Contents

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Patterns and Inductive Reasoning</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>Points, Lines, and Planes</td>
<td>2</td>
</tr>
<tr>
<td>1-3</td>
<td>Postulates</td>
<td>3</td>
</tr>
<tr>
<td>1-4</td>
<td>Conditional Statements and Their</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Converses</td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>Tools of the Trade</td>
<td>5</td>
</tr>
<tr>
<td>1-6</td>
<td>A Plan for Problem Solving</td>
<td>6</td>
</tr>
<tr>
<td>2-1</td>
<td>Real Numbers and Number Lines</td>
<td>7</td>
</tr>
<tr>
<td>2-2</td>
<td>Segments and Properties of Real</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Numbers</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>Congruent Segments</td>
<td>9</td>
</tr>
<tr>
<td>2-4</td>
<td>The Coordinate Plane</td>
<td>10</td>
</tr>
<tr>
<td>2-5</td>
<td>Midpoints</td>
<td>11</td>
</tr>
<tr>
<td>3-1</td>
<td>Angles</td>
<td>12</td>
</tr>
<tr>
<td>3-2</td>
<td>Angle Measure</td>
<td>13</td>
</tr>
<tr>
<td>3-3</td>
<td>The Angle Addition Postulate</td>
<td>14</td>
</tr>
<tr>
<td>3-4</td>
<td>Adjacent Angles and Linear Pairs of</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Angles</td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>Complementary and Supplementary Angles</td>
<td>16</td>
</tr>
<tr>
<td>3-6</td>
<td>Congruent Angles</td>
<td>17</td>
</tr>
<tr>
<td>3-7</td>
<td>Perpendicular Lines</td>
<td>18</td>
</tr>
<tr>
<td>4-1</td>
<td>Parallel Lines and Planes</td>
<td>19</td>
</tr>
<tr>
<td>4-2</td>
<td>Parallel Lines and Transversals</td>
<td>20</td>
</tr>
<tr>
<td>4-3</td>
<td>Transversals and Corresponding Angles</td>
<td>21</td>
</tr>
<tr>
<td>4-4</td>
<td>Proving Lines Parallel</td>
<td>22</td>
</tr>
<tr>
<td>4-5</td>
<td>Slope</td>
<td>23</td>
</tr>
<tr>
<td>4-6</td>
<td>Equations of Lines</td>
<td>24</td>
</tr>
<tr>
<td>5-1</td>
<td>Classifying Triangles</td>
<td>25</td>
</tr>
<tr>
<td>5-2</td>
<td>Angles of a Triangle</td>
<td>26</td>
</tr>
<tr>
<td>5-3</td>
<td>Geometry in Motion</td>
<td>27</td>
</tr>
<tr>
<td>5-4</td>
<td>Congruent Triangles</td>
<td>28</td>
</tr>
<tr>
<td>5-5</td>
<td>SSS and SAS</td>
<td>29</td>
</tr>
<tr>
<td>5-6</td>
<td>ASA and AAS</td>
<td>30</td>
</tr>
<tr>
<td>6-1</td>
<td>Medians</td>
<td>31</td>
</tr>
<tr>
<td>6-2</td>
<td>Altitudes and Perpendicular Bisectors</td>
<td>32</td>
</tr>
<tr>
<td>6-3</td>
<td>Angle Bisectors of Triangles</td>
<td>33</td>
</tr>
<tr>
<td>6-4</td>
<td>Isosceles Triangles</td>
<td>34</td>
</tr>
<tr>
<td>6-5</td>
<td>Right Triangles</td>
<td>35</td>
</tr>
<tr>
<td>6-6</td>
<td>The Pythagorean Theorem</td>
<td>36</td>
</tr>
<tr>
<td>6-7</td>
<td>Distance on the Coordinate Plane</td>
<td>37</td>
</tr>
<tr>
<td>7-1</td>
<td>Segments, Angles, and Inequalities</td>
<td>38</td>
</tr>
<tr>
<td>7-2</td>
<td>Exterior Angle Theorem</td>
<td>39</td>
</tr>
<tr>
<td>7-3</td>
<td>Inequalities Within a Triangle</td>
<td>40</td>
</tr>
<tr>
<td>7-4</td>
<td>Triangle Inequality Theorem</td>
<td>41</td>
</tr>
<tr>
<td>8-1</td>
<td>Quadrilaterals</td>
<td>42</td>
</tr>
<tr>
<td>8-2</td>
<td>Parallelograms</td>
<td>43</td>
</tr>
<tr>
<td>8-3</td>
<td>Tests for Parallelograms</td>
<td>44</td>
</tr>
<tr>
<td>8-4</td>
<td>Rectangles, Rhombi, and Squares</td>
<td>45</td>
</tr>
<tr>
<td>8-5</td>
<td>Trapezoids</td>
<td>46</td>
</tr>
<tr>
<td>9-1</td>
<td>Using Ratios and Proportions</td>
<td>47</td>
</tr>
<tr>
<td>9-2</td>
<td>Similar Polygons</td>
<td>48</td>
</tr>
<tr>
<td>9-3</td>
<td>Similar Triangles</td>
<td>49</td>
</tr>
<tr>
<td>9-4</td>
<td>Proportional Parts and Triangles</td>
<td>50</td>
</tr>
<tr>
<td>9-5</td>
<td>Triangles and Parallel Lines</td>
<td>51</td>
</tr>
<tr>
<td>9-6</td>
<td>Proportional Parts and Parallel Lines</td>
<td>52</td>
</tr>
<tr>
<td>9-7</td>
<td>Perimeters and Similarity</td>
<td>53</td>
</tr>
<tr>
<td>10-1</td>
<td>Naming Polygons</td>
<td>54</td>
</tr>
<tr>
<td>10-2</td>
<td>Diagonals and Angle Measure</td>
<td>55</td>
</tr>
<tr>
<td>10-3</td>
<td>Areas of Polygons</td>
<td>56</td>
</tr>
<tr>
<td>10-4</td>
<td>Areas of Triangles and Trapezoids</td>
<td>57</td>
</tr>
<tr>
<td>10-5</td>
<td>Areas of Regular Polygons</td>
<td>58</td>
</tr>
<tr>
<td>10-6</td>
<td>Symmetry</td>
<td>59</td>
</tr>
<tr>
<td>10-7</td>
<td>Tessellations</td>
<td>60</td>
</tr>
<tr>
<td>11-1</td>
<td>Parts of a Circle</td>
<td>61</td>
</tr>
<tr>
<td>11-2</td>
<td>Arcs and Central Angles</td>
<td>62</td>
</tr>
<tr>
<td>11-3</td>
<td>Arcs and Chords</td>
<td>63</td>
</tr>
<tr>
<td>11-4</td>
<td>Inscribed Polygons</td>
<td>64</td>
</tr>
<tr>
<td>11-5</td>
<td>Circumference of a Circle</td>
<td>65</td>
</tr>
<tr>
<td>11-6</td>
<td>Area of a Circle</td>
<td>66</td>
</tr>
<tr>
<td>12-1</td>
<td>Solid Figures</td>
<td>67</td>
</tr>
<tr>
<td>12-2</td>
<td>Surface Areas of Prisms and Cylinders</td>
<td>68</td>
</tr>
<tr>
<td>12-3</td>
<td>Volumes of Prisms and Cylinders</td>
<td>69</td>
</tr>
<tr>
<td>Lesson</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>12-4</td>
<td>Surface Areas of Pyramids and Cones</td>
<td>70</td>
</tr>
<tr>
<td>12-5</td>
<td>Volumes of Pyramids and Cones</td>
<td>71</td>
</tr>
<tr>
<td>12-6</td>
<td>Spheres</td>
<td>72</td>
</tr>
<tr>
<td>12-7</td>
<td>Similarity of Solid Figures</td>
<td>73</td>
</tr>
<tr>
<td>13-1</td>
<td>Simplifying Square Roots</td>
<td>74</td>
</tr>
<tr>
<td>13-2</td>
<td>$45^\circ-45^\circ-90^\circ$ Triangles</td>
<td>75</td>
</tr>
<tr>
<td>13-3</td>
<td>$30^\circ-60^\circ-90^\circ$ Triangles</td>
<td>76</td>
</tr>
<tr>
<td>13-4</td>
<td>The Tangent Ratio</td>
<td>77</td>
</tr>
<tr>
<td>13-5</td>
<td>Sine and Cosine Ratios</td>
<td>78</td>
</tr>
<tr>
<td>14-1</td>
<td>Inscribed Angles</td>
<td>79</td>
</tr>
<tr>
<td>14-2</td>
<td>Tangents to a Circle</td>
<td>80</td>
</tr>
<tr>
<td>14-3</td>
<td>Secant Angles</td>
<td>81</td>
</tr>
<tr>
<td>14-4</td>
<td>Secant-Tangent Angles</td>
<td>82</td>
</tr>
<tr>
<td>14-5</td>
<td>Segment Measures</td>
<td>83</td>
</tr>
<tr>
<td>14-6</td>
<td>Equations of Circles</td>
<td>84</td>
</tr>
<tr>
<td>15-1</td>
<td>Logic and Truth Tables</td>
<td>85</td>
</tr>
<tr>
<td>15-2</td>
<td>Deductive Reasoning</td>
<td>86</td>
</tr>
<tr>
<td>15-3</td>
<td>Paragraph Proofs</td>
<td>87</td>
</tr>
<tr>
<td>15-4</td>
<td>Preparing for Two-Column Proofs</td>
<td>88</td>
</tr>
<tr>
<td>15-5</td>
<td>Two-Column Proofs</td>
<td>89</td>
</tr>
<tr>
<td>15-6</td>
<td>Coordinate Proofs</td>
<td>90</td>
</tr>
<tr>
<td>16-1</td>
<td>Solving Systems of Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by Graphing</td>
<td>91</td>
</tr>
<tr>
<td>16-2</td>
<td>Solving Systems of Equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>by Using Algebra</td>
<td>92</td>
</tr>
<tr>
<td>16-3</td>
<td>Translations</td>
<td>93</td>
</tr>
<tr>
<td>16-4</td>
<td>Reflections</td>
<td>94</td>
</tr>
<tr>
<td>16-5</td>
<td>Rotations</td>
<td>95</td>
</tr>
<tr>
<td>16-6</td>
<td>Dilations</td>
<td>96</td>
</tr>
</tbody>
</table>
Patterns and Inductive Reasoning

Find the next three terms of each sequence.

