Air-side Systems: Air Duct Design

Dr. Sam C M Hui
Department of Mechanical Engineering
The University of Hong Kong
E-mail: cmhui@hku.hk

Jan 2008
Contents

• Duct Construction
• Duct Properties
• Air Duct Design and Sizing
• Other Factors
Duct Construction

• Types of air duct
 • Supply air duct
 • Return air duct
 • Outdoor air duct
 • Exhaust air

• Duct sections
 • Header or main duct (trunk)
 • Branch duct or runout
Duct Construction

- Duct systems
 - Max. pressure difference (between air inside the duct and the ambient air)
 - 125, 250, 500, 750, 1000, 1500, 2500 Pa
 - Commercial buildings
 - Low-pressure duct system: \(\leq 500 \text{ Pa}, \text{ max } 12 \text{ m/s} \)
 - Medium-pressure system: 500-1500 Pa, max 17.5 m/s
 - Residential buildings: 125 Pa or 250 Pa
 - Industrial duct system: \(\Delta P \) can be higher
Duct Construction

- Duct material: e.g. UL (Underwriters’ Laboratory) standard
 - **Class 0**: zero flame spread, zero smoke developed
 - Iron, galvanized steel, aluminum, concrete, masonry, clay tile
 - **Class 1**: flame spread ≤ 25, smoke developed ≤ 50
 - Fiberglass, many flexible ducts
 - **Class 2**: flame spread ≤ 50, smoke developed ≤ 100
Duct Construction

- Shapes of air duct
 - Rectangular
 - More easily fabricated on site, air leakage
 - Round
 - Less fluid resistance, better rigidity/strength
 - Flat oval
 - Flexible
 - Multiple-ply polyester film w/ metal wire or strips
- SMACNA (Sheet Metal and Air Conditioning Contractors’ National Association) standards
Rectangular duct

Round duct w/ spiral seam

Flat oval duct

Flexible duct

Transverse joint reinforcement

Duct Construction

- Duct specification
 - Sheet gauge and thickness of duct material
 - Traverse joints & longitudinal seam reinforcements
 - Duct hangers & their spacing
 - Tapes & adhesive closures
 - Fire spread and smoke developed
 - Site-fabricated or factory-fabricated
Duct Properties

- Duct heat gain or loss
 - Temperature rise or drop
 - Duct insulation (mounted or inner-lined)
 - Reduce heat gain/loss, prevent condensation, sound attenuation
 - Minimum & recommended thickness
 - ASHRAE standard or local codes
 - Temperature rise curves
 - Depends on air velocity, duct dimensions & insulation
Temperature rise from duct heat gain

Round duct
Insulation 1.5 in. duct wrap
\(k = 0.30 \text{ Btu} \cdot \text{in.} / \text{h} \cdot \text{ft}^2 \cdot ^\circ \text{F} \)
\(\Delta T = 25^\circ \text{F} \)
Length \(L = 100 \text{ ft} \)

Temperature rise \(\Delta T \), \(^\circ \text{F}\)

Duct velocity \(v \), fpm

Temperature rise from duct heat gain

Duct Properties

- **Frictional losses: Darcey-Weisbach Equation**
 - $H_f = \text{friction head loss, or } \Delta p_f = \text{pressure loss}$

 $$H_f = f \left(\frac{L}{D} \right) \left(\frac{v^2}{2g} \right) \quad \Delta p_f = f \left(\frac{L}{D} \right) \left(\frac{\rho v^2}{2g_c} \right)$$

 - $f =$ friction factor (dimensionless)
 - $L =$ length of duct or pipe (m)
 - $D =$ diameter of duct or pipe (m)
 - $v =$ mean air velocity in duct (m/s)
 - $g =$ gravitational constant (m/s2)
 - $\rho =$ density of fluid (kg/m3)
 - $g_c =$ dimensional constant, for SI unit, $g_c = 1$
Duct Properties

