triacylglycerols
- esters of glycerol
- produced by esterification
- formed when the hydroxyl groups of glycerol react with the carboxyl groups of fatty acids
- In a **triacylglycerol**, glycerol forms ester bonds with three fatty acids.

![Triacylglycerol diagram](image-url)
Triacylglycerols

Triacylglycerol may contain different fatty acids.

\[
\begin{align*}
\text{O} & \\
\text{CH}_2\text{O}\text{C}(\text{CH}_2)_{10}\text{CH}_3 & \text{Lauric acid} \\
\text{O} & \\
\text{CH}\text{O}\text{C}(\text{CH}_2)_{12}\text{CH}_3 & \text{Myristic acid} \\
\text{O} & \\
\text{CH}_2\text{O}\text{C}(\text{CH}_2)_{14}\text{CH}_3 & \text{Palmitic acid}
\end{align*}
\]

A mixed triacylglycerol
Melting Points of Fats and Oils

A fat
- is usually solid at room temperature
- is prevalent in meats, whole milk, butter, and cheese

An oil
- is usually liquid at room temperature
- is prevalent in plants such as olive and safflower
Oils with Unsaturated Fatty Acids

Oils

• have more unsaturated fats
• have cis double bonds that cause “kinks” in the fatty acid chains
• with “kinks” in the chains do not allow the triacylglycerol molecules to pack closely
• have lower melting points than saturated fatty acids
• are liquids at room temperature
Unsaturated fatty acid chains with kinks cannot pack closely while those with saturated fatty acid chains can. This close packing leads to higher melting points for saturated fats than unsaturated fats.
Vegetable oils have low melting points because they have a higher percentage of unsaturated fatty acids than do animal fats.
Chemical Properties of Triacylglycerols

The chemical reactions of triacylglycerols are similar to those of alkenes and esters. In

- **hydrogenation**, double bonds in unsaturated fatty acids react with H_2 in the presence of a Ni or Pt catalyst

- **hydrolysis**, ester bonds are split by water in the presence of an acid, a base, or an enzyme
Hydrogenation of Oils

The **hydrogenation** of oils

- adds hydrogen \((H_2)\) to the carbon atoms of double bonds
- converts double bonds to single bonds increases the melting point
- produces solids, such as margarine and shortening

When hydrogen adds to all the double bonds of glycercyl trioleate (triolein) using a nickel catalyst, the product is the saturated fat glycercyl tristearate (tristearin).
Olestra, a Fat Substitute

Olestra is

- used in foods as an artificial fat
- sucrose linked by ester bonds to several long-chain fatty chains
- not broken down in the intestinal tract
Cis and Trans Fatty Acids

Unsaturated fatty acids can be

- cis, with bulky groups on same side of C=C

- trans, with bulky groups on opposite sides of C=C
Hydrogenation and Trans Fatty Acids

• Most naturally occurring fatty acids have cis double bonds.
• During hydrogenation, some cis double bonds are converted to trans double bonds.
• In the body, trans fatty acids behave like saturated fatty acids.
• It is estimated that 2–4% of our total calories are in the form of trans fatty acids.
• Several studies reported that trans fatty acids raise LDL-cholesterol and lower HDL-cholesterol.
Hydrogenation of Unsaturated Fats

cis-Oleic acid

H₂/Ni

Ni catalyst

H₂

Isomerization

Addition of H₂

Undesired side product (trans-oleic acid)

Desired saturated product (stearic acid)
Hydrolysis

In hydrolysis,
- triacylglycerols split into glycerol and three fatty acids
- an acid or enzyme catalyst is required

\[
\begin{align*}
\text{Glyceryl tripalmitate (tripalmitin)} & \quad \text{Water adds to ester bonds} \\
\text{(CH}_2\text{O)}_3\text{C}\text{-(CH}_2\text{)}_{14}\text{CH}_3 & \quad \text{CH}_2\text{OH} \\
\text{CH-O-C-(CH}_2\text{)}_{14}\text{CH}_3 + 3\text{H}_2\text{O} & \quad \text{CH}_2\text{OH} + 3\text{HO-C-(CH}_2\text{)}_{14}\text{CH}_3 \\
\text{(CH}_2\text{O)}_3\text{C}\text{-(CH}_2\text{)}_{14}\text{CH}_3 & \quad \text{CH}_2\text{OH} \\
\text{Glycerol} & \quad \text{3 Palmitic acid molecules}
\end{align*}
\]
Saponification and Soap

Saponification

• is the reaction of a fat with a strong base
• splits triacylglycerols into glycerol and the salts of fatty acids
• is the process of forming “soaps” (salts of fatty acids)
• with KOH gives softer soaps

\[
\text{CH}_2\text{O}_2\text{C}_3(\text{CH}_2)_{14}\text{CH}_3 + 3\text{NaOH} \rightarrow \text{CH}_2\text{OH} + 3\text{Na}^+\text{O}_2\text{C}_3(\text{CH}_2)_{14}\text{CH}_3
\]

