2. BOOLEAN LOGIC DESIGN

Topics:
- Boolean algebra
- Converting between Boolean algebra and logic gates
- Logic examples

Objectives:
- Be able to simplify designs with Boolean algebra and Karnaugh maps

2.1 Introduction

Boolean algebra provides the tools needed to analyze and design logical systems.

2.2 Boolean Algebra

Boolean algebra was developed in the 1800’s by James Bool, an Irish mathematician. It was found to be extremely useful for designing digital circuits, and it is still heavily used by electrical engineers and computer scientists. The techniques can model a logical system with a single equation. The equation can then be simplified and/or manipulated into new forms. The same techniques developed for circuit designers adapt very well to circuit and program.

Boolean equations consist of variables and operations and look very similar to normal algebraic equations. The three basic operators are AND, OR and NOT; more complex operators include exclusive or (EOR), not and (NAND), not or (NOR). Small truth tables for these functions are shown in Figure 2.1. Each operator is shown in a simple equation with the variables A and B being used to calculate a value for X. Truth tables are a simple (but bulky) method for showing all of the possible combinations that will turn an output on or off.
Note: By convention a false state is also called off or 0 (zero). A true state is also called on or 1.

<table>
<thead>
<tr>
<th>AND</th>
<th>OR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A [\rightarrow] X</td>
<td>A [\rightarrow] X</td>
<td>A [\rightarrow] X</td>
</tr>
<tr>
<td>(X = A \cdot B)</td>
<td>(X = A + B)</td>
<td>(X = \bar{A})</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The symbols used in these equations, such as + for OR are not universal standards and some authors will use different notations.

<table>
<thead>
<tr>
<th>NAND</th>
<th>NOR</th>
<th>EOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A [\rightarrow] X</td>
<td>A [\rightarrow] X</td>
<td>A [\rightarrow] X</td>
</tr>
<tr>
<td>(X = \overline{A} \cdot \overline{B})</td>
<td>(X = \overline{A} + \overline{B})</td>
<td>(X = A \oplus B)</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The EOR function is available in gate form, but it is more often converted to its equivalent, as shown below.

\[X = A \oplus B = A \cdot \overline{B} + \overline{A} \cdot B \]

Figure 2.1 Boolean Operations with Truth Tables and Gates

In a Boolean equation the operators will be put in a more complex form as shown in Figure 2.2. The variable for these equations can only have a value of 0 for false, or 1 for
true. The solution of the equation follows rules similar to normal algebra. Parts of the equation inside parenthesis are to be solved first. Operations are to be done in the sequence NOT, AND, OR. In the example the NOT function for C is done first, but the NOT over the first set of parentheses must wait until a single value is available. When there is a choice the AND operations are done before the OR operations. For the given set of variable values the result of the calculation is false.

\[
X = (A + B \cdot \overline{C}) + A \cdot (B + \overline{C})
\]

assuming A=1, B=0, C=1

\[
X = (1 + 0 \cdot 1) + 1 \cdot (0 + \overline{1})
\]

\[
X = (1 + 0) + 1 \cdot (0 + 0)
\]

\[
X = (1) + 1 \cdot (0)
\]

\[
X = 0 + 0
\]

\[
X = 0
\]

Figure 2.2 A Boolean Equation

The equations can be manipulated using the basic axioms of Boolean shown in Figure 2.3. A few of the axioms (associative, distributive, commutative) behave like normal algebra, but the other axioms have subtle differences that must not be ignored.
Figure 2.3 The Basic Axioms of Boolean Algebra

An example of equation manipulation is shown in Figure 2.4. The distributive axiom is applied to get equation (1). The idempotent axiom is used to get equation (2). Equation (3) is obtained by using the distributive axiom to move C outside the parentheses, but the identity axiom is used to deal with the lone C. The identity axiom is then used to simplify the contents of the parentheses to get equation (4). Finally the Identity axiom is
used to get the final, simplified equation. Notice that using Boolean algebra has shown that 3 of the variables are entirely unneeded.