- Frictional losses
 - Friction factor \((f)\)
 - \(\text{Re}_D\) (Reynolds number)
 - \(\varepsilon\) = absolute roughness; \(\varepsilon/D\) = relative roughness
 - Smooth duct & rough duct
 - Moody diagram
 - Laminar flow (\(\text{Re}_D < 2000\)), \(f = 64 / \text{Re}_D\)
 - Critical & transition zone
 - Turbulent flow: Rouse limit, \(\text{Re}_D = 200 / \sqrt{f(\varepsilon/D)}\)
Moody diagram
Mode of airflow when air passes over and around surface protuberances of the duct wall
Duct Properties

- Duct friction chart
 - Colebrooke formula
 \[\frac{1}{\sqrt{f}} = -2 \log \left(\frac{\varepsilon}{3.7D} + \frac{2.51}{\text{Re}_D \sqrt{f}} \right) \]

- Roughness & temperature corrections
 - \(\Delta p_f = K_{sr} K_T K_{el} \Delta p_{f,c} \)
 - \(K_{sr} = \) correction factor for surface roughness
 - \(K_T = \) correction factor for air temperature
 - \(K_{el} = \) correction factor for elevation
Friction chart for round duct

(Source: ASHRAE Handbook Fundamentals 2001)
<table>
<thead>
<tr>
<th>Duct Material</th>
<th>Roughness Category</th>
<th>Absolute Roughness ε, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated carbon steel, clean (Moody 1944) (0.05 mm)</td>
<td>Smooth</td>
<td>0.03</td>
</tr>
<tr>
<td>PVC plastic pipe (Swim 1982) (0.01 to 0.05 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum (Hutchinson 1953) (0.04 to 0.06 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized steel, longitudinal seams, 1200 mm joints (Griggs et al. 1987)</td>
<td>Medium smooth</td>
<td>0.09</td>
</tr>
<tr>
<td>(0.05 to 0.10 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized steel, continuously rolled, spiral seams, 3000 mm joints (Jones 1979) (0.06 to 0.12 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized steel, spiral seam with 1, 2, and 3 ribs, 3600 mm joints (Griggs et al. 1987) (0.09 to 0.12 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized steel, longitudinal seams, 760 mm joints (Wright 1945) (0.15 mm)</td>
<td>Average</td>
<td>0.15</td>
</tr>
<tr>
<td>Fibrous glass duct, rigid</td>
<td>Medium rough</td>
<td>0.9</td>
</tr>
<tr>
<td>Fibrous glass duct liner, air side with facing material (Swim 1978) (1.5 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrous glass duct liner, air side spray coated (Swim 1978) (4.5 mm)</td>
<td>Rough</td>
<td>3.0</td>
</tr>
<tr>
<td>Flexible duct, metallic (1.2 to 2.1 mm when fully extended)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible duct, all types of fabric and wire (1.0 to 4.6 mm when fully extended)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete (Moody 1944) (1.3 to 3.0 mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Source: ASHRAE Handbook Fundamentals 2001)
Duct Properties

- **Circular equivalent**
 - Hydraulic diameter, \(D_h = 4 \frac{A}{P} \)
 - \(A = \text{area (mm}^2\); \(P = \text{perimeter (mm)} \)
 - Rectangular duct:
 \[
 D_e = \frac{1.30(ab)^{0.625}}{(a + b)^{0.25}}
 \]
 - Flat oval duct:
 \[
 D_e = \frac{1.55A^{0.625}}{P^{0.25}}
 \]
 \[
 A = \frac{\pi b^2}{4} + b(a - b)
 \]
 \[
 P = \pi b + 2(a + b)
 \]
Duct Properties

- Dynamic losses
 - Result from flow disturbances caused by duct-mounted equipment and fittings
 - Change airflow path’s direction and/or area
 - Flow separation & eddies/disturbances
 - In dynamic similarity (same Reynolds number & geometrically similar duct fittings), dynamic loss is proportional to their velocity pressure
Duct Properties