Glycerol

3 Sodium palmitate

(soap)

Glyceryl tripalmitate
(tripalmitin)
Summary of Organic and Lipid Reactions

Table 15.3 Summary of Organic and Lipid Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Organic Reactants and Products</th>
<th>Lipid Reactants and Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esterification</td>
<td>Carboxylic acid + alcohol $\xrightarrow{H^+, \text{Heat}}$ ester + water</td>
<td>3 Fatty acids + glycerol $\xrightarrow{\text{Enzyme}}$ triacylglycerol (fat) + 3 water</td>
</tr>
<tr>
<td>Hydrogenation</td>
<td>Alkene (double bond) + hydrogen $\xrightarrow{\text{Pt}}$ alkane (single bonds)</td>
<td>Unsaturated fat (double bonds) + hydrogen $\xrightarrow{\text{Ni}}$ saturated fat (single bonds)</td>
</tr>
<tr>
<td>Hydrolysis</td>
<td>Ester + water $\xrightarrow{H^+, \text{Heat}}$ carboxylic acid + alcohol</td>
<td>Triacylglycerol (fat) + 3 water $\xrightarrow{\text{Enzyme}}$ 3 fatty acids + glycerol</td>
</tr>
<tr>
<td>Saponification</td>
<td>Ester + sodium hydroxide \rightarrow sodium salt of carboxylic acid + alcohol</td>
<td>Triacylglycerol (fat) + 3 sodium hydroxide \rightarrow 3 sodium salts of fatty acid (soaps) + glycerol</td>
</tr>
</tbody>
</table>
Glycerophospholipids are

- the most abundant lipids in cell membranes
- composed of glycerol, two fatty acids, phosphate, and an amino alcohol
Polarity of Glycerophospholipids

Amino alcohols found in **glycerophospholipids**
- have two nonpolar fatty acid chains, a phosphate group, and a polar amino alcohol
- are ionized at physiological pH of 7.4
Lecithin and cephalin are types of glycerophospholipids that are
• abundant in brain and nerve tissues
• found in egg yolk, wheat germ, and yeast
Structure and Polarity of a Glycerophospholipid

Glycerophospholipids

- have both polar and nonpolar regions that allow them to interact with polar and nonpolar substances
- have a polar head containing the ionized amino alcohol and phosphate portion, which is strongly attracted to water
- have a hydrocarbon tail portion only soluble in nonpolar substances such as lipids
- are the most abundant lipids in cell membranes and play an important role in cellular permeability
(a) In a glycerophospholipid, a polar head contains the ionized amino alcohol and phosphate groups, while the two fatty acids make up the nonpolar tails.

(b) A simplified drawing indicates the polar region and the nonpolar region.
A **steroid nucleus** consists of

- three cyclohexane rings and one cylopentane ring fused together
- rings designated as A, B, C, and D
- numbered carbon atoms beginning in ring A
Cholesterol

- is the most abundant steroid in the body
- has methyl groups (carbons 10, 13) an alkyl chain (carbon 17), and an –OH group (carbon 3) attached to the steroid nucleus
Cholesterol in the Body

Cholesterol

- is obtained from meats, milk, and eggs
- is synthesized in the liver
- is needed for cell membranes, brain and nerve tissue, steroid hormones, and vitamin D
- clogs arteries when high levels form plaque
Cholesterol

- is considered elevated if plasma cholesterol exceeds 200 mg/dL
- is synthesized in the liver and obtained from foods
- increases in the liver when high levels of saturated fat are consumed
Cholesterol in Foods

Table 15.4 Cholesterol Content of Some Foods

<table>
<thead>
<tr>
<th>Food</th>
<th>Serving Size</th>
<th>Cholesterol (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver (beef)</td>
<td>3 oz</td>
<td>370</td>
</tr>
<tr>
<td>Large egg</td>
<td>1</td>
<td>200</td>
</tr>
<tr>
<td>Lobster</td>
<td>3 oz</td>
<td>175</td>
</tr>
<tr>
<td>Fried chicken</td>
<td>$3\frac{1}{2}$ oz</td>
<td>130</td>
</tr>
<tr>
<td>Hamburger</td>
<td>3 oz</td>
<td>85</td>
</tr>
<tr>
<td>Chicken (no skin)</td>
<td>3 oz</td>
<td>75</td>
</tr>
<tr>
<td>Fish (salmon)</td>
<td>3 oz</td>
<td>40</td>
</tr>
<tr>
<td>Whole milk</td>
<td>1 cup</td>
<td>35</td>
</tr>
<tr>
<td>Butter</td>
<td>1 tablespoon</td>
<td>30</td>
</tr>
<tr>
<td>Skim milk</td>
<td>1 cup</td>
<td>5</td>
</tr>
<tr>
<td>Margarine</td>
<td>1 tablespoon</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning Check

Match the components of the cholesterol molecule with the following:

___ carbon chain
___ steroid nucleus
___ hydroxyl group
___ methyl group
Solution

Match the components of the cholesterol molecule with the following:

D carbon chain
A hydroxyl group
C steroid nucleus
B methyl group
Bile Salts

Bile salts

- are synthesized in the liver from cholesterol and stored in the gallbladder
- have polar and nonpolar regions that act like soaps to make fat soluble in water
- help in absorption of cholesterol

When large amounts of cholesterol accumulate in the gallbladder, gallstones are formed.