\[
A = \overline{B} \cdot (C \cdot (\overline{D} + E + C) + \overline{F} \cdot C)
\]

\[
A = \overline{B} \cdot (\overline{D} \cdot C + E \cdot C + C \cdot C + \overline{F} \cdot C)
\quad \text{(1)}
\]

\[
A = \overline{B} \cdot (\overline{D} \cdot C + E \cdot C + \overline{C} + \overline{F} \cdot C)
\quad \text{(2)}
\]

\[
A = \overline{B} \cdot C \cdot (\overline{D} + E + 1 + \overline{F})
\quad \text{(3)}
\]

\[
A = \overline{B} \cdot C \cdot (1)
\quad \text{(4)}
\]

\[
A = \overline{B} \cdot C
\quad \text{(5)}
\]

Figure 2.4 Simplification of a Boolean Equation

Note: When simplifying Boolean algebra, OR operators have a lower priority, so they should be manipulated first. NOT operators have the highest priority, so they should be simplified last. Consider the example from before.

\[
X = \overline{(A + B \cdot C)} + A \cdot (B + \overline{C})
\]

The higher priority operators are put in parentheses

\[
X = \overline{(A)} + (B \cdot C) + A \cdot (B + \overline{C})
\]

DeMorgan’s theorem is applied

\[
X = \overline{(A)} \cdot (B + \overline{C}) + A \cdot (B + \overline{C})
\]

DeMorgan’s theorem is applied again

\[
X = \overline{A} \cdot (B + \overline{C}) + A \cdot (B + \overline{C})
\]

The equation is expanded

\[
X = \overline{A} \cdot \overline{B} + \overline{A} \cdot \overline{C} + A \cdot B + A \cdot \overline{C}
\]

Terms with common terms are collected, here it is only NOT C

\[
X = \overline{A} \cdot \overline{B} + (\overline{A} \cdot \overline{C} + A \cdot C) + A \cdot B
\]

The redundant term is eliminated

\[
X = \overline{A} \cdot \overline{B} + \overline{C} \cdot (\overline{A} + A) + A \cdot B
\]

A Boolean axiom is applied to simplify the equation further

\[
X = \overline{A} \cdot \overline{B} + \overline{C} + A \cdot B
\]
Design ideas can be converted to Boolean equations directly, or with other techniques discussed later. The Boolean equation form can then be simplified or rearranges, and then converted into ladder logic, or a circuit.

If we can describe how a controller should work in words, we can often convert it directly to a Boolean equation, as shown in Figure 2.5. In the example a process description is given first. In actual applications this is obtained by talking to the designer of the mechanical part of the system. In many cases the system does not exist yet, making this a
challenging task. The next step is to determine how the controller should work. In this case it is written out in a sentence first, and then converted to a Boolean expression. The Boolean expression may then be converted to a desired form. The first equation contains an EOR, which is not available in ladder logic, so the next line converts this to an equivalent expression (2) using ANDs, ORs and NOTs. The circuit shown is for the second equation. In the conversion the terms that are ANDed are in series........ The last equation (3) is fully expanded and the circuit for it is shown in Figure 2.6. This illustrates the same logical control function can be achieved with different, yet equivalent, circuits.
Process Description:
A heating oven with two bays can heat one ingot in each bay. When the heater is on it provides enough heat for two ingots. But, if only one ingot is present the oven may become too hot, so a fan is used to cool the oven when it passes a set temperature.

Control Description:
If the temperature is too high and there is an ingot in only one bay then turn on fan.

Define Inputs and Outputs:
B1 = bay 1 ingot present
B2 = bay 2 ingot present
F = fan
T = temperature overheat sensor

Boolean Equation:
\[F = T \cdot (B_1 \oplus B_2) \]
(2)

\[F = T \cdot (B_1 \cdot \overline{B}_2 + \overline{B}_1 \cdot B_2) \]
(3)

Circuit for Equation (2):

XXX

Note: the result for conditional logic is a single step in the ladder

Warning: in spoken and written english OR and EOR are often not clearly defined. Consider the traffic directions "Go to main street then turn left or right." Does this or mean that you can drive either way, or that the person isn’t sure which way to go? Consider the expression "The cars are red or blue.", Does this mean that the cars can be either red or blue, or all of the cars are red, or all of the cars are blue. A good literal way to describe this condition is "one or the other, but not both".

