Bottled Water Quality Report

Arrowhead® brand bottled waters are produced using state-of-the-art quality programs to ensure food safety and security. Record-keeping and quality reports are maintained continually for all our plants.

To learn more, please click on the items listed below.

## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heritage</td>
<td>2</td>
</tr>
<tr>
<td>Sources of Water</td>
<td>3</td>
</tr>
<tr>
<td>Mineral Analysis (abbreviated)</td>
<td>4</td>
</tr>
<tr>
<td>Regulations</td>
<td>6</td>
</tr>
<tr>
<td>Spring Water 10 Steps to Quality Assurance</td>
<td>7</td>
</tr>
<tr>
<td>Product Packaging and Sizes</td>
<td>9</td>
</tr>
<tr>
<td>Distilled Water 13 Steps to Quality Assurance</td>
<td>11</td>
</tr>
<tr>
<td>Drinking Water 13 Steps to Quality Assurance</td>
<td>13</td>
</tr>
<tr>
<td>Sparkling Spring Water 11 Steps to Quality Assurance</td>
<td>15</td>
</tr>
<tr>
<td>Sparkling Flavored Spring Water 12 Steps to Quality Assurance</td>
<td>17</td>
</tr>
<tr>
<td>Mineral Analysis (full)</td>
<td>19 - 22</td>
</tr>
<tr>
<td>Statements Required Under California Law</td>
<td>23</td>
</tr>
</tbody>
</table>
High on the south slope of California’s San Bernardino Mountains, the home of Arrowhead’s first cold-water spring, is a remarkable slice of the natural world. Hot springs bubble up from the earth’s surface. Caves can be found filled with steam. Several cold-water streams carry some of the world’s most delicious spring water from the mountains above. A rock formation several acres in size, shaped like an arrowhead, points to these springs.

According to a Native American legend, an arrow from heaven burned the formation on the mountainside to show tribes where they could be healed.

During the mid-nineteenth century, “Dr.” David Noble Smith claimed that a saint-like being appeared before him and told of a far-off land with exceptional climate and curative waters, marked by a gigantic arrowhead. Smith’s search for that unique arrowhead formation began in Texas and eventually ended at Arrowhead springs in California in 1857.

By 1889 word of the springs, along with a hotel on the site – and belief of the health effect of the water from the springs – had grown considerably. Hotel guests often raved about the crystal-clear water from the cold springs, which prompted Seth Marshall to set up a bottling operation in the hotel’s basement. By 1905, water from the cold springs was being shipped to Los Angeles.

Today, Arrowhead® 100% Mountain Spring Water comes from carefully selected mountain springs in the U.S. and Canada. Consumers reach for Arrowhead® Brand Mountain Spring Water because it embodies all that is good about the mountains.
Southern California’s San Bernardino Mountains is the location of the original cold-water source for Arrowhead® Brand Mountain Spring Water. Once, just five boreholes into this remarkable mountainside site supplied every drop of Arrowhead spring water. Today, the brand’s sources span from the United States to Canada, including multiple sites throughout the region of the original source—sources in an extraordinary 11,000-acre watershed outside San Francisco, and sources as far north as the Canadian Rockies. Though their locations vary, each source was selected because of the mountain spring water it provided.

We continue to review our current sources and occasionally seek new sources that meet our mountain spring water requirements and standards.

**Arrowhead® Brand Mountain Spring Water sources:**
- Southern Pacific Springs, Riverside County, CA;
- Arrowhead Springs, San Bernardino County, CA;
- Long Point Ranch Springs, Running Springs, CA;
- Palomar Mountain Granite Springs (PMGS), Palomar, CA;
- Deer Canyon Springs, San Bernardino County, CA;
- Coyote Springs, Inyo County, CA;
- White Meadow Spring, El Dorado County, CA;
- Lukens Springs, Placer County, CA;
- Sopiago Springs, El Dorado County, CA;
- Sugar Pine Springs, Tuolumne County, CA;
- Arcadia Springs, Napa County, CA;
- Hope Springs, Hope BC Canada and/or Ruby Springs, Chaffee County, CO.

The spring water sources for Arrowhead® Brand Sparkling Mountain Spring Water are indicated on the bottle labels.

**Distilled water sources:**
may either be a well or municipal supply.
Minerals as Gems

A light blend of minerals contributes to the legendary taste of Arrowhead® Brand Mountain Spring Water. The mineral content of any water is measured scientifically as TDS (total dissolved solids). TDS is a “fingerprint,” identifying the amount of minerals present. This TDS is what gives our Arrowhead® Brand its personality and distinguishes it from other waters. The basic composition is not changed during bottling, so you can enjoy the water’s clean, crisp taste and natural goodness.

We’ve broken down a sample mineral content for you here, so you can see why you enjoy Arrowhead® Brand Mountain Spring Water. You’ll be able to sense why you can “taste the mountain” in every bottle of Arrowhead® Brand Mountain Spring Water. All values provided in milligrams/liter (mg/l) unless indicated otherwise.