- Local or dynamic loss coefficient
- Ratio of total pressure loss to velocity pressure

\[C = \frac{\Delta p_j}{(\rho V^2 / 2)} = \frac{\Delta p_j}{P_v} \]

where
\[C = \text{local loss coefficient, dimensionless} \]
\[\Delta p_j = \text{total pressure loss, Pa} \]
\[\rho = \text{density, kg/m}^3 \]
\[V = \text{velocity, m/s} \]
\[P_v = \text{velocity pressure, Pa} \]
Duct Properties

- Duct fittings
 - Elbows
 - Converging or diverging tees and wyes
 - Entrances and exits
 - Enlargements and contractions
- Means to reduce dynamic losses
 - Turning angle, splitter vanes
- ASHRAE duct fitting database
 - Fitting loss coefficients
FITTING LOSS COEFFICIENTS

Fittings to support Examples 8 and 9 and some of the more common fittings are reprinted here. For the complete fitting database see the Duct Fitting Database (ASHRAE 1994).

ROUND FITTINGS

CD3-1 Elbow, Die Stamped, 90 Degree, $r/D = 1.5$

<table>
<thead>
<tr>
<th>D, mm</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>180</th>
<th>200</th>
<th>230</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_o</td>
<td>0.30</td>
<td>0.21</td>
<td>0.16</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
</tbody>
</table>

CD3-3 Elbow, Die Stamped, 45 Degree, $r/D = 1.5$

<table>
<thead>
<tr>
<th>D, mm</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>180</th>
<th>200</th>
<th>230</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_o</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

(Source: ASHRAE Handbook Fundamentals 2001)
Region of eddies and turbulences in a round elbow

5-piece 90° round elbow

(Source: ASHRAE Handbook Fundamentals 2001)
Rectangular elbow, smooth radius, 2 splitter vanes

Mitered elbow and its secondary flow

(Source: ASHRAE Handbook Fundamentals 2001)
Airflow through a rectangular converging or diverging wye

Abrupt enlargement

Sudden contraction

Duct Properties

• Flow resistance, R
 • Total pressure loss Δp_t at a specific volume flow rate V
 $$\Delta p_t = R \cdot \dot{V}^2$$
 • Flow resistance in series: $R_s = R_1 + R_2 + \ldots + R_n$
 • Flow resistance in parallel:
 $$\frac{1}{\sqrt{R_p}} = \frac{1}{\sqrt{R_1}} + \frac{1}{\sqrt{R_2}} + \ldots + \frac{1}{\sqrt{R_n}}$$
Total pressure loss and flow resistance of a round duct section

Flow resistance in series

Flow resistance in parallel

Flow resistance for a Y connection

Air Duct Design & Sizing

- Optimal air duct design
 - Optimal duct system layout, space available
 - Satisfactory system balance
 - Acceptable sound level
 - Optimum energy loss and initial cost
 - Install only necessary balancing devices (dampers)
 - Fire codes, duct construction & insulation
- Require comprehensive analysis & care for different transport functions
Flow characteristics of a supply duct system

Air Duct Design & Sizing

- Design velocity
 - Constraints: space available, beam depth
 - Typical guidelines:
 - Main ducts: air flow usually ≤ 15 m/s; air flow noise must be checked
 - With more demanding noise criteria (e.g. hotels), max. air velocity: main duct ≤ 10-12.5 m/s, return main duct ≤ 8 m/s, branch ducts ≤ 6 m/s
 - Face velocities for air-handling system components
Table 10 Typical Design Velocities for HVAC Components