Figure 2.5 Boolean Algebra Based Design of Ladder Logic
Boolean algebra is often used in the design of digital circuits. Consider the example in Figure 2.7. In this case we are presented with a circuit that is built with inverters, nand, nor and, and gates. This figure can be converted into a boolean equation by starting at the left hand side and working right. Gates on the left hand side are solved first, so they are put inside parentheses to indicate priority. Inverters are represented by putting a NOT operator on a variable in the equation. This circuit can’t be directly converted to ladder logic because there are no equivalents to NAND and NOR gates. After the circuit is converted to a Boolean equation it is simplified, and then converted back into a (much simpler) circuit diagram.
To summarize, we will obtain Boolean equations from a verbal description or existing circuit or ladder diagram. The equation can be manipulated using the axioms of Boolean algebra. After simplification the equation can be converted back into a circuit diagram. Circuits can behave the same even though they are in different forms. When simplifying Boolean equations that are to be implemented in circuits there are a few basic rules.

1. Eliminate NOTs that are for more than one variable. This normally includes replacing NAND and NOR functions with simpler ones using DeMorgan’s theorem.

\[
\begin{align*}
X &= (\overline{A \cdot \overline{B} \cdot \overline{C}} + B) \cdot \overline{A + \overline{C}} \\
X &= (\overline{A} + B + \overline{C} + B) \cdot B \cdot (\overline{A} \cdot C) \\
X &= \overline{A} \cdot B \cdot \overline{A} \cdot C + B \cdot B \cdot \overline{A} \cdot C + \overline{C} \cdot B \cdot \overline{A} \cdot C + B \cdot B \cdot \overline{A} \cdot C \\
X &= B \cdot \overline{A} \cdot C + B \cdot \overline{A} \cdot C + 0 + B \cdot \overline{A} \cdot C \\
X &= B \cdot \overline{A} \cdot C
\end{align*}
\]

This simplified equation is converted back into a circuit.

\[\begin{array}{c}
\text{C} \\
\downarrow \\
\text{A} \\
\downarrow \\
\text{B} \\
\uparrow \\
\text{X}
\end{array}\]

\textit{Figure 2.7}
Reverse Engineering of a Digital Circuit
2. Eliminate complex functions such as EORs with their equivalent.

These principles are reinforced with another design that begins in Figure 2.8. Assume that the Boolean equation that describes the controller is already known. This equation can be converted into both a circuit diagram and ladder logic. The circuit diagram contains about two dollars worth of integrated circuits. If the design was mass produced the final cost for the entire controller would be under $50. The prototype of the controller would cost thousands of dollars.

Given the controller equation:

\[A = \overline{B} \cdot (C \cdot (\overline{D} + E + \overline{C}) + F \cdot C) \]

The initial equation is not the simplest. It is possible to simplify the equation to the form seen in Figure 2.8.
The equation can also be manipulated to other forms that are more routine but less efficient as shown in Figure 2.10. The equation shown is in disjunctive normal form - in simpler words this is ANDed terms ORed together. This is also an example of a canonical form - in simpler terms this means a standard form. This form is more important for digital logic. For example, when an equation is simplified, it may not look like the original design intention, and therefore becomes harder to rework without starting from the beginning.

\[
A = \overline{B} \cdot C \cdot (\overline{D} + E + \overline{F})
\]

\[
A = (\overline{B} \cdot C \cdot \overline{D}) + (\overline{B} \cdot C \cdot E) + (\overline{B} \cdot C \cdot \overline{F})
\]

2.3.1 Boolean Algebra Techniques

There are some common Boolean algebra techniques that are used when simplifying equations. Recognizing these forms are important to simplifying Boolean Algebra
with ease. These are itemized, with proofs in Figure 2.11.

\[
A + C\overline{A} = A + C \quad \text{proof:} \quad A + C\overline{A} \\
(A + C)(A + \overline{A}) \\
(A + C)(1) \\
A + C
\]

\[
AB + A = A \quad \text{proof:} \quad AB + A \\
AB + A1 \\
A(B + 1) \\
A(1) \\
A
\]

\[
\overline{A + B + C} = \overline{ABC} \quad \text{proof:} \quad \overline{A + B + C} \\
\overline{(A + B) + C} \\
\overline{(A + B)\overline{C}} \\
\overline{(A\overline{B})\overline{C}} \\
\overline{A\overline{B}\overline{C}}
\]

\textit{Figure 2.11} Common Boolean Algebra Techniques

2.4 Common Logic Forms

Knowing a simple set of logic forms will support a designer when categorizing control problems. The following forms are provided to be used directly, or provide ideas when designing.