2015 Water Analysis Report

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>MINIMUM REPORTING LEVEL</th>
<th>FDA SOQ/EPA MCL</th>
<th>REPORTED RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Minerals and Metals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>0.10</td>
<td>NR</td>
<td>3.8-51</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.20</td>
<td>NR</td>
<td>2.5-17</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.10</td>
<td>NR</td>
<td>ND-3</td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.100</td>
<td>2.0(1.4-2.4)</td>
<td>ND-1.2</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.10</td>
<td>NR</td>
<td>1.4-20</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.010</td>
<td>10.00</td>
<td>ND-0.95</td>
</tr>
<tr>
<td>Chloride †</td>
<td>0.10</td>
<td>250</td>
<td>ND-15</td>
</tr>
<tr>
<td>Copper</td>
<td>0.050</td>
<td>1.0</td>
<td>ND</td>
</tr>
<tr>
<td>pH (units) †</td>
<td>NA</td>
<td>6.5-8.5</td>
<td>7.8-8.3</td>
</tr>
<tr>
<td>Sulfate †</td>
<td>0.10</td>
<td>250</td>
<td>ND-34</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.0014</td>
<td>0.010</td>
<td>ND</td>
</tr>
<tr>
<td>Lead</td>
<td>0.005</td>
<td>0.005</td>
<td>ND</td>
</tr>
<tr>
<td>Total Dissolved Solids †</td>
<td>1.0</td>
<td>500</td>
<td>40-260</td>
</tr>
</tbody>
</table>

All units in (mg/l) or Parts per Million (PPM) unless otherwise indicated.
† EPA Secondary Standard - non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water
‡ Set by California Dept. of Health Services

MRL - Minimum Reporting Limit. Where available, MRLs reflect the Method Detection Limits (MDLs) set by the U.S. Environmental Protection Agency or the Detection Limits for Purposes of Reporting (DLRs) set by the California Department of Health Services. These values are set by the agencies to reflect the minimum concentration of each substance that can be reliably quantified by applicable testing methods, and are also the minimum reporting thresholds applicable to the Consumer Confidence Reports produced by tap water suppliers.

EPA MCL - Maximum Contaminant Level. The highest level of a substance allowed by law in drinking water (bottled or tap water). The MCLs shown are the federal MCLs set by the U.S. Environmental Protection Agency and the Food and Drug Administration, unless no federal MCL exists. ‡ Where no federal MCL exists, the MCLs shown are the California MCLs set by the California Department of Health Services. California MCLs are identified with an †.

FDA SOQ - Statement of Quality. The standard (statement) of quality for bottled water is the highest level of a contaminant that is allowed in a container of bottled water, as established by the United States Food and Drug Administration (FDA) and the California Department of Public Health. The standards can be no less protective of public health than the standards for public drinking water, established by the U.S. Environmental Protection Agency (EPA) or the California Department of Public Health.

Reported Results - The highest level of each substance detected at or above the MRL in representative finished product samples.

ND - Not detected at or above the MRL.
NR - Not listed in State or Federal drinking water regulations.
NA - Not applicable to specific test method or test parameter
PPB - Parts per Billion. Equivalent to micrograms per liter (μg/l).
MFL - Million Fibers per Liter.
Quality First

Visual scrutiny
At Arrowhead, we think seeing is believing, so we perform continual on-the-spot visual checks of our bottling lines. In addition, all bottles are marked with the time, date and plant code, so consumers can see for themselves that they are buying the freshest product possible.

Certified plant operators
Our success depends on the knowledge and strength of our people operating our plants. We require that all plant quality and operating managers study and pass an exam on bottled water manufacturing technology and quality, which is proctored by the International Bottled Water Association (IBWA).

Bottling for quality
Because of our standards for finding and managing our springs, all of our Arrowhead® spring water products begin with mountain spring water. Water from all of our sources is tested as it comes into our plants. To ensure continued water quality from source to bottle, we further employ a comprehensive, multiple-barrier system, which complies with all state and federal regulations.

This approach involves carefully controlled filtration and disinfection processes in hygienically designed lines, supported by continuous monitoring and testing. We test our products throughout the bottling process and in hourly tests on finished products. We perform multiple checks hourly to guarantee the quality of our water. We screen for over 200 possible contaminants annually, even more than the FDA requires.

Third-party inspections
We adhere to strict regulatory compliance by submitting to an independent factory audit sanctioned by the IBWA. This audit, performed by Bureau Veritas (BV), is performed annually at all Nestlé Waters plants. Bureau Veritas ensures that all our factories are compliant with ISO 22000 and/or FSSC 2200 standards, along with performing the IBWA required audits. Our plants consistently perform in the top 10% of all bottled water companies in the U.S.
Commitment to communication

All our small-package labels feature a toll-free number (1-800-873-7775) consumers can call with any quality concerns. This is an integral part of our closed-loop quality assurance process.

Regulation and oversight

The bottled water industry is one of the few industries that has its own standard of good manufacturing practices that go above and beyond most other food products. The industry is regulated by the Food and Drug Administration (FDA), which regulates food industries and the pharmaceutical industry as well. Under the Safe Drinking Water Act, FDA regulations for bottled water must be at least as stringent as those imposed by the U.S. Environmental Protection Agency (EPA) for tap water. Bottled water is generally required to be tested for the same parameters as tap water, but the standards are, in many cases, stricter than for tap water.

**Arrowhead® Brand Mountain Spring Water** and Nestlé Waters North America’s internal requirements meet all local, state and federal bottled water regulations. The company’s internal quality assurance program ensures that analyses required by applicable regulatory agencies become a part of its regular testing program. And as a Nestlé company, Nestlé Waters North America adheres to all requirements of Nestlé’s internal quality standards. Further, the company voluntarily submits to a Bureau Veritas outside third-party inspection of all its bottling facilities. This audit ensures that the company meets the most stringent guidelines for sanitation and process control.

In addition, Nestlé Waters North America complies with inspections from the FDA, OSHA and its own Nestlé Waters-mandated audits. Nestlé Waters North America employs a HACCP (Hazard Analysis Critical Control Point) inspection plan at all factories. HACCP is recognized worldwide as the leading food safety program for the food and pharmaceutical industries.
Spring Water: 10 Steps to Quality Assurance

1 Source Selection and Monitoring
- Our spring water sources are natural springs, which come from aquifers.
- Spring selection is made on the basis of natural composition and freedom from contamination, availability and taste.
- In-house and trained geologists and hydrogeologists monitor springs regularly at the source.
  - Only sustainable sources, which meet our stringent requirements for quality and environmental harmony, are utilized.
  - Spring water is collected using state-of-the-art equipment to prevent chances of contamination and safeguard the water’s natural characteristics.