1. 2, 4, 8, 16, . . .
2. 18, 9, 0, −9, . . .
3. 6, 8, 12, 18, . . .
4. 3, −4, −11, −18, . . .
5. −11, −6, −1, 4, . . .
6. 9, 10, 13, 18, . . .
7. 1, 7, 19, 37, . . .
8. 14, 15, 17, 20, . . .

Draw the next figure in each pattern.

9. △ □ ○ △ □
10. □ □ □ □ □
11. ○ ○ ○ ○
12. △ △ △ △ △
13. □ □ □ □ □ □
14. ○ ○ ○ ○ ○ ○

15. Find the next term in the sequence.
\[\frac{1}{19}, \frac{3}{19}, \frac{5}{19}, \ldots \]

16. What operation would you use to find the next term in the sequence 96, 48, 24, 12, . . .?

17. Find a counterexample for the statement “All birds can fly.”

18. Matt made the conjecture that the sum of two numbers is always greater than either number. Find a counterexample for his conjecture.

19. Find a counterexample for the statement “All numbers are less than zero.”

20. Find a counterexample for the statement “All bears are brown.”
Points, Lines, and Planes

Use the figure at the right to name examples of each term.

1. ray with point C as the endpoint
2. point that is not on GF
3. two lines
4. three rays

Draw and label a figure for each situation described.

5. Lines ℓ, m and j intersect at P.
6. Plane \mathcal{N} contains line ℓ.
7. Points A, B, C, and D are noncollinear.

Determine whether each model suggests a point, a line, a ray, a segment, or a plane.

8. the edge of a book
9. a floor of a factory
10. the beam from a car headlight

Refer to the figure at the right to answer each question.

11. Are points H, J, K, and L coplanar?
12. Name three lines that intersect at X.
13. What points do plane $WXYZ$ and HW have in common?
14. Are points W, X, and Y collinear?
15. List the possibilities for naming a line contained in plane $WXKH$.

© Glencoe/McGraw-Hill
Postulates

1. Points A, B, and C are noncollinear. Name all of the different lines that can be drawn through these points.

2. What is the intersection of \overline{LM} and \overline{LN}?

3. Name all of the planes that are represented in the figure.

Refer to the figure at the right.

4. Name the intersection of \overline{ONJ} and \overline{KJI}.

5. Name the intersection of \overline{KOL} and \overline{MLH}.

6. Name two planes that intersect in \overline{MI}.

In the figure, P, Q, R, and S are in plane \mathcal{N}. Determine whether each statement is true or false.

7. R, S, and T are collinear.

8. There is only one plane that contains all the points R, S, and Q.

9. $\angle PQT$ lies in plane \mathcal{N}.

10. $\angle SPR$ lies in plane \mathcal{N}.

11. If X and Y are two points on line m, then \overline{XY} intersects plane \mathcal{N} at P.

12. Point K is on plane \mathcal{N}.

13. \mathcal{N} contains \overline{RS}.

14. T lies in plane \mathcal{N}.

15. R, P, S, and T are coplanar.

16. ℓ and m intersect.
Conditional Statements and Their Converse

Identify the hypothesis and the conclusion of each statement.

1. If it rains, then I bring my umbrella.

2. If it is Saturday, then I go to the movies.

3. I will go swimming tomorrow if it is hot.

4. If it is a birthday party, I will buy a gift.

5. If I draw a straight line, I will need my ruler.

6. I will do better at my piano recital if I practice each day.

Write two other forms of each statement.

7. If you floss regularly, your gums are healthier.

8. We are in the state finals if we win tomorrow.

9. All odd numbers can be written in the form $2n + 1$.

Write the converse of each statement.

10. If two lines never cross, then they are parallel lines.

11. All even numbers are divisible by 2.

12. If $x + 4 = 11$, then $x = 7$.
Tools of the Trade
Use a straightedge or compass to answer each question.

1. Which segment is longer?

2. Which arc on the left side of the figure corresponds to the right side of the figure?

3. Which line forms a straight line with the segment on the bottom of the figure?

4. Which is greater, the height of the bicycle (from A to B) or the width of the tire (from C to D)?

5. If extended, will \(\overline{AB} \) intersect \(\overline{EF} \)?

6. If extended, will \(\overline{GH} \) and \(\overline{EF} \) form a 90° angle?

7. Use a compass to draw a circle with the same center as the given circle, but larger in size.
A Plan for Problem Solving

Find the perimeter and area of each rectangle.

1. \(\ell = 3 \text{ in.}, \ w = 8 \text{ in.} \)

2. \(\ell = 16 \text{ cm}, \ w = 5 \text{ cm} \)

3. \(\ell = 4.7 \text{ mi}, \ w = 18 \text{ mi} \)

4. \(\ell = 4 \text{ m}, \ w = 2 \text{ m} \)

5. \(\ell = 1.3 \text{ mm}, \ w = 4 \text{ mm} \)

6. \(\ell = 3 \text{ in.}, \ w = 5.1 \text{ in.} \)

Find the perimeter and area of each rectangle described.

7. \(\ell = 6 \text{ in.}, \ w = 7 \text{ in.} \)

8. \(\ell = 3.2 \text{ m}, \ w = 6 \text{ m} \)

9. \(\ell = 5 \text{ mm}, \ w = 1.4 \text{ mm} \)

10. \(\ell = 12 \text{ mi}, \ w = 12 \text{ mi} \)

11. \(\ell = 5.4 \text{ in.}, \ w = 10 \text{ in.} \)

12. \(\ell = 3 \text{ cm}, \ w = 7.7 \text{ cm} \)

Find the area of each parallelogram.

13. \(b = 35 \text{ mm}, \ h = 30 \text{ mm} \)

14. \(b = 10 \text{ cm}, \ h = 6 \text{ cm} \)

15. \(b = 3.2 \text{ in.}, \ h = 9.4 \text{ in.} \)
Real Numbers and Number Lines

For each situation, write a real number with ten digits to the right of the decimal point.

1. a rational number less than 0 with a 3-digit repeating pattern

2. an irrational number between 7 and 8

3. two irrational numbers between $\sqrt{11002}$ and $\sqrt{11002}^2$

Use the number line to find each measure.

4. FI

5. AG

6. DH

7. CG

8. AI

9. BH

10. CE

11. BC

12. In Detroit, Michigan, the weather report said today’s high was 3°F with a windchill factor of −10°F. Find the measure of the difference between the two temperatures.

13. In North Carolina, the temperature one Saturday was 95°F. The heat index made the temperature feel 15° hotter. Find the resulting temperature.

14. The city of Luckett is piling rock salt for use during ice storms.
 a. If the pile from last year is 29 feet high and 14 feet are added this year, how high is the pile of rock salt?

 b. If the mayor of Luckett wants to have a pile of rock salt that is 50 feet high, how much more rock salt needs to be added?
Segments and Properties of Real Numbers

Three segment measures are given. The three points named are collinear. Determine which point is between the other two.

1. \(AB = 12, \ BC = 5, \ AC = 17 \)

2. \(PT = 25.3, \ PR = 21, \ RT = 4.3 \)

3. \(QD = 6.7, \ CD = 1.4, \ QC = 5.3 \)

4. \(XW = 4.1, \ WY = 18.9, \ XY = 23 \)

5. \(MN = 6.2, \ NP = 3.2, \ MP = 9.4 \)

6. \(OL = 3, \ OZ = 21, \ LZ = 18 \)

Use the line to find each measure.

7. If \(AD = 27 \) and \(BD = 19 \), find \(AB \).

8. If \(FG = 9 \) and \(EF = 6 \), find \(EG \).

9. If \(DG = 56 \) and \(DE = 18 \), find \(EG \).

10. If \(AE = 64.9 \) and \(DE = 12.6 \), find \(AD \).

Find the length of each segment in centimeters and in inches.

11. ____________________________ 12. ____________________________

13. ____________________________ 14. ____________________________
Congruent Segments

Use the number line to determine whether each statement is true or false. Explain your reasoning.

1. W is the midpoint of QR.
2. S is the midpoint of TV.
3. $SV \cong TS$
4. V is the midpoint of TW.
5. W is the midpoint of VR.
6. $WR \cong QV$
7. SW is longer than VR.
8. $VW \leq TV$

Determine whether each statement is true or false. Explain your reasoning.

9. $XY \cong YX$
10. If $AB \cong BC$ and $BC \cong XY$, then $AC \cong XY$.
11. If BX is half the length of BY, then B is the midpoint of BY.
12. If $AY \cong XR$, then $XR \cong AY$.
13. A line has only one bisector.

14. Use a compass and straightedge to bisect the segment.
The Coordinate Plane

Graph each of the points below. Connect the points in order as you graph them.

1. (−2, 2) 22. (3, −9) 28. (3, 5) 34. (7, 16) 40. (−10, 12)
2. (−4, 0) 23. (3, −6) 29. (4, 2) 35. (5, 17) 41. (−10, 9)
3. (−6, −3) 24. (2, −3) 30. (5, 1) 36. (3, 17) 42. (−7, 6)
4. (−6, −8) 25. (1, 0) 31. (8, 4) 37. (1, 16) 43. (−5, 5)
5. (−4, −12) 26. (0, 2) 32. (9, 7) 38. (−1, 15) 44. (−2, 4)
6. (−4, −14) 27. (1, 4) 33. (9, 11) 39. (−7, 14) 45. (−2, 2)
7. (−7, −12)
8. (−9, −12)
9. (−6, −16)
10. (−3, −17)
11. (−1, −17)
12. (−2, −15)
13. (−2, −13)
14. (1, −13)
15. (0, −16)
16. (1, −17)
17. (3, −15)
18. (6, −11)
19. (6, −9)
20. (4, −11)
21. (2, −11)
22. (3, −9)
23. (3, −6)
24. (2, −3)
25. (1, 0)
26. (0, 2)
27. (1, 4)
28. (3, 5)
29. (4, 2)
30. (5, 1)
31. (8, 4)
32. (9, 7)
33. (9, 11)
34. (7, 16)
35. (5, 17)
36. (3, 17)
37. (1, 16)
38. (−1, 15)
39. (−7, 14)
40. (−10, 12)
41. (−10, 9)
42. (−7, 6)
43. (−5, 5)
44. (−2, 4)
45. (−2, 2)

© Glencoe/McGraw-Hill
Midpoints

Use the number line to find the coordinate of the midpoint of each segment.

1. LT
2. JL
3. LR
4. CJ
5. EK
6. CR

The coordinates of the endpoints of a segment are given. Find the coordinates of the midpoint of each segment.