2.4.1 Complex Gate Forms

In total there are 16 different possible types of 2-input logic gates. The simplest are AND and OR, the other gates we will refer to as \textit{complex} to differentiate. The three popular complex gates that have been discussed before are NAND, NOR and EOR. All of these can be reduced to simpler forms with only ANDs and ORs, as shown in Figure 2.12.
Multiplexers allow multiple devices to be connected to a single device. These are very popular for telephone systems. A telephone switch is used to determine which telephone will be connected to a limited number of lines to other telephone switches. This allows telephone calls to be made to somebody far away without a dedicated wire to the other telephone. In older telephone switch boards, operators physically connected wires by plugging them in. In modern computerized telephone switches the same thing is done, but to digital voice signals.

In Figure 2.13 a multiplexer is shown that will take one of four inputs bits D1, D2, D3 or D4 and make it the output X, depending upon the values of the address bits, A1 and A2.
2.5 Simple Design Cases

The following cases are presented to illustrate various combinatorial logic problems, and possible solutions. It is recommended that you try to satisfy the description before looking at the solution.

2.5.1 Basic Logic Functions

Problem: Develop a program that will cause output D to go true when switch A and switch B are closed or when switch C is closed.
Problem: Develop a program that will cause output D to be on when push button A is on, or either B or C are on.

Solution:
\[D = (A \cdot B) + C \]

Figure 2.14 Sample Solution for Logic Case Study A

Problem: Develop a circuit for a car door/seat belt safety system. When the car door is open, and the seatbelt is not done up, the ignition power must not be applied. If all is safe then the key will start the engine.

Solution:
\[D = A + (B \oplus C) \]

Figure 2.15 Sample Solution for Logic Case Study B

2.5.2 Car Safety System

Problem: Develop a circuit for a car door/seat belt safety system. When the car door is open, and the seatbelt is not done up, the ignition power must not be applied. If all is safe then the key will start the engine.
Solution:

\[F = BF \cdot \overline{BR} \]
\[R = \overline{BF} \cdot BR \]

where,

- \(F \) = motor forward
- \(R \) = motor reverse
- \(BF \) = forward button
- \(BR \) = reverse button

2.5.3 Motor Forward/Reverse

Problem: Design a motor controller that has a forward and a reverse button. The motor forward and reverse outputs will only be on when one of the buttons is pushed. When both buttons are pushed the motor will not work.

2.5.4 A Burglar Alarm

Consider the design of a burglar alarm for a house. When activated an alarm and
lights will be activated to encourage the unwanted guest to leave. This alarm be activated if an unauthorized intruder is detected by window sensor and a motion detector. The window sensor is effectively a loop of wire that is a piece of thin metal foil that encircles the window. If the window is broken, the foil breaks breaking the conductor. This behaves like a normally closed switch. The motion sensor is designed so that when a person is detected the output will go on. As with any alarm an activate/deactivate switch is also needed. The basic operation of the alarm system, and the inputs and outputs of the controller are itemized in Figure 2.18.

The inputs and outputs are chosen to be:

- A = Alarm and lights switch (1 = on)
- W = Window/Door sensor (1 = OK)
- M = Motion Sensor (0 = OK)
- S = Alarm Active switch (1 = on)

The basic operation of the alarm can be described with rules.

1. If alarm is on, check sensors.
2. If window/door sensor is broken (turns off), sound alarm and turn on lights

Note: As the engineer, it is your responsibility to define these items before starting the work. If you do not do this first you are guaranteed to produce a poor design. It is important to develop a good list of inputs and outputs, and give them simple names so that they are easy to refer to. Most companies will use wire numbering schemes on their diagrams.