2 Source Water Receiving and Monitoring
- Spring water is transported from the natural spring either by food-grade pipelines or through delivery in sanitary stainless steel tankers, direct to our plants.
- Trained Quality Assurance personnel at each plant take daily samples of incoming spring water and test for signs of contamination.
- Monitoring of the spring water collection and receiving process is performed regularly.
- One-micron filters remove sand or other particles, which may happen to be present.

3 Water Storage And Monitoring

4 Micro-filtration

5A Ultraviolet Light Disinfection

5B Ozone Disinfection (Optional)

6 Bottling Control

7 Packaging Control

8 Clean-In-Place Line Sanitation Process

9 Plant Quality Control And HACCP

10 Corporate Quality Assurance

10 STEPS TO QUALITY ASSURANCE
Plant Quality Control

Each plant has a fully staffed Quality Assurance Department and Laboratory that maintain the plant Quality Control processes.

Water, packaging materials and plant processes are carefully monitored to ensure they meet company specifications and standards.

*Hazard Analysis Critical Control Point

Corporate Quality Assurance Program

National Testing Laboratory is equipped with state-of-the-art testing machinery and staffed with degreed, experienced personnel.

Comparative analyses are performed on products in accordance with State and Federal regulatory standards.

Independent from the plant Quality Control and Quality Assurance Departments, the Corporate Quality Assurance program sets company-wide standards, specifications and monitors plant quality programs.

3 Water Storage and Monitoring

- Spring water is temporarily held in food-grade storage tanks upon initial receipt at the plant.
- Here, the water is further tested for conformance to specifications.

4 Micro-filtration

- Specialized two-stage advanced micro-filters, designed specifically for our process, filter the raw spring water.
- These filters are pharmaceutical grade and are designed to remove particles as small as 0.2 micron in diameter.

5 Ultraviolet Light/Ozone Disinfection

- A. This process follows micro-filtration and is designed to destroy bacteria which may happen to be present.
- B. The combined effects of micro-filtration and ultraviolet light/ozone disinfection provide added assurance of product safety.

6 Bottling Control

- Bottling is conducted under very controlled conditions using state-of-the-art equipment.
- The spring water is monitored during the filling and capping process to prevent contamination from the environment.
- Each bottle is given a specific code that identifies the plant location, bottling line and time produced.
- Each plant maintains bottling specifications and control.

7 Packaging Control

- Packaging is conducted using the latest in modern equipment.
- Bottles, caps and labels are carefully controlled and monitored by lot.
- Most bottles are manufactured on-site for quality control.
- Packaging materials not meeting internal standards are rejected.

8 Clean-In-Place (C.I.P.) Sanitation Process

- Line sanitation practices include advanced internal pipe and equipment cleaning methods, called C.I.P.
- This automated cleaning process recirculates detergent and sanitizing solutions at the precise temperatures and time to ensure total control and maximum effectiveness of the line sanitation process.

10 STEPS TO QUALITY ASSURANCE

CLICK HERE to view 11 Step Distilled Water Process

CLICK HERE to view 12 Step Sparkling Flavored Water Process

CLICK HERE to view 13 Step Distilled Water Process
Our mountain spring water single-serve sizes provide pure refreshment that’s fast and convenient. It comes in the following package sizes:

- Half-pint (8 oz.), the ideal portable size for adults and children
- 12 oz. GO! SIZE bottle that’s the perfect size to fit in your bag and quench your thirst.
- 0.5 Liter (16.9 oz.), our most popular size
- 20 oz. vending bottle
- 700ml flip cap, for your active lifestyle
- 1 Liter (33.8 oz.), larger size for bigger, active thirsts
- 1.5 Liter (50.7 oz.), for all-day outings
- 3 Liter (101.4 oz.), convenient stackable bottles
- 2.5-Gallon, with finger-friendly spout

Most sizes are available individually, in packs or cases.

Arrowhead® Brand Mountain Spring Water is sealed in tamper-evident, recyclable plastic containers for shipment throughout California, Arizona, Nevada, the Rockies and the Pacific Northwest. You can find it in most retail outlets. Arrowhead® Brand Mountain Spring Water is also delivered in certain areas to homes and offices, so it is always handy on the job or for the family.

Pack Sizes – A Size to Satisfy Every Thirst

If you like taking the mountain with you no matter where life takes you, then you’ll appreciate the many sizes in which Arrowhead® Brand Mountain Spring Water is available.

From our half-pint (8 oz.) and popular 700ml flip cap bottles to our convenient five-gallon bottles and dispensers for your kitchen or office, it’s as easy as it is convenient to quench any-size thirst with Arrowhead® Brand products.
Besides mountain spring water, Arrowhead® Brand products are also available in varieties of drinking, fluoridated and distilled water. These products comply with the U.S. Food & Drug Administration standards.

**Arrowhead® Brand Distilled Water** begins with municipal water and/or well water. First, the water is passed through an activated carbon filter (municipal water only) to remove any volatile organic chemicals, chlorine or any of the potentially unwanted by-products of chlorine such as trihalomethanes. Then, a water softening system uses an ion exchange process to reduce the hardness of the water just prior to the distillation process. Finally, the water passes through micron filtration and ultraviolet light, and is treated with low levels of ozone just before bottling.

**Arrowhead® Brand Drinking Water** offers an economical choice for consumers. This water is sourced from municipal water and/or well water and goes through state-of-the-art processing techniques, which remove excess minerals and impurities.