7. $(2, 4), (6, 8)$
8. $(6, 4), (2, 10)$
9. $(9, 3), (−3, 1)$
10. $(1, −1), (5, 9)$
11. $(−1, 4), (5, −4)$
12. $(−4, −7), (2, 1)$

13. Find the midpoint of the segment that has endpoints at $(−4, −5)$ and $(10, −2)$.

14. Where is the midpoint of XY if the endpoints are $X(4x, 2y)$ and $Y(0, −2y)$?
Angles

Name each angle in four ways. Then identify its vertex and its sides.

1. 2. 3.

Name all angles having Q as their vertex.

4. 5. 6.

Tell whether each point is in the interior, exterior or on the angle.

7. 8. 9.

10. 11. 12.

Tell whether each statement is true or false.

13. The vertex is in the exterior of the angle.
14. ∠ABC, ∠CBA, and ∠B are all the same angle.
15. Three rays are necessary to determine an angle.
Angle Measure

Use a protractor to find the measure of each angle. Then classify each angle as acute, obtuse, or right.

1. \(\angle JHI \)
2. \(\angle KHI \)
3. \(\angle MHI \)
4. \(\angle LHI \)
5. \(\angle LHM \)
6. \(\angle LHK \)
7. \(\angle MHJ \)
8. \(\angle MHK \)
9. \(\angle KHJ \)
10. \(\angle LHJ \)

Use a protractor to draw an angle having each measurement. Then classify each angle as acute, obtuse, or right.

11. 32°
12. 178°
13. 105°
14. 92°
15. 80°
16. 15°
17. 29°
18. 150°
19. 163°
20. 120°
The Angle Addition Postulate
Refer to the figure at the right.

1. If $m\angle BFC = 35$ and $m\angle AFC = 78$
 find $m\angle 1$.

2. If $m\angle BFC = 20$ and $m\angle CFD = 37$
 find $m\angle BFD$.

3. If $m\angle BFD = 60$ and \overline{FC} bisects $\angle BFD$, find $\angle CFD$.

4. If $m\angle AFB = 70$ and $m\angle BFC = 15$, find $m\angle AFC$.

5. If $m\angle DFE = 18$ and $m\angle CFE = 45$, find $\angle CFD$.

Refer to the figure at the right.

6. If $m\angle 3 = 45$ and $m\angle JLI = 20$,
 find $m\angle ILK$.

7. If $m\angle GLJ = 90$, $m\angle GLH = 30$, and
 $m\angle HLI = 30$, find $m\angle ILJ$.

8. If $m\angle HLJ = 70$ and $m\angle GLJ = 90$, find $m\angle GLH$.

9. If $m\angle 3 = 40$ and $m\angle JLH = 60$, find $m\angle KLH$.

10. If $m\angle GLI = 62$ and $m\angle GLH = 40$, find $m\angle HLI$.

11. If a right angle is bisected, what type of angles
 are formed?

12. What type of angles are formed if a 40° angle
 is bisected?

13. If $m\angle 1 = 30$, $m\angle 2 = 3x$, $m\angle ABC = 145$, and
 $m\angle 3 = 5x - 5$, find x.
Adjacent Angles and Linear Pairs of Angles

Use the terms adjacent angles, linear pair, or neither to describe angles 1 and 2 in as many ways as possible.

1.

2.

3.

4.

5.

6.

In the figure at the right, \overline{GB} and \overline{GF} are opposite rays and \overline{GA} and \overline{GD} are opposite rays.

7. Which angle forms a linear pair with $\angle AGC$?

8. Do $\angle FGE$ and $\angle EGC$ form a linear pair? Justify your answer.

9. Name two angles that are adjacent angles.

10. Name three angles that are adjacent to $\angle EGD$.

11. Which angle forms a linear pair with $\angle BGC$?

12. Name two adjacent angles that form a linear pair.
Complementary and Supplementary Angles

Refer to the figures at the right.

1. Name an angle supplementary to $\angle CBD$.

2. Name a pair of adjacent supplementary angles.

3. Name an angle complementary to $\angle CBF$.

4. Name two angles that are complementary.

5. Find the measure of an angle that is supplementary to $\angle XQZ$.

6. Find the measure of the complement of $\angle VQY$.

7. Name two angles that are supplementary.

8. Name an angle complementary to $\angle MON$.

9. Name an angle supplementary to $\angle POQ$.

10. Find the measure of $\angle NOP$.

Exercises 1–3

Exercises 4–7

Exercises 8–10
Congruent Angles

Find the value of x in each figure.

1. \(x^\circ \)

2. \(110^\circ \)

3. \((x - 5)^\circ \)

4. \(156^\circ \)

5. \((2x + 4)^\circ \)

6. \((x + 20)^\circ \)

7. What is the measure of an angle that is supplementary to \(\angle HIJ \) if \(\angle HIJ \cong \angle KLM \)?

8. If \(\angle 2 \) is complementary to \(\angle 3 \), \(\angle 1 \) is complementary to \(\angle 2 \), and \(m\angle 1 = 35 \), what are \(m\angle 2 \) and \(m\angle 3 \)?

9. What is the value of \(x \) if \(\angle PQR \) and \(\angle SQT \) are vertical angles and \(m\angle PQR = 47 \) and \(m\angle SQT = 3x + 2 \)?

10. Find the measure of an angle that is supplementary to \(\angle B \) if the measure of \(\angle B \) is 58.
Perpendicular Lines

\(\overline{AG} \perp \overline{CE}, \overline{AC} \perp \overline{BF} \) and point B is the midpoint of \(\overline{AC} \).

Determine whether the following is true or false.

1. \(\angle 1 \equiv \angle CBD \)

2. \(\angle 1 \) is a right angle.

3. \(\angle 2 \) and \(\angle 3 \) are complementary angles.

4. \(m\angle GDF + m\angle FDE = 90 \)

5. \(\angle 1 \equiv \angle 5 \)

6. \(\overline{AC} \) is the only line perpendicular to \(\overline{BF} \) at \(B \).

7. \(\angle 3 \) is an acute angle.

8. \(\angle 1 \equiv \angle 2 \)

9. \(\angle 2 \equiv \angle 6 \)

10. \(\overline{AG} \) is perpendicular to \(\overline{DE} \).

11. Name four right angles.

12. Name a pair of supplementary angles.

13. If \(m\angle 3 = 120 \), find \(m\angle 2 \).

14. Which angle is complementary to \(\angle FDE \)?

15. If \(m\angle 6 = 45 \), find \(m\angle 2 \).
Parallel Lines and Planes

Describe each pair of segments in the prism as parallel, skew, or intersecting.

1. \(\overline{AF}, \overline{BF} \)
2. \(\overline{AE}, \overline{FD} \)
3. \(\overline{AB}, \overline{FD} \)
4. \(\overline{EC}, \overline{BF} \)
5. \(\overline{BC}, \overline{AE} \)
6. \(\overline{BF}, \overline{AB} \)

Name the parts of the cube shown at the right.

7. six planes
8. all segments parallel to \(\overline{GI} \)
9. all segments skew to \(\overline{MN} \)
10. all segments parallel to \(\overline{IK} \)
11. all segments skew to \(\overline{HJ} \)

Name the parts of the pyramid shown at the right.

12. all pairs of parallel segments
13. all pairs of skew segments
14. all planes parallel to plane \(EDC \)
15. all planes that intersect to form line \(BC \)

Draw and label a figure to illustrate each pair.

16. segments not parallel or skew
17. intersecting congruent segments
18. skew rays
Parallel Lines and Transversals

Identify each pair of angles as alternate interior, alternate exterior, consecutive interior, or vertical.

1. \(\angle 9 \) and \(\angle 11 \)
2. \(\angle 3 \) and \(\angle 9 \)
3. \(\angle 3 \) and \(\angle 12 \)
4. \(\angle 8 \) and \(\angle 6 \)
5. \(\angle 8 \) and \(\angle 15 \)
6. \(\angle 4 \) and \(\angle 5 \)
7. \(\angle 1 \) and \(\angle 7 \)

Find the measure of each angle. Give a reason for each answer.

8. \(\angle 5 \)
9. \(\angle 4 \)
10. \(\angle 6 \)
11. \(\angle 1 \)
12. \(\angle 8 \)
13. \(\angle 10 \)
14. \(\angle 1 \)
15. \(\angle 2 \)
16. \(\angle 10 \)
17. \(\angle 11 \)
18. \(\angle 8 \)
19. \(\angle 6 \)
20. \(\angle 5 \)
21. \(\angle 4 \)
Transversal and Corresponding Angles

In the figure, \(m \parallel n \). Name all angles congruent to the given angle. Give a reason for each answer.

1. \(\angle 13 \)
2. \(\angle 12 \)
3. \(\angle 4 \)
4. \(\angle 16 \)
5. \(\angle 9 \)
6. \(\angle 15 \)

Find the measure of each numbered angle.
7.
8.
9.
10.

11. If \(m\angle 8 = 2x + 2 \) and \(m\angle 6 = 4x - 40 \), find \(x \), \(m\angle 8 \), and \(m\angle 6 \).

12. If \(m\angle 1 = 6x - 2 \) and \(m\angle 5 = 4x + 38 \), find \(x \), \(m\angle 1 \), and \(m\angle 5 \).
Proving Lines Parallel

Find \(x \) so that \(\ell \parallel m \).

1. \[\begin{align*}
\ell & \quad \quad m \\
4x^\circ & \quad 80^\circ \\
\end{align*} \]

2. \[\begin{align*}
\ell & \quad \quad m \\
(3x + 5)^\circ & \quad 50^\circ \\
\end{align*} \]

3. \[\begin{align*}
\ell & \quad \quad m \\
124^\circ & \quad (3x + 40)^\circ \\
\end{align*} \]

4. \[\begin{align*}
\ell & \quad \quad m \\
65^\circ & \quad (8x - 5)^\circ \\
\end{align*} \]

5. \[\begin{align*}
\ell & \quad \quad m \\
(2x - 4)^\circ & \quad \\
\end{align*} \]

6. \[\begin{align*}
\ell & \quad \quad m \\
39^\circ & \quad (4x - 11)^\circ \\
\end{align*} \]

Name the pairs of parallel lines or segments.