Gallstones form in the gallbladder when cholesterol levels are high.
Bile Salts

From cholic acid (a bile acid) From glycine (an amino acid)

Sodium glycocholate (a bile salt)
Lipoproteins: Lipid Transport

Lipids are nonpolar and made more soluble by combining them with glycerophospholipids and proteins to form water-soluble complexes called lipoproteins.
Lipoproteins

- surround nonpolar lipids with polar lipids and protein for transport to cells
- are soluble in water because the surface consists of polar lipids
Types of Lipoproteins

Lipoproteins
- differ in density, composition, and function
- include low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs)

<table>
<thead>
<tr>
<th>TABLE 15.5 Composition and Properties of Plasma Lipoproteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/mL)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td><0.95</td>
</tr>
<tr>
<td>0.950–1.006</td>
</tr>
<tr>
<td>1.006–1.063</td>
</tr>
<tr>
<td>1.063–1.210</td>
</tr>
<tr>
<td>Protein</td>
</tr>
</tbody>
</table>
Lipoproteins such as HDLs and LDLs transport nonpolar lipids and cholesterol to cells and the liver.
Steroid hormones are
- chemical messengers that serve as a communication system for the body
- produced from cholesterol
- sex hormones
 - androgens in males (testosterone and androsterone)
 - estrogens in females (estradiol)
- adrenal corticosteroids from adrenal glands
 - mineralocorticoids (electrolyte balance)
 - glucocorticoids (regulate glucose level)
Sex hormones include sex hormones such as androgens (testosterone) in males and estrogens (estradiol) in females.
Adrenal Corticosteroids

Steroid hormones called **adrenal corticosteroids**

- are produced by the adrenal glands located on the top of each kidney
- include *aldosterone*, which regulates electrolytes and water balance by the kidneys
- include *cortisone*, a glucocorticoid, which increases blood glucose level and stimulates the synthesis of glycogen in the liver
Adrenal Corticosteroids

<table>
<thead>
<tr>
<th>Corticosteroids</th>
<th>Chemical Structure</th>
<th>Biological Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisone</td>
<td></td>
<td>Increases the blood glucose and glycogen levels from fatty acids and amino acids</td>
</tr>
<tr>
<td>Aldosterone (mineralocorticoid)</td>
<td></td>
<td>Increases the reabsorption of Na(^+) in kidneys; retention of water</td>
</tr>
<tr>
<td>Prednisone (synthetic corticoid)</td>
<td></td>
<td>Reduces inflammation; treatment of asthma and rheumatoid arthritis</td>
</tr>
</tbody>
</table>

Chemical Structures
- **Cortisone** (produced in adrenal gland)
- **Aldosterone** (mineralocorticoid) (produced in adrenal gland)
- **Prednisone** (synthetic corticoid)
Anabolic Steroids

Anabolic steroids
- are derivatives of testosterone
- are used illegally to increase muscle mass
- have side effects including fluid retention, hair growth, sleep disturbance, and liver damage

Methandienone
Oxandrolone
Nandrolone
Stanozolol
Cell Membranes

Cell membranes

• separate cellular contents from the external environment
• consist of a lipid bilayer made of two rows of phospholipids
• have an inner portion made of the nonpolar tails of phospholipids with the polar heads at the outer and inner surfaces
Fluid Mosaic Model of Cell Membranes

The **lipid bilayer**

- contains proteins, carbohydrates, and cholesterol
- has unsaturated fatty acids that make cell membranes fluid-like rather than rigid
- has proteins and carbohydrates on the surface that communicate with hormones and neurotransmitters
Transport through Cell Membranes

The transport of substances through cell membranes involves

- **diffusion** (passive transport), which moves particles from a higher to a lower concentration
- **facilitated transport**, which uses protein channels to increase the rate of diffusion
- **active transport**, which moves ions against a concentration gradient
Transport Pathways through Cell Membranes

Substances are transported across a cell membrane by diffusion, facilitated transport, or active transport.
Lipids: Concept Map

Lipids consist of:
- Prostaglandins
 - with 20 carbon atoms
- Waxes
 - with long-chain alcohol
- Triacylglycerols
 - with glycerol
- Glycerophospholipids
 - with glycerol, phosphate, and amino alcohol

Fatty acids

Steroid nucleus
- found in
 - Cholesterol
 - Steroid hormones

Fats
- are saturated
 - hydrogenation
 - hydrolysis
 - Alcohols and fatty acids
 - saponification
 - Alcohols and salts of fatty acids (soaps)

Oils
- are unsaturated
 - Polar and nonpolar parts
 - found in the lipid bilayer
 - of cell membranes

© 2012 Pearson Education, Inc.