Distilled Water and Drinking Water packages are available in one-gallon, 2.5-gallon and five-gallon bottles.

**Arrowhead® Brand Natural Spring Water with Natural Fluoride** contains fluoride, which is recommended as beneficial by the American Dental Association. Featuring a non-removable, child-safe twist cap, the 8 oz. spring water with natural fluoride combines the great-tasting spring water with the benefits of fluoride. It’s the one designed with kids in mind.

For More Information
Visit our website at www.arrowheadwater.com. Arrowhead welcomes consumer interest in its bottled water, packaging and distribution process. We maintain an active consumer inquiry center at this toll-free number: (800)-873-7775. Give us a call!
Distilled Water:
13 Steps to Quality Assurance

1 Source Receiving
- Water is carefully collected from the source, which may either be a well or municipal supply.
- Common method of receiving water is through stainless steel pipeline.
- Sample is taken from source weekly prior to internal processing.
- Microbiological and general chemistry testing performed on samples regularly.

2 Activated Carbon Filtration (Municipal Water Only)
- Removal of chlorine and THMs.
- Filtration process monitored and tested daily.

3 Pre-treatment
- Water softener used to reduce water hardness.

4 Distillation
- A process that boils the water and collects the condensate for bottling.
Plant Quality Control

- Each plant has a fully staffed Quality Assurance Department and laboratory that maintain the plant Quality Control processes.
- Water, packaging materials and plant processes are carefully monitored to ensure they meet company specifications and standards.

Corporate Quality Assurance Program

- National Testing Laboratory is equipped with state-of-the-art testing machinery and staffed with degreed, experienced personnel.
- Comparative analyses are performed on products in accordance with State and Federal regulatory standards.
- Independent from the plant Quality Control and Quality Assurance Departments, the Corporate Quality Assurance program sets company-wide standards, specifications and monitors plant quality programs.

13 STEPS TO QUALITY ASSURANCE

5 Water Storage and Monitoring
- Water is received into storage tanks.
- Storage environment and water carefully monitored daily.

6 Micro-filtration
- Specialized two-stage advanced micro-filters, designed specifically for our process, filter the water.
- These filters are pharmaceutical grade and are designed to remove particles as small as 0.2 micron in diameter.
- Capable of removing microbiological contaminants.
- Filtration process monitored hourly and tested daily.

7 Ultraviolet Light Disinfection
- The combined effects of micro-filtration and ultraviolet light provide added assurance of product disinfection and safety.
- Process continually monitored by instrumentation and checked/monitored hourly.

8 Ozone Disinfection
- Highly reactive form of oxygen used to disinfect water.
- Process is monitored on an hourly basis.

9 Bottling Control
- Bottling is conducted under very controlled conditions using state-of-the-art equipment.
- Each bottle is given a specific code that identifies the plant location, bottling line and time produced.
- Process monitored and tested continuously.
- Filling room and environment are of high sanitary conditions.

10 Packaging Control
- Packaging is conducted using the latest in modern equipment.
- Packaging materials not meeting internal standards are rejected.
- Bottles, caps and labels are carefully controlled and monitored by lot.
- Most bottles are manufactured on-site for quality control.

11 Clean-In-Place (C.I.P.) Sanitation Process
- Line sanitation practices include advanced internal pipe and equipment cleaning methods, called C.I.P.
- This automated cleaning process recirculates detergent and sanitizing solutions at the precise temperatures and time to affect total control and maximum effectiveness of the line sanitation process.

12 Plant Quality Control and HACCP* Program
- Each plant has a fully staffed Quality Assurance Department and laboratory that maintain the plant Quality Control processes.

*Hazard Analysis Critical Control Point
Drinking Water: 13 Steps to Quality Assurance

1 Source Receiving
- Water is carefully collected from the source, which may either be a well or municipal supply.
- Common method of receiving water is through stainless steel pipeline.
- Sample is taken from source weekly prior to internal processing.
- Microbiological and general chemistry testing performed on samples regularly.

2 Activated Carbon Filtration (Municipal Water Only)
- Removal of chlorine and THMs.
- Filtration process monitored and tested daily.

3 Pre-treatment
- Water softener used to reduce water hardness.

4 Demineralization Process
Demineralization is the use of cation and anion resin beds to remove minerals. Either/or of the following would be used:
- Reverse Osmosis – Use of high-pressure pump and special membranes, called semi-permeable membranes, to reverse the natural phenomenon of osmosis.
- Distillation – A process that boils the water and collects the condensate for bottling.

5 Water Storage And Monitoring

6 Micro-filtration

7 Ultraviolet Light Disinfection

8 Ozone Disinfection

9 Bottling Control

10 Packaging Control

11 Clean-In-Place Line Sanitation Process

12 Plant Quality Control And HACCP

13 Corporate Quality Assurance
Water Storage and Monitoring
- Water is received into storage tanks.
- Storage environment and water carefully monitored daily.

Micro-filtration
- Specialized two-stage advanced micro-filters, designed specifically for our process, filter the water.
- These filters are pharmaceutical grade and are designed to remove particles as small as 0.2 micron in diameter.
- Capable of removing microbiological contaminants.
- Filtration process monitored hourly and tested daily.

Micro-filtration
- Specialized two-stage advanced micro-filters, designed specifically for our process, filter the water.
- These filters are pharmaceutical grade and are designed to remove particles as small as 0.2 micron in diameter.
- Capable of removing microbiological contaminants.
- Filtration process monitored hourly and tested daily.

Ultrapure Water Disinfection
- The combined effects of micro-filtration and ultraviolet light provide added assurance of product disinfection and safety.
- Process continually monitored by instrumentation and checked/monitored hourly.