7. \[\begin{align*}
\ell & \quad \quad m \\
132^\circ & \quad 48^\circ \\
\end{align*} \]

8. \[\begin{align*}
\quad & \\
B & \quad \quad C \\
130^\circ & \quad 50^\circ \\
\end{align*} \]

9. \[\begin{align*}
X & \quad \quad Y \\
49^\circ & \quad 55^\circ \\
\end{align*} \]

10. \[\begin{align*}
P & \quad \quad Q \\
70^\circ & \quad 72^\circ \\
\end{align*} \]

11. Refer to the figure at the right.
 a. Find \(x \) so that \(\ell \parallel m \).
 b. Using the value you found in part a, determine whether lines \(p \) and \(q \) are parallel.
Slope

Find the slope of each line.

1.

2.

3.

4.

5. the line through (6, 5) and (5, 1)

6. the line through \((-1\frac{1}{2}, 3)\) and \((2\frac{1}{2}, 2)\)

7. the line through \((1.5, -1.5)\) and \((2.5, -1)\)

8. the line through \((8, 1)\) and \((-8, 9)\)

Given each set of points, determine if \(\overline{AB}\) and \(\overline{CD}\) are parallel, perpendicular, or neither.

9. \(A(2, 2), B(0, 0), C(2, 0), D(0, -2)\)

10. \(A(0, -1), B(1, 0), C(-3, 2), D(3, -4)\)

11. \(A(3, 2), B(3, 3), C(-1, 2), D(-3, 7)\)

12. \(A(0, 4), B(0, -2), C(2, 0), D(-1, 0)\)

13. \(A(1, 3), B(3, -2), C(3, 5), D(5, 0)\)

14. Find the slope of the line passing through points at \((2, 2)\) and \((-1, 0)\).

15. \(A(0, k)\) and \(B(1, -2)\) are two points on a line. If the slope of the line is \(-3\), find the value of \(k\).
Equations of Lines

Name the slope and y-intercept of the graph of each equation.

1. \(y = 3x + 8 \)
2. \(5x + y = 17 \)
3. \(3x - 2y = 8 \)

4. \(3y - x = 12 \)
5. \(y = 6 \)
6. \(x = 2 \)

Graph each equation using the slope and y-intercept.

7. \(y = -\frac{1}{2}x + 3 \)
8. \(3y + 6 = 2x \)

9. \(y = \frac{1}{3}x + 2 \)
10. \(y = \frac{1}{2}x + 1 \)

Write an equation of the line satisfying the given conditions.

11. slope = \(-2\), goes through the point at \((2, -4)\)

12. parallel to the graph of \(y = -5x - 3 \), passes through the point at \((0, 2)\)

13. perpendicular to the graph of \(y = 2x - 5 \), passes through the point at \((10, -1)\)

Choose the correct graph of lines p, q, and r for each equation.

14. \(y = \frac{1}{2}x + 2 \)
15. \(y = -\frac{1}{2}x + 1 \)
16. \(y = \frac{1}{2}x + 1 \)
Classifying Triangles

For Exercises 1–7, refer to the figure at the right. Triangle ABC is isosceles with \(AB > AC \) and \(AB > BC \). Also, \(\overline{XY} \parallel \overline{AB} \). Name each of the following.

1. sides of the triangle
2. angles of the triangle
3. vertex angle
4. base angles
5. side opposite \(\angle BCA \)
6. congruent sides
7. angle opposite \(\overline{AC} \)

Classify each triangle by its angles and by its sides.

8.

9.

10. Find the measures of the legs of isosceles triangle \(ABC \) if \(AB = 2x + 4, BC = 3x - 1, AC = x + 1, \) and the perimeter of \(\triangle ABC \) is 34 units.
Angles of a Triangle

Find the value of each variable.

1. \[52^\circ \quad 43^\circ \quad x^\circ \]

2. \[3x^\circ \quad 2x^\circ \]

3. \[(2x - 2)^\circ \quad (x + 5)^\circ \]

4. \[10^\circ \quad x^\circ \quad 23^\circ \]

5. \[x^\circ \quad x^\circ \]

6. \[64^\circ \quad (x + 40)^\circ \quad (2x - 5)^\circ \]

7. \[x^\circ \quad 43^\circ \quad 57^\circ \]

8. \[x^\circ \quad 65^\circ \quad y^\circ \]

9. \[44^\circ \quad x^\circ \]

10. \[122^\circ \]

11. \[(6x - 7)^\circ \quad 55^\circ \]

12. \[(40 + y)^\circ \quad 28^\circ \]

13. \[56^\circ \quad x^\circ \]

14. \[50^\circ \quad 53^\circ \]

62^\circ \quad 80^\circ \]

© Glencoe/McGraw-Hill
Geometry in Motion

Identify each motion as a translation, reflection, or rotation.

1.

2.

3.

4.

5.

6.

In the figure at the right, \(\triangle ABC \rightarrow \triangle DEF \).

7. Which angle corresponds to \(\angle C \)?

8. Name the image of \(AB \).

9. Name the side that corresponds to \(EF \).

10. Name the image of \(\angle A \).
Congruent Triangles

If \(\triangle RST \cong \triangle ABC \), use arcs and slash marks to show the congruent angles and sides. Complete each congruence statement.

1. \(\angle C \cong \ ? \)

2. \(\angle R \cong \ ? \)

3. \(\overline{AC} \cong \ ? \)

4. \(\overline{ST} \cong \ ? \)

5. \(\overline{RS} \cong \ ? \)

6. \(\angle B \cong \ ? \)

Complete each congruence statement.

7.

8.

\(\triangle ABC \cong \triangle \ ? \)

\(\triangle ACB \cong \triangle \ ? \)

9. Given \(\triangle ABC \cong \triangle DEF \), \(AB = 15 \), \(BC = 20 \), \(AC = 25 \), and \(FE = 3x - 7 \), find \(x \).

10. Given \(\triangle ABC \cong \triangle DEF \), \(DE = 10 \), \(EF = 13 \), \(DF = 16 \), and \(AC = 4x - 8 \), find \(x \).
SSS and SAS

Determine whether each pair of triangles is congruent. If so, write a congruence statement and explain why the triangles are congruent.

1.

2.

3.

4.

5.

6.
ASA and AAS

Name the additional congruent parts needed so that the triangles are congruent by the postulate or theorem indicated.

1. ASA

2. AAS

Determine whether each pair of triangles is congruent by SSS, SAS, ASA, or AAS. If it is not possible to prove that they are congruent, write not possible.

3.

4.

5.

6.

7.

8.
Medians

In \(\triangle DEF \), \(\overline{DG}, \overline{EH}, \) and \(\overline{FI} \) are medians.

1. Find \(FG \) if \(GE = 8 \).

2. Find \(DH \) if \(DF = 10 \).

3. If \(DI = 7 \), find \(DE \).

In \(\triangle JKL \), \(\overline{JM}, \overline{KN}, \) and \(\overline{LO} \) are medians.

4. Find the measure of \(XN \) if \(KX = 26 \).

5. What is \(JX \) if \(XM = 25 \)?

6. If \(LX = 41 \), what is \(XO \)?

In \(\triangle PQR \), \(\overline{PS}, \overline{QT}, \) and \(\overline{RU} \) are medians.

7. What is \(YU \) if \(RU = 19.5 \)?

8. Find \(QY \) if \(QT = 24 \).

9. If \(PY = 14.8 \), what is the measure of \(YS \)?

10. If \(PU = x + 3 \) and \(UQ = 2x - 17 \), what is \(x \)?
Altitudes and Perpendicular Bisectors

For each triangle, tell whether the bold segment or line is an altitude, a perpendicular bisector, both, or neither.

1. 2. 3.

4. 5. 6.

7. Construct the perpendicular bisector of each side of the triangle.
Angle Bisectors of Triangles

In \(\triangle DEF \), \(\overline{DH} \) bisects \(\angle EDF \), and \(\overline{FG} \) bisects \(\angle EFD \).

1. If \(m \angle 2 = 36 \), what is \(m \angle EDF \)?

2. Find \(m \angle 4 \) if \(m \angle EFD = 68 \).

3. What is \(m \angle EDF \) if \(m \angle 1 = 27 \)?

4. If \(m \angle 4 = 23 \), what is \(m \angle 3 \)?

In \(\triangle LMN \), \(\overline{LP} \) bisects \(\angle NLM \), \(\overline{MQ} \) bisects \(\angle LMN \), \(\overline{NR} \) bisects \(\angle MNL \).

5. Find \(m \angle 6 \) if \(m \angle MNL = 115 \).

6. If \(m \angle 4 = 18 \), what is \(m \angle 3 \)?

7. What is \(m \angle 1 \) if \(m \angle NLM = 48 \)?

8. Find \(m \angle LNM \) if \(m \angle 5 = 63 \).

9. Find \(m \angle ABC \) if \(\overline{BD} \) is an angle bisector of \(\triangle ABC \).
For each triangle, find the values of the variables.

1. \(x^\circ, y^\circ\)

2. \(x^\circ, y^\circ\)

3. \(x^\circ, y^\circ\)

4. \((4x + 20)^\circ\)

5. \((4x + 10)^\circ\)

6. \(x^\circ, y^\circ\)

7. In \(\triangle ABC\), \(m\angle A = m\angle C\) and \(m\angle C = 38\). Find \(m\angle A\), \(AD\), and \(AC\).

8. In \(\triangle JKL\), \(JK \cong KL\). If \(\angle J = 4x - 8\) and \(\angle L = 3x + 15\), find \(m\angle J\) and \(m\angle L\).
Right Triangles

Determine whether each pair of right triangles is congruent by LL, HA, LA, or HL. If it is not possible to prove that they are congruent, write not possible.

1.

2.

3.

4.

5.

6.

7.

8.

© Glencoe/McGraw-Hill
The Pythagorean Theorem

If c is the measure of the hypotenuse, find each missing measure. Round to the nearest tenth, if necessary.

1. \(a = 8, \ b = 13, \ c = ?\)
2. \(a = 4, \ c = 6, \ b = ?\)
3. \(a = \sqrt{13}, \ b = \sqrt{12}, \ c = ?\)
4. \(b = \sqrt{52}, \ c = \sqrt{101}, \ a = ?\)

Find the missing measure in each right triangle. Round to the nearest tenth, if necessary.