Figure 2.18 Controller Requirements List for Alarm

The next step is to define the controller equation. In this case the controller has 3 different inputs, and a single output, so a truth table is a reasonable approach to formalizing the system. A Boolean equation can then be written using the truth table in Figure 2.19. Of the eight possible combinations of alarm inputs, only three lead to alarm conditions.
The Boolean equation in Figure 2.20 is written by examining the truth table in Figure 2.19. There are three possible alarm conditions that can be represented by the conditions of all three inputs. For example take the last line in the truth table where when all three inputs are on the alarm should be one. This leads to the last term in the equation. The other two terms are developed the same way. After the equation has been written, it is simplified.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>M</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note the binary sequence

Figure 2.19 Truth Table for the Alarm
\[A = (S \cdot \overline{M} \cdot \overline{W}) + (S \cdot M \cdot \overline{W}) + (S \cdot M \cdot W) \]
\[\therefore A = S \cdot (\overline{M} \cdot \overline{W} + M \cdot \overline{W} + M \cdot W) \]
\[\therefore A = S \cdot ((\overline{M} \cdot \overline{W} + M \cdot \overline{W}) + (M \cdot \overline{W} + M \cdot W)) \]
\[\therefore A = (S \cdot \overline{W}) + (S \cdot M) = S \cdot (\overline{W} + M) \]

\[A = (S \cdot \overline{M} \cdot \overline{W}) + (S \cdot M \cdot \overline{W}) + (S \cdot M \cdot W) \]
\[\therefore A = S \cdot (\overline{M} \cdot \overline{W} + M \cdot \overline{W} + M \cdot W) \]
\[\therefore A = S \cdot ((\overline{M} \cdot \overline{W} + M \cdot \overline{W}) + (M \cdot \overline{W} + M \cdot W)) \]
\[\therefore A = (S \cdot \overline{W}) + (S \cdot M) = S \cdot (\overline{W} + M) \]

\[A = (S \cdot \overline{M} \cdot \overline{W}) + (S \cdot M \cdot \overline{W}) + (S \cdot M \cdot W) \]
\[\therefore A = S \cdot (\overline{M} \cdot \overline{W} + M \cdot \overline{W} + M \cdot W) \]
\[\therefore A = S \cdot ((\overline{M} \cdot \overline{W} + M \cdot \overline{W}) + (M \cdot \overline{W} + M \cdot W)) \]
\[\therefore A = (S \cdot \overline{W}) + (S \cdot M) = S \cdot (\overline{W} + M) \]

Figure 2.20 A Boolean Equation and Implementation for the Alarm

The equation and circuits shown in Figure can also be further simplified, as shown in Figure 2.21.
2.6 Summary

- Logic can be represented with Boolean equations.
- Boolean equations can be converted to (and from) digital circuits.
- Boolean equations can be simplified.
- Different controllers can behave the same way.
- Common logic forms exist and can be used to understand logic.
• Truth tables can represent all of the possible state of a system.

2.7 Problems

1. Draw a circuit that will cause output D to go true when switch A and switch B are closed or when switch C is closed.

2. Draw a circuit that will cause output D to be on when push button A is on, or either B or C are on.

3. Design a circuit for a car that considers the variables below to control the motor M. Also add a second output that uses any outputs not used for motor control.

 - doors opened/closed (D)
 - keys in ignition (K)
 - motor running (M)
 - transmission in park (P)
 - ignition start (I)

4. Make a simple circuit that will turn on the outputs with the binary patterns when the corresponding buttons are pushed. Inputs X, Y, and Z will never be on at the same time.