Ozone Disinfection
- Highly reactive form of oxygen used to disinfect water.
- Process is monitored on an hourly basis.

Bottling Control
- Bottling is conducted under very controlled conditions using state-of-the-art equipment.
- Each bottle is given a specific code that identifies the plant location, bottling line and time produced.
- Process monitored and tested continuously.
- Filling room and environment are of high sanitary conditions.

Packaging Control
- Packaging is conducted using the latest in modern equipment.
- Packaging materials not meeting internal standards are rejected.
- Bottles, caps and labels are carefully controlled and monitored by lot.
- Most bottles are manufactured on-site for quality control.

Clean-In-Place (C.I.P.) Sanitation Process
- Line sanitation practices include advanced internal pipe and equipment cleaning methods, called C.I.P.
- This automated cleaning process recirculates detergent and sanitizing solutions at the precise temperatures and time to affect total control and maximum effectiveness of the line sanitation process.

Plant Quality Control and HACCP* Program
- Each plant has a fully staffed Quality Assurance Department and laboratory that maintain the plant Quality Control processes.
- Water, packaging materials and plant processes are carefully monitored to ensure they meet company specifications and standards.

Corporate Quality Assurance Program
- National Testing Laboratory is equipped with state-of-the-art testing machinery and staffed with degreed, experienced personnel.
- Comparative analyses are performed on products in accordance with State and Federal regulatory standards.
- Independent from the plant Quality Control and Quality Assurance Departments, the Corporate Quality Assurance program sets company-wide standards, specifications and monitors plant quality programs.
Sparkling Spring Water: 11 Steps to Quality Assurance

1. Source Selection and Monitoring
   - Our spring water sources are natural springs, which come from aquifers.
   - Spring selection is made on the basis of natural composition and freedom from contamination, availability and taste.
   - In-house and trained, geologists and hydrogeologists, monitor springs regularly at the source.
     - Only sustainable sources, which meet our stringent requirements for quality and environmental harmony, are utilized.
     - Spring water is collected using state-of-the-art equipment to prevent chances of contamination and safeguard the water’s natural characteristics.

2. Source Water Receiving and Monitoring
   - Spring water is transported from the natural spring either by food-grade pipelines or through delivery in sanitary stainless steel tankers, direct to our plants.
   - Trained Quality Assurance personnel at each plant take daily samples of incoming spring water and test for signs of contamination.
   - Monitoring of the spring water collection and receiving process is performed regularly.
   - One-micron filters remove sand or other particles, which may happen to be present.

3. Water Storage and Monitoring

4. Micro-filtration

5. Ultraviolet Light Disinfection

6. Carbonation

7. Bottling Control

8. Packaging Control

9. Clean-In-Place Line Sanitation Process

10. Plant Quality Control and HACCP

11. Corporate Quality Assurance

11 STEPS TO QUALITY ASSURANCE
Plant Quality Control and HACCP* Program

- Each plant has a fully staffed Quality Assurance Department and Laboratory that maintain the plant Quality Control processes.
- Water, packaging materials and plant processes are carefully monitored to ensure they meet company specifications and standards.

*Hazard Analysis Critical Control Point

Corporate Quality Assurance Program

- National Testing Laboratory is equipped with state-of-the-art testing machinery and staffed with degreed, experienced personnel.
- Comparative analyses are performed on products in accordance with State and Federal regulatory standards.
- Independent from the plant Quality Control and Quality Assurance Departments, the Corporate Quality Assurance program sets company-wide standards, specifications and monitors plant quality programs.

11 STEPS TO QUALITY ASSURANCE

3 Water Storage and Monitoring
- Spring water is temporarily held in food-grade storage tanks upon initial receipt at the plant.
- Here, the water is further tested for conformance to specifications.

4 Micro-filtration
- Specialized two-stage advanced micro-filters, designed specifically for our process, filter the raw spring water.
- These filters are pharmaceutical grade and are designed to remove particles as small as 0.2 micron in diameter.

5 Ultraviolet Light/Ozone Disinfection
- This process follows micro-filtration and is designed to destroy bacteria which may happen to be present.

6 Carbonation
- The spring water is injected with carbon dioxide gas to add carbonation.

7 Bottling Control
- Bottling is conducted under very controlled conditions using state-of-the-art equipment.
- The spring water is monitored during the filling and capping process to prevent contamination from the environment.
- Each bottle is given a specific code that identifies the plant location, bottling line and time produced.
- Each plant maintains bottling specifications and control.

8 Packaging Control
- Packaging is conducted using the latest in modern equipment.
- Bottles, caps and labels are carefully controlled and monitored by lot.
- Most bottles are manufactured on-site for quality control.
- Packaging materials not meeting internal standards are rejected.

9 Clean-In-Place (C.I.P.) Sanitation Process
- Line sanitation practices include advanced internal pipe and equipment cleaning methods, called C.I.P.
- This automated cleaning process recirculates detergent and sanitizing solutions at the precise temperatures and time to ensure total control and maximum effectiveness of the line sanitation process.

10 Plant Quality Control and HACCP* Program

11 Corporate Quality Assurance Program
Sparkling Flavored Spring Water: 12 Steps to Quality Assurance

Source Selection and Monitoring
- Our spring water sources are natural springs, which come from aquifers.
- Spring selection is made on the basis of natural composition and freedom from contamination, availability and taste.
- In-house and trained, geologists and hydrogeologists, monitor springs regularly at the source.
  - Only sustainable sources, which meet our stringent requirements for quality and environmental harmony, are utilized.
  - Spring Water is collected using state-of-the-art equipment to prevent chances of contamination and safeguard the water’s natural characteristics.