5. \[\begin{array}{c}
\text{13 m} \\
x \text{m} \\
12 \text{ m}
\end{array}\]
6. \[\begin{array}{c}
\text{8 yd} \\
7 \text{ yd} \\
h \text{ yd}
\end{array}\]
7. \[\begin{array}{c}
\text{6 km} \\
4 \text{ km} \\
a \text{ km}
\end{array}\]
8. \[\begin{array}{c}
\text{9 mi} \\
20 \text{ mi} \\
w \text{ mi}
\end{array}\]
9. \[\begin{array}{c}
x \text{ m} \\
9 \text{ m} \\
5 \text{ m}
\end{array}\]
10. \[\begin{array}{c}
2 \text{ in.} \\
r \text{ in.} \\
2 \text{ in.}
\end{array}\]
11. \[\begin{array}{c}
30 \text{ ft} \\
x \text{ ft} \\
16 \text{ ft}
\end{array}\]
12. \[\begin{array}{c}
t \text{ cm} \\
65 \text{ cm} \\
60 \text{ cm}
\end{array}\]

The lengths of three sides of a triangle are given. Determine whether each triangle is a right triangle.

13. 14 ft, 48 ft, 50 ft
14. 50 yd, 75 yd, 85 yd
15. 15 cm, 36 cm, 39 cm
16. 45 mm, 60 mm, 80 mm
Distance on the Coordinate Plane

Find the distance between each pair of points. Round to the nearest tenth, if necessary.

1. A(−1, 5), B(2, −5)
2. J(−3, 1), K(−3, −4)

3. G(−3, 6), H(−3, 2)
4. X(0, 4), N(−3, 2)

5. E(8, 6), F(2, 1)
6. M(−1, −6), N(−2, −3)

7. P(−1, 6), Q(5, 0)
8. V(−3, 7), W(2, −5)

9. C(0, 0), D(6, 8)
10. R(1, 1), S(−4, −4)

11. Is ΔXYZ with vertices X(−3, 1), Y(2, 4), and Z(2, −5), a scalene triangle?

12. Determine whether ΔRST with vertices R(−1, 5), S(−4, 1), and T(2, 1) is isosceles.

13. Determine whether ΔDEF with vertices D(−3, −4), E(2, −5), and F(0, 1) is a right triangle.
Segments, Angles, and Inequalities

Exercises 1–9

Replace each \bigcirc with $<$, $>$, or $=$ to make a true sentence.

1. $HS \bigcirc HN$
2. $MH \bigcirc SN$
3. $AT \bigcirc TH$
4. $HF \bigcirc MT$
5. $TN \bigcirc AS$
6. $MI \bigcirc TF$

Determine if each statement is true or false.

7. $TS \geq FH$
8. $ST \leq HN$
9. $IM \neq HN$

Exercises 10–18

Replace each \bigcirc with $<$, $>$, or $=$ to make a true sentence.

10. $m\angle CGD \bigcirc m\angle DGE$
11. $m\angle BGC \bigcirc m\angle BGD$
12. $m\angle CGE \bigcirc m\angle DGF$
13. $m\angle BGC \bigcirc m\angle FGE$
14. $m\angle DGE \bigcirc m\angle EGF$
15. $m\angle BGC \bigcirc m\angle CGD$

Determine if each statement is true or false.

16. $m\angle BGD \geq m\angle CGD$
17. $m\angle CGB \neq m\angle EGF$
Exterior Angle Theorem

Name the angles.

1. an interior angle of \(\triangle MDT \)

2. an interior angle of \(\triangle TDX \)

3. an exterior angle of \(\triangle MTX \)

4. an exterior angle of \(\triangle TDX \)

5. a remote interior angle of \(\triangle TDX \) with respect to \(\angle 2 \)

Find the measure of each angle.

6. \(\angle I \)

7. \(\angle K \)

8. \(\angle P \)

9. \(\angle U \)
Inequalities Within a Triangle

List the angles in order from least to greatest measure.

1. \(\angle K \), \(\angle L \), \(\angle J \)

2. \(\angle P \), \(\angle R \), \(\angle Q \)

3. \(\angle W \), \(\angle V \), \(\angle X \)

List the sides in order from least to greatest measure.

4. \(\overline{DE} \), \(\overline{EF} \), \(\overline{DF} \)

5. \(\overline{MN} \), \(\overline{NF} \), \(\overline{MF} \)

6. \(\overline{RS} \), \(\overline{ST} \), \(\overline{RT} \)

7. Identify the angle with the greatest measure.

8. Identify the side with the greatest measure.
Practice

Triangle Inequality Theorem

Determine if the three numbers can be measures of the sides of a triangle. Write yes or no. Explain.

1. 3, 3, 3
2. 2, 3, 4
3. 1, 2, 3
4. 8.9, 9.3, 18.3
5. 16.5, 20.5, 38.5
6. 19, 19, 0.5
7. 6, 7, 12
8. 8, 10, 26
9. 26, 28, 32
10. 3, 22, 25

If two sides of a triangle have the following measures, find the range of possible measures for the third side.

11. 3, 7
12. 5, 12
13. 29, 30
14. 56, 63

15. The sum of XZ and YZ is greater than ____.

16. If $XY = 10$ and $YZ = 8.5$, then XZ must be greater than ____, and less than ____.
Quadrilaterals

1. Name a side that is consecutive with JK.

2. Name the side opposite KL.

3. Name the vertex that is opposite L.

4. Name a pair of consecutive vertices.

5. Name the angle opposite $\angle K$.

Find the missing measure(s) in each figure.

6.

7.

8.

9.
Parallelograms

Find each measure.

1. \(m \angle K \)
2. \(m \angle R \)
3. \(m \angle T \)
4. \(KR \)
5. \(KN \)

6. Suppose the diagonals of \(\Box KRTN \) intersect at point \(Y \).
 If \(NY = 12 \), find \(NR \).

In the figure, \(BD = 74 \) and \(AE = 29 \). Find each measure.

7. \(ED \)
8. \(EC \)
9. \(AC \)
10. \(BE \)
11. \(AD \)
12. \(BA \)

13. If \(m \angle BCD = 125 \), find \(m \angle BAD \).

14. If \(m \angle BAC = 45 \), find \(m \angle ACD \).

15. If \(m \angle BEA = 135 \), find \(m \angle AED \).

16. If \(m \angle ABC = 50 \), find \(m \angle BCD \).
Tests for Parallelograms

Determine whether each quadrilateral is a parallelogram. Write yes or no. If yes, give a reason for your answer.

1.

2.

3.

4.

5.

6.

7.

8.
Rectangles, Rhombi, and Squares

Identify each parallelogram as a rectangle, rhombus, square, or none of these.

1. 2. 3.

Find each measure.

4. \(TQ \)

5. \(TR \)

6. \(RP \)

7. \(QS \)

8. \(SR \)

9. \(\angle BCE \)

10. \(\angle BEC \)

11. \(AC \)

12. \(\angle ABD \)

13. \(AD \)

14. \(\angle ADC \)
8-5 Practice

Trapezoids

For each trapezoid, name the bases, the legs, and the base angles.

1.

2.

3.

Find the length of the median in each triangle.

4. 40 in.

5. 3.2 mi

6. 18 m

Find the missing angle measures in each isosceles trapezoid.

7.

8.

9.

© Glencoe/McGraw-Hill 46 Geometry: Concepts and Applications
Using Ratios and Proportions

Write each ratio in simplest form.

1. \(\frac{12}{15} \)
2. \(\frac{8}{20} \)
3. \(\frac{3}{24} \)

4. \(\frac{2}{18} \)
5. \(\frac{24}{36} \)
6. \(\frac{12}{9} \)

7. 6 meters to 60 centimeters
8. 1 foot to 1 yard

Solve each proportion.

9. \(\frac{x}{3} = \frac{10}{15} \)
10. \(\frac{h}{4} = \frac{7}{14} \)

11. \(\frac{8}{14} = \frac{12}{a} \)
12. \(\frac{5}{10} = \frac{4}{m} \)

13. \(\frac{9}{b} = \frac{15}{40} \)
14. \(\frac{8}{v} = \frac{28}{35} \)

15. The ratio of sophomores to juniors in the Math Club is 2:3. If there are 21 juniors, how many sophomores are in the club?
Similar Polygons

Determine whether each pair of polygons is similar. Justify your answer.

1.
 \[
 \begin{array}{c}
 \text{10 ft} \\
 \text{8 ft} \\
 \text{15 ft} \\
 \text{12 ft}
 \end{array}
 \]

2.
 \[
 \begin{array}{c}
 \text{3.5 cm} \\
 \text{6 cm} \\
 \text{7 cm} \\
 \text{7 cm}
 \end{array}
 \]

In the figure below, trapezoid \(ABCD\) \(\sim\) trapezoid \(EFGH\). Use this information to answer Exercises 5–9.

5. List all pairs of corresponding angles.

6. Write four ratios relating the corresponding sides.

7. Write a proportion to find the missing measure \(x\). Then find the value of \(x\).

8. Write a proportion to find the missing measure \(y\). Then find the value of \(y\).

9. Write a proportion to find the missing measure \(z\). Then find the value of \(z\).
Similar Triangles

Determine whether each pair of triangles is similar. If so, tell which similarity test is used and complete the statement.

1. \(\triangle ABC \sim \triangle \) _____
2. \(\triangle RST \sim \triangle \) _____
3. \(\triangle KJL \sim \triangle \) _____

Find the value of each variable.

4.
5.

6. A rug measures 6 feet by 3 feet. Make a scale drawing of the rug if \(\frac{1}{2} \) inch represents 1 foot.

7. Draw an example of two similar triangles.
Proportional Parts and Triangles

Complete each proportion.

1. \(\frac{AD}{AC} = \frac{AE}{EC} \)

2. \(\frac{AD}{DC} = \frac{AE}{EC} \)

3. \(\frac{DE}{CB} = \frac{AD}{AC} \)

4. \(\frac{DE}{DC} = \frac{AB}{AE} \)

5. \(\frac{AC}{AB} = \frac{AE}{EC} \)

6. \(\frac{DE}{CB} = \frac{AB}{AC} \)

Find the value for each variable.

7. \(\frac{AD}{AC} = \frac{AE}{EC} \)

8. \(\frac{DE}{DC} = \frac{AB}{AE} \)

9. \(\frac{DE}{CB} = \frac{AB}{AC} \)
Triangles and Parallel Lines

In each figure, determine whether $DE \parallel CB$.

1. \[\triangle ABC \]
 - DE is parallel to CB.

2. \[\triangle ABC \]
 - DE is not parallel to CB.

3. \[\triangle ABC \]
 - DE is parallel to CB.

4. \[\triangle ABC \]
 - DE is not parallel to CB.

5. \[\triangle ABC \]
 - DE is parallel to CB.

6. \[\triangle ABC \]
 - DE is not parallel to CB.

D, E, and F are the midpoints of the sides of $\triangle ABC$. Complete each statement.