<table>
<thead>
<tr>
<th>OUTPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td>Inputs</td>
</tr>
</tbody>
</table>

5. Convert the following Boolean equation to the simplest possible circuit.

 \[X = A \cdot (\overline{A} + \overline{A} \cdot B) \]

6. Simplify the following boolean equations.

 a) \(A(B + AB) \)
 b) \(\overline{A(B + AB)} \)
 c) \(\overline{A}(B + AB) \)
 d) \(\overline{A}(B + AB) \)

7. Simplify the following Boolean equations,
Simplify the Boolean expression below.

\[(A + B) \cdot \overline{(A + B)}\]

\[ABCD + \overline{ABCD} + ABCD + AB\overline{CD}\]

8. Simplify the Boolean expression below.

\[((A \cdot \overline{B}) + (\overline{B} + A)) \cdot C + (\overline{B} \cdot C + B \cdot C)\]

9. Given the Boolean expression a) draw a digital circuit and b) simplify the expression.

\[X = A \cdot \overline{B} \cdot C + (\overline{C} + \overline{B})\]

10. Simplify the following Boolean equation and write a corresponding circuit.

\[Y = (\overline{AB\overline{CD}} + \overline{A\overline{B}C\overline{D}} + \overline{ABC} + \overline{A\overline{B}CD}) + D\]

11. For the following Boolean equation,

\[X = A + B(A + C\overline{B} + D\overline{A}C) + ABCD\]

 a) Write the logic circuit for the unsimplified equation.
 b) Simplify the equation.
 c) Write the circuit for the simplified equation.

12. a) Write a Boolean equation for the following truth table. (Hint: do this by writing an expres-
sion for each line with a true output, and then ORing them together.)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

b) Write the results in a) in a Boolean equation.
c) Simplify the Boolean equation in b)

13. Simplify the following Boolean equation, and create the simplest circuit.

\[
Y = \overline{C} \overline{A} + \overline{A} + (\overline{B \overline{C}}(A + \overline{B \overline{C}}))
\]

14. Simplify the following boolean equation with Boolean algebra and write the corresponding circuit.

\[
X = (A + B \cdot \overline{A}) + (C + D + \overline{E \overline{C}})
\]

15. a) Develop the Boolean expression for the circuit below.
 b) Simplify the Boolean expression.
c) Draw a simpler circuit for the equation in b).

16. Given a system that is described with the following equation,

\[X = A + (B \cdot (\overline{A} + C) + C) + A \cdot B \cdot (\overline{D} + \overline{E}) \]

a) Simplify the equation using Boolean Algebra.
b) Implement the original and then the simplified equation with a digital circuit.

17. Simplify the following and implement the original and simplified equations with gates.

\[A + (\overline{B} + \overline{C} + \overline{D}) \cdot (B + \overline{C}) + A \cdot B \cdot (\overline{C} + \overline{D}) \]

18. Simplify the following Boolean equation and implement it in a circuit.

\[X = A + BA + B\overline{C} + \overline{D} + \overline{C} \]

19. Use Boolean equations to develop simplified circuit for the following truth table where A, B, C and D are inputs, and X and Y are outputs.
20. Convert the truth table below to a Boolean equation, and then simplify it. The output is X and the inputs are A, B, C and D.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

21. Simplify the following Boolean equation. Convert both the unsimplified and simplified equa-
tions to a circuit.

\[X = (AB\overline{C})(A + BC) \]

2.8 Problem Solutions

1.

![Diagram 1](image1)

2.

![Diagram 2](image2)

3.

![Diagram 3](image3)
4.

\[
\begin{align*}
X & \quad Y \\
& \quad Z
\end{align*}
\]

5.

\[
\begin{align*}
X & \quad G \\
Y & \quad F \\
X & \quad Z
\end{align*}
\]

6.

a) \(AB\)

b) \(\overline{A} + B\)

c) \(\overline{AB}\)

d) \(A + B\)

7.

a) \(\overline{(A + B)} \cdot (A + \overline{B}) = (\overline{AB})(\overline{A}B) = 0\)

b) \(ABCD + \overline{ABCD} + ABC\overline{D} + A\overline{B}\overline{C}\overline{D} = BCD + AB\overline{D} = B(CD + A\overline{D})\)

8. C

9.

\[X = \overline{B} \cdot (A \cdot C + \overline{C})\]
10.

\[Y = (AB\overline{CD} + AB\overline{C}D + \overline{ABC}D + \overline{ABCD}) + D \]

\[Y = (AB\overline{CD} + AB\overline{C}D + \overline{ABC}D + \overline{ABCD})\overline{D} \]

\[Y = (0 + AB\overline{C}D + 0 + 0)\overline{D} \]

\[Y = AB\overline{C}D \]

\[\begin{array}{c}
A \\
B \\
C \\
D \\
\hline
Y
\end{array} \]