Source Water Receiving and Monitoring
- Spring water is transported from the natural spring either by food-grade pipelines or through delivery in sanitary stainless steel tankers, direct to our plants.
- Trained Quality Assurance personnel at each plant take daily samples of incoming spring water and test for signs of contamination.
- Monitoring of the spring water collection and receiving process is performed regularly.
- One-micron filters remove sand or other particles, which may happen to be present.
Plant Quality Control 11 and HACCP* Program

Each plant has a fully staffed Quality Assurance Department and Laboratory that maintain the plant Quality Control processes.

Water, packaging materials and plant processes are carefully monitored to ensure they meet company specifications and standards.

*Hazard Analysis Critical Control Point

Corporate Quality Assurance Program

National Testing Laboratory is equipped with state-of-the-art testing machinery and staffed with degreed, experienced personnel.

Comparative analyses are performed on products in accordance with State and Federal regulatory standards.

Independent from the plant Quality Control and Quality Assurance Departments, the Corporate Quality Assurance program sets company-wide standards, specifications and monitors plant quality programs.

12 STEPS TO QUALITY ASSURANCE

3 Water Storage and Monitoring
- Spring water is temporarily held in food-grade storage tanks upon initial receipt at the plant.
- Here, the water is further tested for conformance to specifications.

4 Micro-filtration
- Specialized two-stage advanced micro-filters, designed specifically for our process, filter the raw spring water.
- These filters are pharmaceutical grade and are designed to remove particles as small as 0.2 micron in diameter.

5 Ultraviolet Light/ Ozone Disinfection
- A. This process follows micro-filtration and is designed to destroy bacteria which may happen to be present.
- B. The combined effects of micro-filtration and ultraviolet light/ozone disinfection provide added assurance of product safety.

6 Carbonation
- The spring water is injected with carbon dioxide gas to add carbonation.

7 Flavor Added
- Natural fruit flavor added.

8 Bottling Control
- Bottling is conducted under very controlled conditions using state-of-the-art equipment.
- The spring water is monitored during the filling and capping process to prevent contamination from the environment.
- Each bottle is given a specific code that identifies the plant location, bottling line and time produced.
- Each plant maintains bottling specifications and control.

9 Packaging Control
- Packaging is conducted using the latest in modern equipment.
- Bottles, caps and labels are carefully controlled and monitored by lot.
- Most bottles are manufactured on-site for quality control.
- Packaging materials not meeting internal standards are rejected.

10 Clean-In-Place (C.I.P.) Sanitation Process
- Line sanitation practices include advanced internal pipe and equipment cleaning methods, called C.I.P.
- This automated cleaning process recirculates detergent and sanitizing solutions at the precise temperatures and time to ensure total control and maximum effectiveness of the line sanitation process.
## 2015 Water Analysis Report

### Primary Inorganics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>0.001</td>
<td>0.006</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.002</td>
<td>0.01</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Asbestos (MFL)</td>
<td>0.2</td>
<td>7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Barium</td>
<td>0.1</td>
<td>2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.001</td>
<td>0.004</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.001</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.01</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Cyanide</td>
<td>0.1</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.1</td>
<td>2.0 (1.4 – 2.4)</td>
<td>ND-1.4</td>
<td>1.4</td>
<td>ND</td>
<td>0.65-0.68</td>
<td>ND</td>
</tr>
<tr>
<td>Lead</td>
<td>0.005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.01</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate as N</td>
<td>0.4</td>
<td>10</td>
<td>ND-1.2</td>
<td>0.74</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrite as N</td>
<td>0.4</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.005</td>
<td>0.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Thallium</td>
<td>0.001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

### Secondary Inorganics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity, Total as CaCO3</td>
<td>2</td>
<td>NR</td>
<td>32-180</td>
<td>180</td>
<td>12</td>
<td>8.4-25</td>
<td>ND</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.05</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Boron</td>
<td>0.1</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Bromide</td>
<td>0.002</td>
<td>NR</td>
<td>0.003-0.038</td>
<td>0.027</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Calcium</td>
<td>1</td>
<td>NR</td>
<td>5.9-50</td>
<td>50</td>
<td>3.7</td>
<td>6.9-12</td>
<td>ND</td>
</tr>
<tr>
<td>Chloride</td>
<td>1</td>
<td>250</td>
<td>ND-15</td>
<td>6.6</td>
<td>7.1</td>
<td>13-25</td>
<td>ND</td>
</tr>
<tr>
<td>Copper</td>
<td>0.05</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Iron</td>
<td>0.1</td>
<td>0.3</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.5</td>
<td>NR</td>
<td>2.5-20</td>
<td>20</td>
<td>ND</td>
<td>1.4-3.4</td>
<td>ND</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.02</td>
<td>0.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>pH (pH Units)</td>
<td>NA</td>
<td>6.5 – 8.5</td>
<td>7.4-8.2</td>
<td>7.9</td>
<td>7.2</td>
<td>7.1-7.7</td>
<td>5.9-6</td>
</tr>
<tr>
<td>Potassium</td>
<td>1</td>
<td>NR</td>
<td>1.2-3.5</td>
<td>3.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Silver</td>
<td>0.01</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sodium</td>
<td>1</td>
<td>NR</td>
<td>3.3-18</td>
<td>18</td>
<td>6.9</td>
<td>6.8-13</td>
<td>ND</td>
</tr>
<tr>
<td>Specific Conductance @ 25C (umhos/cm)</td>
<td>2</td>
<td>NR</td>
<td>72-480</td>
<td>460</td>
<td>59</td>
<td>91-140</td>
<td>ND-2.8</td>
</tr>
<tr>
<td>Sulfate</td>
<td>0.5</td>
<td>250</td>
<td>ND-28</td>
<td>28</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>10</td>
<td>500</td>
<td>76-260</td>
<td>260</td>
<td>32</td>
<td>48-66</td>
<td>ND</td>
</tr>
<tr>
<td>Total Hardness (as CaCO3)</td>
<td>3</td>
<td>NR</td>
<td>25-210</td>
<td>210</td>
<td>11</td>
<td>25-36</td>
<td>ND</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.05</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