7. $AB \parallel \ ?$

8. If $AC = 22$, then $EF = \ ?$

9. If $AE = 6$, find the perimeter of $\triangle DEF$.

10. If $CF = 9$, find the perimeter of $\triangle ABC$.

NAME ______________________ DATE __________ PERIOD _____

Student Edition

Pages 374–378
Proportional Parts and Parallel Lines

Complete each proportion.

1. \(\frac{PQ}{QR} = \frac{TW}{R} \)

2. \(\frac{TW}{ST} = \frac{PQ}{R} \)

3. \(\frac{PQ}{PR} = \frac{ST}{R} \)

4. \(\frac{TW}{SW} = \frac{PR}{R} \)

5. \(\frac{SW}{ST} = \frac{PR}{R} \)

6. \(\frac{PR}{QR} = \frac{SW}{R} \)

Find the value of \(x \).

7. \[
\begin{align*}
10 & \quad 8 \\
\quad \quad x & \quad 12
\end{align*}
\]

8. \[
\begin{align*}
3 & \quad 6 \\
4 & \quad x
\end{align*}
\]

9. \[
\begin{align*}
15 & \quad 14 \\
15 & \quad x
\end{align*}
\]

10. \[
\begin{align*}
10 & \quad x \\
12 & \quad x + 2
\end{align*}
\]

11. In the figure, \(\overline{YA} \parallel \overline{OE} \parallel \overline{BR} \). If \(YO = 4 \), \(ER = 16 \), and \(AR = 24 \), find \(OB \) and \(AE \).
Perimeters and Similarity

For each pair of similar triangles, find the value of each variable.

1. Perimeter of \(\triangle XYZ \) = 30
 ![Diagram of \(\triangle XYZ \)]

2. Perimeter of \(\triangle DEF \) = 48
 ![Diagram of \(\triangle DEF \)]

Determine the scale factor for each pair of similar triangles.

3. \(\triangle UVW \) to \(\triangle ZXY \)
 ![Diagram of \(\triangle UVW \to \triangle ZXY \)]

4. \(\triangle DEF \) to \(\triangle ABC \)
 ![Diagram of \(\triangle DEF \to \triangle ABC \)]

5. The perimeter of \(\triangle ABC \) is 24 feet. If \(\triangle ABC \sim \triangle LMN \) and the scale factor of \(\triangle ABC \) to \(\triangle LMN \) is \(\frac{2}{3} \), find the perimeter of \(\triangle LMN \).

6. Suppose \(\triangle XYZ \sim \triangle DEF \) and the scale factor of \(\triangle XYZ \) to \(\triangle DEF \) is \(\frac{3}{5} \). The lengths of the sides of \(\triangle XYZ \) are 15 centimeters, 12 centimeters, and 12 centimeters. Find the perimeter of \(\triangle DEF \).
Naming Polygons

Identify each polygon by its sides. Then determine whether it appears to be regular or not regular. If not regular, explain why.

1.

2.

3.

Classify each polygon as convex or concave.

4.

5.

6.

Name each part of heptagon ABCDEFG.

7. two nonconsecutive vertices

8. two diagonals

9. three consecutive sides

10. four consecutive vertices
Diagonals and Angle Measure

Find the sum of the measures of the interior angles of each convex polygon.

1. heptagon
2. octagon
3. 13-gon

Find the measure of one interior angle and one exterior angle of each regular polygon.

4. 5
5. 9
6. 10

7. The sum of the measures of five interior angles of a hexagon is 535. What is the measure of the sixth angle?

8. The measure of an exterior angle of a regular octagon is \(x + 7 \). Find \(x \) and the measure of each exterior angle of the octagon.

9. The measures of the exterior angles of a quadrilateral are \(x \), \(3x \), \(5x \), and \(3x \). Find \(x \) and the measure of each exterior angle of the quadrilateral.

Find the sum of the measures of the interior angles in each figure.

10.
11.

© Glencoe/McGraw-Hill 55
Geometry: Concepts and Applications
Areas of Polygons

Find the area of each polygon in square units.

1.

2.

3.

4.

5.

6.

7.

8.

Estimate the area of each polygon in square units.

9.

10.

NAME ________________________ DATE __________ PERIOD______

© Glencoe/McGraw-Hill

56

Geometry: Concepts and Applications
Areas of Triangles and Trapezoids

Find the area of each triangle or trapezoid.

1. [Diagram of a triangle with base 6 in. and altitude 5 in.]

2. [Diagram of a trapezoid with bases 4 m and 10 m, and altitude 4.5 m]

3. [Diagram of a trapezoid with bases 13 cm and 19 cm, and altitude 8.2 cm]

4. [Diagram of a triangle with base 12 km and altitude 12 km]

5. [Diagram of a triangle with base 16 ft and altitude 17 1/2 ft]

6. [Diagram of a trapezoid with bases 21 1/2 yd and 14 yd, and altitude 11 yd]

7. The altitude of a triangle is 5 inches and the base is 10 inches long. Find the area.

8. The height of a trapezoid is 9 centimeters. The bases are 8 centimeters and 12 centimeters long. Find the area.
Areas of Regular Polygons

Find the area of each regular polygon. If necessary, round to the nearest tenth.

1. an octagon with an apothem 4.8 centimeters long and a side 4 centimeters long

2. a square with a side 24 inches long and an apothem 12 inches long

3. a hexagon with a side 23.1 meters long and an apothem 20.0 meters long

4. a pentagon with an apothem 316.6 millimeters long and a side 460 millimeters long

Find the area of the shaded region in each regular polygon.

7.

8.
Symmetry

Determine whether each figure has line symmetry. If it does, copy the figure and draw all lines of symmetry. If not, write no.

1.

2.

3.

4.

Determine whether each figure has rotational symmetry. Write yes or no.

5.

6.

7.

8.
Tessellations

Identify the figures used to create each tessellation. Then identify the tessellation as regular, semi-regular, or neither.

1.
2.
3.
4.
5.
6.
7.
8.
9.
Parts of a Circle
Refer to the figure at the right.

1. Name the center of \(\odot P \).

2. Name three radii of the circle.

3. Name a diameter.

4. Name two chords.

Use circle \(P \) to determine whether each statement is true or false.

5. \(\overline{PB} \) is a radius of circle \(P \).

6. \(\overline{AB} \) is a radius of circle \(P \).

7. \(CA = 2(PE) \)

8. \(\overline{PB} \) is a chord of circle \(P \).

9. \(\overline{AB} \) is a chord of circle \(P \).

10. \(\overline{AB} \) is a diameter of circle \(P \).

11. \(\overline{AC} \) is a diameter of circle \(P \).

12. \(PA = PD \)
Arcs and Central Angles

In \(\odot P \), \(m \angle 1 = 140 \) and \(\overline{AC} \) is a diameter. Find each measure.

1. \(m \angle 2 \)
2. \(m \overline{BC} \)
3. \(m \overline{AB} \)
4. \(m \overline{ABC} \)

In \(\odot P \), \(m \angle 2 = m \angle 1 \), \(m \angle 2 = 4x + 35 \), \(m \angle 1 = 9x + 5 \), and \(\overline{BD} \) and \(\overline{AC} \) are diameters. Find each of the following.

5. \(x \)
6. \(m \overline{AE} \)
7. \(m \overline{ED} \)
8. \(m \angle 3 \)
9. \(m \overline{AB} \)
10. \(m \overline{EC} \)
11. \(m \overline{EB} \)
12. \(m \angle CPB \)
13. \(m \overline{CB} \)
14. \(m \overline{CEB} \)
15. \(m \overline{DC} \)
16. \(m \overline{CEA} \)

17. The table below shows how federal funds were spent on education in 1990.

<table>
<thead>
<tr>
<th>1990 Federal Funds Spent for Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary/Secondary</td>
</tr>
<tr>
<td>Education for the Disabled</td>
</tr>
<tr>
<td>Post-Secondary Education</td>
</tr>
<tr>
<td>Public Library Services</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

a. Use the information to make a circle graph.

b. Out of the $12,645,630 spent on post-secondary education, $10,801,185 went to post-secondary financial assistance. What percent is that of the $12,645,630?
Arks and Chords

In each figure, O is the center. Find each measure to the nearest tenth.

1. \(YQ\)

2. \(m\overline{BC}\)

3. Suppose a chord of a circle is 16 inches long and is 6 inches from the center of the circle. Find the length of a radius.

4. Find the length of a chord that is 5 inches from the center of a circle with a radius of 13 inches.

5. Suppose a radius of a circle is 17 units and a chord is 30 units long. Find the distance from the center of the circle to the chord.

6. Find \(AB\).

7. Find \(AB\).
Inscribed Polygons

Use a compass and straightedge to inscribe each polygon in a circle. Explain each step.

1. equilateral triangle
2. regular pentagon

Use circle O to find x.

3. $AB = 3x - 5$, $CD = 2x + 1$

4. $AB = 4x + 2$, $CD = 2x + 6$

5. $AB = 2x + 1$, $CD = 3x - 4$

6. $AB = 3(x + 1)$, $CD = 2(x + 5)$

7. $AB = 3(x - 1)$, $CD = 8x - 13$

8. $AB = 5(x + 2)$, $CD = 10(x - 1)$

9. $AB = 3x - 7$, $CD = 4x - 21$
Circumference of a Circle

Find the circumference of a circle with a radius of the given length. Round your answers to the nearest tenth.

1. 3 cm
2. 2 ft

3. 34 mm
4. 4.5 m

5. 6 cm
6. 5 miles

Find the exact circumference of each circle.

7.

8.

9.

10.
Area of a Circle

Find the area of each circle described. Round your answers to the nearest hundredth.

1. \(r = 3 \text{ cm} \)
2. \(r = \frac{3}{2} \text{ ft} \)
3. \(r = 2.3 \text{ mm} \)

4. \(d = 13 \text{ ft} \)
5. \(d = \frac{2}{3} \text{ mi} \)
6. \(d = 6.42 \text{ in.} \)

7. \(C = 80 \text{ mm} \)
8. \(C = 15.54 \text{ in} \)
9. \(C = 12\frac{1}{2} \text{ mi} \)

In a circle with radius of 5 cm, find the area of a sector whose central angle has the following measure. Round to the nearest hundredth.

8. 10
9. 180
10. 36

11. 12
12. 120
13. 45
Solid Figures

Name the faces, edges, and vertices of each polyhedron.

1. \(\begin{array}{c}
A & B \\
D & C \\
\end{array} \)

2. \(\begin{array}{c}
L & M \\
O & N \\
S & Q \\
\end{array} \)

Identify each solid.