11.

a)

b) \[X = A + DCB \]

c) \[\begin{array}{c}
A \\
B \\
C \\
D \\
\hline
X
\end{array} \]
12.

\[
\begin{align*}
\overline{ABCD} + \overline{ABCD} \\
\overline{BCD} + \overline{ACD} + \overline{BCD} + \overline{ABD} + \overline{BCD} + ACD + ABC \\
\overline{BCD} + CD(\overline{A} + A) + CD(\overline{B} + B) + \overline{ABD} + ABC \\
\overline{BCD} + D(C + \overline{AB}) + ABC
\end{align*}
\]

13.

\[
Y = \overline{C} \left(\overline{A} + \left(\overline{A} + \left(\overline{B\overline{C}}(\overline{A} + \overline{B\overline{C}}) \right) \right) \right)
\]

\[
Y = \overline{C} \left(\overline{A} + \left(\overline{A} + \left(\overline{B\overline{C}}(\overline{A} + B + C) \right) \right) \right)
\]

\[
Y = \overline{C} \left(\overline{A} + \left(\overline{A} + \left(\overline{B\overline{C}AB\overline{C}} \right) \right) \right)
\]

\[
Y = \overline{C} \left(\overline{A} + \left(\overline{A} + \overline{0} \right) \right)
\]

\[
Y = \overline{C} \left(\overline{A} + \overline{1} \right)
\]

\[
Y = \overline{C} \left(\overline{A} + \overline{1} \right)
\]

\[
Y = \overline{C} \left(\overline{A} + 0 \right)
\]

\[
Y = \overline{CA}
\]

\[
Y = C + \overline{A}
\]
14.

\[
X = (A + B \cdot \overline{A}) + (C + D + E\overline{C})
\]

OR

\[
X = (A + B \cdot \overline{A})(C + D + E\overline{C})
\]

\[
X = (\overline{A})(B \cdot \overline{A})(C + D + E\overline{C})
\]

\[
X = (\overline{A})(B \cdot \overline{A})(C + D + E\overline{C})
\]

\[
X = \overline{A}B(C + D + E\overline{C})
\]

\[
X = \overline{A}B(C + D + E)
\]

15.

\[C\overline{A}B\]

\[
\begin{array}{c}
\text{C} \\
\text{A} \\
\text{B}
\end{array}
\begin{array}{c}
\text{X}
\end{array}
\]
16.

a) \[X = A + (B \cdot (\bar{A} + C) + C) + A \cdot B \cdot (\bar{D} + \bar{E}) \]
\[X = A + (B \cdot \bar{A} + B \cdot C + C) + A \cdot B \cdot \bar{D} + A \cdot B \cdot \bar{E} \]
\[X = A \cdot (1 + B \cdot \bar{D} + B \cdot \bar{E}) + B \cdot \bar{A} + C \cdot (B + 1) \]
\[X = A + B \cdot \bar{A} + C \]

b) [Diagram of logic circuit]

17.

\[A + (\bar{B} + \bar{C} + \bar{D}) \cdot (B + \bar{C}) + A \cdot B \cdot (\bar{C} + \bar{D}) \]
\[A \cdot (1 + B \cdot (\bar{C} + \bar{D})) + (\bar{B} + \bar{C} + \bar{D}) \cdot B + (\bar{B} + \bar{C} + \bar{D}) \cdot \bar{C} \]
\[A + (\bar{C} + \bar{D}) \cdot B + \bar{C} \]
\[A + \bar{C} \cdot B + \bar{D} \cdot B + \bar{C} \]
\[A + \bar{D} \cdot B + \bar{C} \]
\[A + \overline{D} \cdot B + \overline{C} \]
2.9 Challenge Problems

1. Write a program that implements the following Boolean expression in Scilab or C. The user should be able input values and the results should be printed.

\[A + (\bar{B} + \bar{C} + \bar{D}) \cdot (B + \bar{C}) + A \cdot B \cdot (\bar{C} + \bar{D}) \]