### Physical

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Color (ACU)</td>
<td>3</td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Odor at 60 C (TON)</td>
<td>1</td>
<td>3</td>
<td>ND-2</td>
<td>2</td>
<td>1</td>
<td>1-1</td>
<td>ND-1</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>0.05</td>
<td>5</td>
<td>ND-0.1</td>
<td>0.056</td>
<td>0.13</td>
<td>0.051-0.071</td>
<td>0.057-0.083</td>
</tr>
</tbody>
</table>

All units in (mg/l) or Parts per Million (PPM) unless otherwise indicated.

* EPA Secondary Standard - non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water
* Set by California Dept. of Health Services
### 2015 Water Analysis Report

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Spring Water w/Fluoride</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Microbiologials</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliforms (CFU/100 mL)</td>
<td>NA</td>
<td>Absent</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td><strong>Radiologicals</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha (pCi/L)</td>
<td>3</td>
<td>15</td>
<td>ND-6.6</td>
<td>3.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Gross Beta (pCi/L)</td>
<td>4</td>
<td>50.00 †</td>
<td>ND-5.5</td>
<td>4.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Radium-226 + Radium-228 (sum) (pCi/L)</td>
<td>NA</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Uranium</td>
<td>0.001</td>
<td>0.03</td>
<td>ND-0.012</td>
<td>0.006</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td><strong>Volatile Organic Compounds</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane (1,1,1-TCA)</td>
<td>0.0005</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>0.0005</td>
<td>0.001 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane (1,1,2-TCA)</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1,2-Trichlorotrifluoroethane</td>
<td>0.01</td>
<td>1.200 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethylene (1,1-DCA)</td>
<td>0.0005</td>
<td>0.005 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,1-Dichloroethylene</td>
<td>0.0005</td>
<td>0.007</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>0.0005</td>
<td>0.07</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene (o-DCB)</td>
<td>0.0005</td>
<td>0.6</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloroethane (1,2-DCA)</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,4-dichlorobenzene (p-DCB)</td>
<td>0.0005</td>
<td>0.075</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorobenzene (Monochlorobenzene)</td>
<td>0.0005</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>0.0005</td>
<td>0.07</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.0005</td>
<td>0.7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Methylene Chloride (Dichloromethane)</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Methyl tert-Butyl-ether (MTBE)</td>
<td>0.003</td>
<td>0.013 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.0005</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0005</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND-0.00051</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td>0.0005</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene (Telone II)</td>
<td>0.0005</td>
<td>0.0005 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Trichloroethene (TCE)</td>
<td>0.0005</td>
<td>0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Trichlorofluoromethane (Freon 11)</td>
<td>0.005</td>
<td>0.150 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Vinyl chloride (VC)</td>
<td>0.0005</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Xylene (Total)</td>
<td>0.001</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td><strong>Chlorinated Acid Herbicides</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4,5-TP (Silvex)</td>
<td>0.001</td>
<td>0.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>2,4-Dichlorophenoxyacetic acid(2,4-D)</td>
<td>0.01</td>
<td>0.07</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Bentazon</td>
<td>0.002</td>
<td>0.018 †</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Dalapon</td>
<td>0.01</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Dinoseb</td>
<td>0.002</td>
<td>0.007</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>0.0002</td>
<td>0.001</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>PICTRAM</td>
<td>0.001</td>
<td>0.5</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*All units in (mg/l) or Parts per Million (PPM) unless otherwise indicated.*

† EPA Secondary Standard - non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water

‡ Set by California Dept. of Health Services
## 2014 Water Analysis Report

### Chlorinated Pesticides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor</td>
<td>0.001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chlordane</td>
<td>0.0001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Endrin</td>
<td>0.0001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>0.00001</td>
<td>0.0004</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>0.00001</td>
<td>0.0002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.0002</td>
<td>0.0002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>0.01</td>
<td>0.04</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Polychlorinated biphenyls PCBs</td>
<td>0.0005</td>
<td>0.0005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>toxaphene</td>
<td>0.001</td>
<td>0.003</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

### Miscellaneous Herbicides

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3,7,8-TCDD DIOXIN ng/L</td>
<td>0.005</td>
<td>0.003 x 0.010 - 0.005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Diquat</td>
<td>0.004</td>
<td>0.02</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Endothall</td>
<td>0.045</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>0.025</td>
<td>0.7</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

### Semi-Volatile Organic Compounds (Acid/Base/Neutral extractables)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrazine</td>
<td>0.0005</td>
<td>0.003</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>0.0001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>bis(2-Ethylhexyl)phthalate</td>
<td>0.003</td>
<td>0.006</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Di(2-ethylhexyl)adipate</td>
<td>0.005</td>
<td>0.4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>0.0005</td>
<td>0.001</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>0.001</td>
<td>0.05</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Molinate</td>
<td>0.002</td>
<td>0.020†</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Simazine</td>
<td>0.001</td>
<td>0.004</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Thiobencarb</td>
<td>0.001</td>
<td>0.070†</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

### Carbamates (Pesticides)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldicarb</td>
<td>0.003</td>
<td>0.003</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Aldicarb sulfoxide</td>
<td>0.004</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Aldicarb sulfoxide</td>
<td>0.003</td>
<td>0.004</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>0.005</td>
<td>0.04</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>0.02</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

### Microextractables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Dibromo-3-chloropropane</td>
<td>0.00001</td>
<td>0.0002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>1,2-Dibromoethane (EDB)</td>
<td>0.00002</td>
<td>5e-005</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

---

All units in (mg/l) or Parts per Million (PPM) unless otherwise indicated.