<table>
<thead>
<tr>
<th>Duct Element</th>
<th>Face Velocity, m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOUVERS<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td></td>
</tr>
<tr>
<td>3300 L/s and greater</td>
<td>2</td>
</tr>
<tr>
<td>Less than 3300 L/s</td>
<td>See Figure 15</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td>2400 L/s and greater</td>
<td>2.5</td>
</tr>
<tr>
<td>Less than 2400 L/s</td>
<td>See Figure 15</td>
</tr>
<tr>
<td>FILTERS<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Panel filters</td>
<td></td>
</tr>
<tr>
<td>Viscous impingement</td>
<td>1 to 4</td>
</tr>
<tr>
<td>Dry-type, extended-surface</td>
<td></td>
</tr>
<tr>
<td>Flat (low efficiency)</td>
<td></td>
</tr>
<tr>
<td>Pleated media (intermediate efficiency)</td>
<td>Up to 3.8</td>
</tr>
<tr>
<td>HEPA</td>
<td>1.3</td>
</tr>
<tr>
<td>Renewable media filters</td>
<td></td>
</tr>
<tr>
<td>Moving-curtain viscous impingement</td>
<td>2.5</td>
</tr>
<tr>
<td>Moving-curtain dry media</td>
<td>1</td>
</tr>
<tr>
<td>Electronic air cleaners</td>
<td></td>
</tr>
<tr>
<td>Ionizing type</td>
<td>0.8 to 1.8</td>
</tr>
<tr>
<td>HEATING COILS<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Steam and hot water</td>
<td>2.5 to 5</td>
</tr>
<tr>
<td>1 min., 8 max.</td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td></td>
</tr>
<tr>
<td>Open wire</td>
<td>Refer to mfg. data</td>
</tr>
<tr>
<td>Finned tubular</td>
<td>Refer to mfg. data</td>
</tr>
<tr>
<td>DEHUMIDIFYING COILS<sup>d</sup></td>
<td>2 to 3</td>
</tr>
<tr>
<td>AIR WASHERS<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>Spray type</td>
<td>1.5 to 3.0</td>
</tr>
<tr>
<td>Cell type</td>
<td>Refer to mfg. data</td>
</tr>
<tr>
<td>High-velocity spray type</td>
<td>6 to 9</td>
</tr>
</tbody>
</table>

![Graph showing face area per louver vs. air flow per louver](image)

<table>
<thead>
<tr>
<th>Parameters Used to Establish Figure</th>
<th>Intake Louver</th>
<th>Exhaust Louver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum free area (1220 mm square test section), %</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Water penetration, μL/(m²·s) (less than 0.6)</td>
<td>Negligible</td>
<td>na</td>
</tr>
<tr>
<td>Maximum static pressure drop, Pa</td>
<td>35</td>
<td>60</td>
</tr>
</tbody>
</table>

(Source: *ASHRAE Handbook Fundamentals 2001*)
Air Duct Design & Sizing

- System balancing
 - Air volume flow rate meeting design conditions
 - System balancing using dampers only is not recommended

- Critical path
 - Design path of airflow (total flow resistance is maximum)
 - How to reduce the dynamic losses?
Air Duct Design & Sizing

- Reduce dynamic losses of the critical path
 - Maintain optimum air velocity through duct fittings
 - Emphasize reduction of dynamic losses nearer to the fan outlet or inlet (high air velocity)
 - Proper use of splitter vanes
 - Set 2 duct fittings as far apart as possible

- Air duct leakage
 - Duct leakage classification
 - ANSI, SMACNA, ASHRAE standards
Air Duct Design & Sizing

- Fire protection
 - Duct material selection
 - Vertical ducts (using masonry, concrete or clay)
 - When ducts pass through floors & walls
 - Use of fire dampers
 - Filling the gaps between ducts & bldg structure
 - Duct systems for industrial applications
- Any other fire precautions?
Air Duct Design & Sizing

• Design procedure (computer-aided or manual)
 • Verify local codes & material availability
 • Preliminary duct layout
 • Divide into consecutive duct sections
 • Minimise local loss coefficients of duct fittings
 • Select duct sizing methods
 • Critical total pressure loss of tentative critical path
 • Size branch ducts & balance total pressure at junctions
 • Adjust supply flow rates according to duct heat gain
 • Resize duct sections, recalculate & balance parallel paths
 • Check sound level & add necessary attenuation
Air Duct Design & Sizing