3. \begin{array}{c}
\end{array}

4. \begin{array}{c}
\end{array}

5. \begin{array}{c}
\end{array}

Determine whether each statement is true or false for the solid.

6. The figure is a prism.

7. The figure is a polyhedron.

8. Pentagon \(ABCDE \) is a lateral face.

9. The figure has five lateral faces.

10. Pentagon \(ABCDE \) is a base.
Surface Areas of Prisms and Cylinders

Find the lateral area and the surface area for each solid. Round to the nearest tenth, if necessary.

1.

2.

3.

4.

5.

6.

7.

8.
Volumes of Prisms and Cylinders

Find the volume of each solid. Round to the nearest tenth, if necessary.

1. 2.

3. 4.

5. 6.

7. 8.
Surface Areas of Pyramids and Cones

Find the lateral area and the surface area of each regular pyramid or cone. Round to the nearest hundredth.

1.

2.

3.

4.

5.

6.
Volumes of Pyramids and Cones

Find the volume of each solid. Round to the nearest hundredth, if necessary.

1. A pyramid has a height of 16 centimeters and a base with an area of 84 square centimeters. What is its volume?

2. A cone has a height of 12 inches and a base with a radius of 16 centimeters. Find the volume of the cone.

5. A pyramid has a height of 16 centimeters and a base with an area of 84 square centimeters. What is its volume?

6. A cone has a height of 12 inches and a base with a radius of 16 centimeters. Find the volume of the cone.
Spheres

Find the surface area and volume of each sphere. Round to the nearest hundredth.

1. 2. 3. 4.

5. Find the surface area of a sphere with a diameter of 100 centimeters. Round to the nearest hundredth.

6. What is the volume of a sphere with a radius of 12 inches? Round to the nearest hundredth.
Similarity of Solid Figures

Determine whether each pair of solids is similar.

1.
 - Solid on the left: 14 cm × 11 cm × 7 cm
 - Solid on the right: 7 cm × 10 cm × 16 m

2.
 - Solid on the left: Cylinder with a height of 15 m and a radius of 48 m
 - Solid on the right: Cylinder with a height of 15 m and a radius of 10 m

For each pair of similar solids, find the scale factor of the solid on the left to the solid on the right. Then find the ratios of the surface areas and the volumes.

3.
 - Solid on the left: Cube with edges of 7 in.
 - Solid on the right: Cube with edges of 5 in.

4.
 - Solid on the left: Cone with a height of 8 cm and a radius of 12 cm
 - Solid on the right: Cone with a height of 12 cm and a radius of 8 cm

5.
 - Solid on the left: Cylinder with a height of 12 cm and a radius of 9 cm
 - Solid on the right: Cylinder with a height of 15 in.

6.
 - Solid on the left: Sphere with a diameter of 15 in.
 - Solid on the right: Sphere with a diameter of 5 in.
Simplifying Square Roots
Simplify each expression.

1. \(\sqrt{169} \)
2. \(\sqrt{36} \)
3. \(\sqrt{25} \)

4. \(\sqrt{300} \)
5. \(\sqrt{75} \)
6. \(\sqrt{45} \)

7. \(\sqrt{3} \cdot \sqrt{6} \)
8. \(\sqrt{3} \cdot \sqrt{7} \)
9. \(\sqrt{5} \cdot \sqrt{30} \)

10. \(\frac{\sqrt{35}}{\sqrt{7}} \)
11. \(\frac{\sqrt{25}}{\sqrt{64}} \)
12. \(\frac{\sqrt{64}}{\sqrt{16}} \)

13. \(\frac{\sqrt{5}}{\sqrt{3}} \)
14. \(\frac{\sqrt{3}}{\sqrt{5}} \)
15. \(\frac{\sqrt{2}}{\sqrt{10}} \)
45°-45°-90° Triangles

Find the missing measure. Write all radicals in simplest form.

1.
 \[
 \begin{array}{c}
 \triangle \text{ with sides } 5, y, x \text{ and angles } 45°, 45°\text{, and } 90°.

 \end{array}
 \]

2.
 \[
 \begin{array}{c}
 \triangle \text{ with sides } 30, y, x \text{ and angles } 45°, 45°\text{, and } 90°.

 \end{array}
 \]

3.
 \[
 \begin{array}{c}
 \triangle \text{ with sides } 1, y, x \text{ and angles } 45°, 45°\text{, and } 90°.

 \end{array}
 \]

4.
 \[
 \begin{array}{c}
 \triangle \text{ with sides } x, y, 14 \text{ and angles } 45°, 45°\text{, and } 90°.

 \end{array}
 \]

5. Find the length of a diagonal of a square with sides 10 inches long.

6. Find the length of a side of a square whose diagonal is 4 centimeters.
30°-60°-90° Triangles

Find the missing measures. Write all radicals in simplest form.

1. \[
\begin{array}{c}
\text{60°} \\
\downarrow \quad \downarrow \\
x \quad 14 \\
\downarrow \quad \downarrow \\
y \\
\end{array}
\]

2. \[
\begin{array}{c}
\text{30°} \\
\downarrow \quad \downarrow \\
x \quad y \\
\downarrow \quad \downarrow \\
5\sqrt{3} \\
\end{array}
\]

3. \[
\begin{array}{c}
\text{12} \\
\downarrow \\
x \quad 60° \\
\downarrow \\
y \\
\end{array}
\]

4. \[
\begin{array}{c}
\text{30°} \\
\downarrow \quad \downarrow \\
y \quad 4 \\
\downarrow \quad \downarrow \\
x \\
\end{array}
\]

5. One side of an equilateral triangle measures 6 cm. Find the measure of an altitude of the triangle.

6. Find the missing measures in the triangle. Write all radicals in simplest form.
Tangent Ratio

Find each tangent. Round to four decimal places, if necessary.

1. \(\tan A \)
2. \(\tan B \)
3. \(\tan S \)
4. \(\tan Q \)

Find each missing measure. Round to the nearest tenth.

5.

6.

7.

8.
Sine and Cosine Ratios

Find each sine or cosine. Round to four decimal places, if necessary.

1. \(\sin A \)

2. \(\sin B \)

3. \(\cos Q \)

4. \(\cos S \)

Find each measure. Round to the nearest tenth.

5.

6.

7.

8.

© Glencoe/McGraw-Hill

Geometry: Concepts and Applications
Inscribed Angles

Determine whether each angle is an inscribed angle. Name the intercepted arc for the angle.

1. \(\angle ABC \)
2. \(\angle XTW \)
3. \(\angle HJK \)

In \(\odot P \), \(m\overline{AB} = x \) and \(m\overline{BC} = 3x \). Find each measure.

4. \(m\overline{ADC} \)
5. \(m\angle ABC \)
6. \(m\overline{AB} \)
7. \(m\angle A \)
8. \(m\overline{BC} \)
9. \(m\angle C \)

In \(\odot Q \), \(m\angle ABC = 72 \) and \(m\overline{CD} = 46 \). Find each measure.

10. \(m\overline{CA} \)
11. \(m\overline{BC} \)
12. \(m\overline{AD} \)
13. \(m\angle C \)
14. \(m\angle ABD \)
15. \(m\angle A \)
Tangents to a Circle

For each $\odot Q$, find the value of x. Assume segments that appear to be tangent are tangent.

1. A B C P
 - A B, C P, $3x + 4$

2. A B C P
 - A B, C P, 8

3. A B C D
 - A B, C D, 4

4. A B C D
 - A B, C D, 60°

5. A B C
 - A B, C P, 8

6. A B C D
 - A B, C D, 6.4

NAME ________________________
DATE __________
PERIOD ______
Secant Angles

Find each measure.

1. \(m\angle CD \)

2. \(m\angle 1 \)

3. \(m\angle BD \)

4. \(m\angle AB \)

5. \(m\angle DE \)

6. \(m\angle BCD \)

In \(\odot Q \), \(m\angle AE = 140 \), \(m\angle BD = y \), \(m\angle AB = 2y \), and \(m\angle DE = 2y \).

Find each measure.
Secant-Tangent Angles

In \(\odot P\), \(m_{\overline{BC}} = 4x - 50\), \(m_{\overline{DE}} = x + 25\), \(m_{\overline{EF}} = x - 15\),
\(m_{\overline{CD}} = x\), and \(m_{\overline{FB}} = 50\). Find the measure of each angle. Assume lines that appear to be tangent are tangent.

1. \(m_{\angle A}\)
2. \(m_{\angle BCA}\)

3. \(m_{\angle ABC}\)
4. \(m_{\angle GBC}\)

5. \(m_{\angle FHE}\)
6. \(m_{\angle CFD}\)

In \(\odot P\), \(m_{\angle A} = 62\) and \(m_{\overline{BD}} = 120\). Find the measure of each angle.

7. \(m_{\angle C}\)

8. \(m_{\angle E}\)
In each circle, find the value of x. If necessary, round to the nearest tenth. Assume segments that appear to be tangent are tangent.

1.

2.

3.

4.

In \(\odot P \), \(CE = 6 \), \(CD = 16 \), and \(AB = 17 \). Find each measure.

5. \(EB \)

6. \(AE \)

In \(\odot P \), \(AC = 3 \), \(BC = 5 \), and \(AD = 2 \). Find each measure.

7. \(PD \)

8. \(ED \)

9. \(PB \)
Equations of Circles

Find the coordinates of the center and the measure of the radius for each circle whose equation is given.

1. \((x - 3)^2 + (y + 1)^2 = 16\)
2. \(\left(x + \frac{5}{8} \right)^2 + (y + 2)^2 = \frac{25}{9} \)
3. \((x - 3.2)^2 + (y - 0.75)^2 = 40\)

Graph each equation on a coordinate grid.

4. \((x - 2)^2 + y^2 = 6.25\)
5. \((x + 3)^2 + \left(y - \frac{3}{2} \right)^2 = 4\)

Write the equation of circle \(P\) based on the given information.

7. center: \(P\left(0, \frac{1}{2}\right)\) radius: 8
8. center: \(P(-5.3, 1)\) diameter: 9

9. 10. a diameter whose endpoints are at \((5, -7)\) and \((-2, 4)\)
Logic and Truth Tables

Use conditionals \(p, q, r, \) and \(s \) for Exercises 1–9.

\(p: \) Labor Day is in April.
\(q: \) A quadrilateral has 4 sides.
\(r: \) There are 30 days in September.
\(s: \) \((5 + 3) \div 3 = 5 \)

Write the statements for each negation.