† EPA Secondary Standard - non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water

✝ Set by California Dept. of Health Services
**2014 Water Analysis Report**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum Reporting Limit</th>
<th>FDA SOQ / EPA MCL</th>
<th>Arrowhead Mountain Spring Water</th>
<th>Arrowhead Spring Water w/Fluoride</th>
<th>Arrowhead Drinking Water</th>
<th>Arrowhead Drinking Water w/Fluoride</th>
<th>Arrowhead Distilled Water</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Disinfection Byproducts</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromate</td>
<td>0.001</td>
<td>0.01</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorite</td>
<td>0.02</td>
<td>1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>D/DBP Haloacetic Acids (HAAS)</td>
<td>0.002</td>
<td>0.06</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Trihalomethanes (Calc.)</td>
<td>0.001</td>
<td>0.08</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td><strong>Residual Disinfectants</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloramine Dioxide</td>
<td>0.24</td>
<td>0.8</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chlorine Residual, Total</td>
<td>0.1</td>
<td>4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td><strong>Other Contaminants</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perchlorate</td>
<td>0.001</td>
<td>0.002</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

**All units in (mg/l) or Parts per Million (PPM) unless otherwise indicated.**

♦ EPA Secondary Standard - non-enforceable guidelines regulating contaminants that may cause cosmetic or aesthetic effects in drinking water
† Set by California Dept. of Health Services

MRL - Minimum Reporting Limit. Where available, MRLs reflect the Method Detection Limits (MDLs) set by the U.S. Environmental Protection Agency or the Detection Limits for Purposes of Reporting (DLRs) set by the California Department of Health Services. These values are set by the agencies to reflect the minimum concentration of each substance that can be reliably quantified by applicable testing methods, and are also the minimum reporting thresholds applicable to the Consumer Confidence Reports produced by tap water suppliers.

EPA MCL - Maximum Contaminant Level. The highest level of a substance allowed by law in drinking water (bottled or tap water). The MCLs shown are the federal MCLs set by the U.S. Environmental Protection Agency and the Food and Drug Administration, unless no federal MCL exists. †Where no federal MCL exists, the MCLs shown are the California MCLs set by the California Department of Health Services. California MCLs are identified with an (†).

FDA SOQ - Statement of Quality. The standard (statement) of quality for bottled water is the highest level of a contaminant that is allowed in a container of bottled water, as established by the United States Food and Drug Administration (FDA) and the California Department of Public Health. The standards can be no less protective of public health than the standards for public drinking water, established by the U.S. Environmental Protection Agency (EPA) or the California Department of Public Health.

Reported Results - The highest level of each substance detected at or above the MRL in representative finished product samples.

ND - Not detected at or above the MRL.
NR - Not listed in State or Federal drinking water regulations.
NA - Not applicable to specific test method or test parameter
PPB - Parts per Billion. Equivalent to micrograms per liter (μg/l).
MFL - Million Fibers per Liter.

**Arrowhead® Brand Mountain Spring Water sources:** Southern Pacific Springs, Riverside County, CA; Arrowhead Springs, San Bernardino County, CA; Long Point Ranch Springs, Running Springs, CA; Palomar Mountain Granite Springs (PMGS), Palomar, CA; Deer Canyon Springs, San Bernardino County, CA; Coyote Springs, Inyo County, CA; White Meadow Spring, El Dorado County, CA; Lukens Springs, Placer County, CA; Sopiago Springs, El Dorado County, CA; Sugar Pine Springs, Tuolumne County, CA; Arcadia Springs, Napa County, CA; Hope Springs, Hope BC Canada and/or Ruby Springs, Chaffee County, CO.

The **spring water sources for Arrowhead® Brand Sparkling Mountain Spring Water** are indicated on the bottle labels. **Arrowhead® Brand Sparkling Mountain Spring Water** uses Arrowhead® Brand Mountain Spring Water as its base. Carbonation is added to create effervescence.

**Distilled water sources:** may either be a well or municipal supply.
Our product has been thoroughly tested in accordance with federal and California law. Our bottled water is a food product and can not be sold unless it meets the standards established by the U.S. Food and Drug Administration and the California Department of Public Health.

**Statements Required Under California Law**

“Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the United States Food and Drug Administration, Food and Cosmetic Hotline (1-888-723-3366).”

“Some persons may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, including, but not limited to, persons with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS or other immune system disorders, some elderly persons, and infants can be particularly at risk from infections. These persons should seek advice about drinking water from their health care providers. The United States Environmental Protection Agency and the Centers for Disease Control and Prevention guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).”

“The sources of bottled water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water naturally travels over the surface of the land or through the ground, it can pick up naturally occurring substances as well as substances that are present due to animal and human activity. Substances that may be present in the source water include any of the following:

1. Inorganic substances, including, but not limited to, salts and metals, that can be naturally occurring or result from farming, urban storm water runoff, industrial or domestic wastewater discharges, or oil and gas production.

2. Pesticides and herbicides that may come from a variety of sources, including, but not limited to, agriculture, urban storm water runoff, and residential uses.

3. Organic substances that are byproducts of industrial processes and petroleum production and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems.

4. Microbial organisms that may come from wildlife, agricultural livestock operations, sewage treatment plants, and septic systems.

5. Substances with radioactive properties that can be naturally occurring or be the result of oil and gas production and mining activities.”

FDA website for recalls: http://www.fda.gov/opacom/7alerts.html

In order that bottled water is safe to drink, the United States Food and Drug Administration and the State Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by bottled water companies.