1. \(\neg p \)
2. \(\neg q \)
3. \(\neg r \)

Write a statement for each conjunction or disjunction. Then find the truth value.

4. \(p \lor q \)
5. \(p \land q \)
6. \(\neg p \lor r \)
7. \(\neg q \land s \)
8. \(p \land s \)
9. \(\neg q \lor \neg r \)

Construct a truth table for each compound statement.

10. \(\neg p \lor \neg q \)
11. \(\neg p \land q \)
Deductive Reasoning

Determine if a valid conclusion can be reached from the two true statements using the Law of Detachment or the Law of Syllogism. If a valid conclusion is possible, state it and the law that is used. If a valid conclusion does not follow, write no valid conclusion.

1. If Jim is a Texan, then he is an American.
 Jim is a Texan.

2. If Spot is a dog, then he has four legs.
 Spot has four legs.

3. If Rachel lives in Tampa, than Rachel lives in Florida.
 If Rachel lives in Florida, then Rachel lives in the United States.

4. If October 12 is a Monday, then October 13 is a Tuesday.
 October 12 is a Monday.

5. If Henry studies his algebra, then he passes the test.
 If Henry passes the test, then he will get a good grade.

Determine if statement (3) follows from statements (1) and (2) by the Law of Detachment or the Law of Syllogism. If it does, state which law was used. If it does not, write no valid conclusion.

6. (1) If the measure of an angle is greater than 90, then it is obtuse.
 (2) \(\angle T \) is greater than 90.
 (3) \(\angle T \) is obtuse.

7. (1) If Pedro is taking history, then he will study about World War II.
 (2) Pedro will study about World War II.
 (3) Pedro is taking history.

8. (1) If Julie works after school, then she works in a department store.
 (2) Julie works after school.
 (3) Julie works in a department store.

9. (1) If William is reading, then he is reading a magazine.
 (2) If William is reading a magazine, then he is reading a magazine about computers.
 (3) If William is reading, then he is reading a magazine about computers.

10. Look for a Pattern Tanya likes to burn candles. She has found that, once a candle has burned, she can melt 3 candle stubs, add a new wick, and have one more candle to burn. How many total candles can she burn from a box of 15 candles?
Paragraph Proofs

Write a paragraph proof for each conjecture.

1. If $p \parallel q$ and p and q are cut by a transversal t, then $\angle 1$ and $\angle 3$ are supplementary.

2. If E bisects BD and AC, then $BA \parallel CD$.

3. If $\angle 3 \equiv \angle 4$, then $\triangle ABC$ is isosceles.
Preparing for Two-Column Proofs

Name the property or equality that justifies each statement.

1. If \(m\angle A = m\angle B \), then \(m\angle B = m\angle A \).
2. If \(x + 3 = 17 \), then \(x = 14 \).
3. \(xy = xy \)
4. If \(7x = 42 \), then \(x = 6 \).
5. If \(XY - YZ = XM \), then \(XM + YZ = XY \).
6. \(2(x + 4) = 2x + 8 \)
7. If \(m\angle A + m\angle B = 90 \), and \(m\angle A = 30 \), then \(30 + m\angle B = 90 \).
8. If \(x = y + 3 \) and \(y + 3 = 10 \), then \(x = 10 \).

Complete each proof by naming the property that justifies each statement.

9. Prove that if \(2(x - 3) = 8 \), then \(x = 7 \).
 Given: \(2(x - 3) = 8 \)
 Prove: \(x = 7 \)
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (2(x - 3) = 8)</td>
<td>a.</td>
</tr>
<tr>
<td>b. (2x - 6 = 8)</td>
<td>b.</td>
</tr>
<tr>
<td>c. (2x = 14)</td>
<td>c.</td>
</tr>
<tr>
<td>d. (x = 7)</td>
<td>d.</td>
</tr>
</tbody>
</table>

10. Prove that if \(3x - 4 = \frac{1}{2}x + 6 \), then \(x = 4 \).
 Given: \(3x - 4 = \frac{1}{2}x + 6 \)
 Prove: \(x = 4 \)
 Proof:

Statements	Reasons
a. \(3x - 4 = \frac{1}{2}x + 6 \)	a.
b. \(\frac{5}{2}x - 4 = 6 \)	b.
c. \(\frac{5}{2}x = 10 \)	c.
d. \(x = 4 \)	d.
Two-Column Proofs

Write a two-column proof.

1. Given: B is the midpoint of AC.
 Prove: $AB + CD = BD$
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>B is the midpoint of AC</td>
<td>Given</td>
</tr>
<tr>
<td>$AB = BC$</td>
<td>Definition of midpoint</td>
</tr>
<tr>
<td>$CD = DE$</td>
<td>Definition of midpoint</td>
</tr>
<tr>
<td>$AB + CD = AC$</td>
<td>Segment addition postulate</td>
</tr>
<tr>
<td>$AC = BD$</td>
<td>Definition of midpoint</td>
</tr>
<tr>
<td>$AB + CD = BD$</td>
<td>Substitution</td>
</tr>
</tbody>
</table>

2. Given: $\angle AEC \cong \angle DEB$
 Prove: $\angle AEB \cong \angle DEC$
 Proof:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle AEC \cong \angle DEB$</td>
<td>Given</td>
</tr>
<tr>
<td>$\angle AEB + \angle EBC = \angle AEC$</td>
<td>Angle addition postulate</td>
</tr>
<tr>
<td>$\angle DEC + \angle EBC = \angle DEB$</td>
<td>Angle addition postulate</td>
</tr>
<tr>
<td>$\angle AEB = \angle DEC$</td>
<td>Substitution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle AEB \cong \angle DEC$</td>
<td>Substitution</td>
</tr>
</tbody>
</table>
Coordinate Proofs

Name the missing coordinates in terms of the given variables.

1. \(\triangle XYZ \) is a right isosceles triangle.

2. \(MART \) is a rhombus.

3. \(RECT \) is a rectangle.

4. \(DEFG \) is a parallelogram.

5. Use a coordinate proof to prove that the diagonals of a rhombus are perpendicular. Draw the diagram at the right.
Solving Systems of Equations by Graphing

Solve each system of equations by graphing.

1. \[\begin{align*} x + y &= 3 \\ x - y &= 1 \end{align*} \]

2. \[\begin{align*} y &= 3 + x \\ x + y &= 5 \end{align*} \]

3. \[\begin{align*} y &= 2x \\ x + y &= 3 \end{align*} \]

4. \[\begin{align*} x + y &= 6 \\ x + y &= 5 \end{align*} \]

5. \[\begin{align*} y &= 2x \\ 2x + 2y &= 18 \end{align*} \]

6. \[\begin{align*} x + y &= 3 \\ y &= x - 5 \end{align*} \]

State the letter of the ordered pair that is a solution of both equations.

7. \[\begin{align*} 2x &= 10 \\ 3x + 2y &= 25 \end{align*} \]
 a. \((10, -5)\) b. \((5, 5)\) c. \((5, 20)\) d. \((8, \frac{1}{2})\)

8. \[\begin{align*} x + y &= 6 \\ 2x + y &= 11 \end{align*} \]
 a. \((6, 11)\) b. \((3, 3)\) c. \((2, 4)\) d. \((5, 1)\)

9. \[\begin{align*} 2x + 3y &= 10 \\ 5x + 3y &= 16 \end{align*} \]
 a. \((2, 2)\) b. \((2, 7)\) c. \(\left(\frac{3}{5}, 5\right)\) d. \((2, 3)\)
Solving Systems of Equations by Using Algebra

Use either substitution or elimination to solve each system of equations.

1. \(x + y = 7 \)
 \(x - y = 9 \)

2. \(x + y = 3 \)
 \(3x - 5y = 17 \)

3. \(y = 2x \)
 \(3x + y = 5 \)

4. \(4x - 3y = -1 \)
 \(x + 1 = y \)

5. \(2x + 3y = -1 \)
 \(3x + 5y = -2 \)

6. \(3y = 2 - x \)
 \(2x = 7 - 3y \)

7. \(3x + 2y = 10 \)
 \(6x - 3y = 6 \)

8. \(x = 4 \)
 \(y = 3x - 5 \)
Translations

Find the coordinates of the vertices of each figure after the given translation. Then graph the translation image.

1. \((-1, 2)\)

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{A} \\
\end{array}
\]

2. \((-2, -2)\)

\[
\begin{array}{c}
\text{G} \\
\text{F} \\
\text{E} \\
\end{array}
\]

For each of the following, lines \(\ell\) and \(m\) are parallel. Determine whether Figure 3 is a translation image of Figure 1. Write yes or no. Explain your answer.

3. Figure 1

4. Figure 1

5. Figure 1

6. Figure 1
Reflections

Find the coordinates of the vertices of each figure after a reflection over the given axis. Then graph the reflection image.

1. x-axis

2. x-axis

3. y-axis

4. y-axis

5. x-axis

6. y-axis
Rotations

Rotate each figure about point S by tracing the figure. Use the given angle of rotation.

1. 90° clockwise

2. 180° counterclockwise

3. 60° clockwise

4. 45° counterclockwise

Find the coordinates of the vertices of each figure after the given rotation about the origin. Then graph the rotation image.

5. 90° counterclockwise

6. 180° clockwise
Dilations

A dilation with center C and a scale factor k maps X onto Y. Find the scale factor for each dilation. Then determine whether each dilation is an enlargement or a reduction.

1. \(CY = 15, CX = 10\)

2. \(CY = 1, CX = 2\)

3. \(CY = 5, CX = 2\)

4. \(CY = 20, CX = \frac{1}{2}\)

Find the measure of the dilation image of \(AB\) with the given scale factor.

5. \(AB = 6\) in., \(k = \frac{2}{3}\)

6. \(AB = 4\) in., \(k = 1\)

7. \(AB = 1\frac{1}{2}\) in., \(k = \frac{1}{2}\)

8. \(AB = 20\) in., \(k = 2\frac{1}{2}\)

For each scale factor, find the image of A with respect to a dilation with center C.

<table>
<thead>
<tr>
<th>C</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>A</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. 3

10. \(\frac{1}{4}\)

11. \(2\frac{1}{4}\)

12. \(\frac{3}{4}\)

Graph each set of ordered pairs. Then connect the points in order. Using \((0, 0)\) as the center of dilation and a scale factor of 2, draw the dilation image. Repeat this using a scale factor of \(\frac{1}{2}\).

13. \((2, 2), (4, 6), (6, -2)\)

14. \((0, 2), (-4, 2), (-4, -2)\)