• Duct layout
 • Symmetric layout is easier to balance
 • Smaller main duct & shorter design path
 • For VAV systems, duct looping allows feed from opposite direction
 • Optimise transporting capacity (balance points often follow the sun’s position)
 • Result in smaller main duct
 • Compare alternative layouts & reduce fittings
 • For exposed ducts, appearance & integration with the structure is important
Typical supply duct system with symmetric layout & looping

Air Duct Design & Sizing

- Duct sizing methods
 - **Equal-friction method** with maximum velocity
 - Duct friction loss per unit length remains constant
 - Most widely used in normal HVAC applications
 - **Constant-velocity method**
 - Often for exhaust ventilation system
 - Minimum velocity to carry dust is important
 - Limit velocity to reduce noise
Air Duct Design & Sizing

- Duct sizing methods
 - **Static regain method**
 - Normally used with a computer package for high velocity systems (e.g. in main duct)
 - Size air duct so that Δstatic pressure nearly offset the pressure loss of succeeding duct section along main duct
 - **T method**
 - Optimising procedure by minimising life-cycle cost
 - System condensing (into a single imaginary duct)
 - Fan selection (optimum system pressure loss)
 - System expansion (back to original duct system)
Concept of static regain method

Air Duct Design & Sizing

- Design information required
 - Client requirements
 - Required supply air condition
 - Type of system supplied
 - Ambient conditions
 - Duct material
 - Duct insulation
 - Duct system layout
Air Duct Design & Sizing

- Key design inputs
 - Design volume flow rate (m³/s)
 - Limiting duct pressure loss (Pa/m)
 - Limiting flow velocity (m/s)
- Design outputs
 - Schematic of ductwork layout & associated plant
 - Schedule of duct sizes and lengths, and fittings
Air Duct Design & Sizing

- Duct system characteristics
 - Supply duct, return duct, or exhaust duct systems with certain pressure loss in branch takeoffs
 - Duct sizing based on LCC & space optimisation
 - System balancing through pressure balance of duct paths
 - Sound level will be checked & analysed
 - Minimise local loss coefficients of duct fittings
 - Supply volume flow rates adjusted according to duct heat gain
Cost analysis for a duct system

Air Duct Design & Sizing

- Duct system characteristics
 - Supply duct, return duct, or exhaust duct systems in which supply outlets or return grilles either mounted directly on duct or have very short connecting duct
 - Very small or negligible pressure loss at branch ducts
 - System balancing depends mainly on sizes of the successive main duct sections
Rectangular supply duct with transversal slots

\[\Delta p_t = (f_n L_p / D_n + C_{c,sn}) \rho v_n^2 / 2 g_c \]

\[\Delta p_{tn} = (C_{c,bn} v_n^2 + C_{o,vn} v_o^2) \rho / 2 g_c \]

Air Duct Design & Sizing

- Duct system characteristics
 - Industrial exhaust duct systems to transport dust or other particulates
 - Require a minimum velocity in all duct sections, such as 12.2 to 20.3 m/s
 - Select proper configuration of duct fittings to provide a better system balance
 - Round ducts produce smaller losses & more rigid
 - Air velocity must not exceed too much, to avoid energy waste
 - Well-sealed joints & seams to reduce air leakage
Other Factors

- Duct liner
 - Lined internally on inner surface of duct wall
 - Mainly used for noise attenuation & insulation
 - Fiberglass blanket or boards
- Duct cleaning
 - Prevent accumulation of dirt & debris
 - Agitation device to loosen the dirt & debris
 - Duct vacuum to extract loosened debris
 - Sealing of access openings
Duct breakout noise

Other Factors

• Pressure and airflow measurements
 • Pitot tube
 • Two concentric tubes
 • Manometers
 • U tube or inclined one
• Demonstration of measuring instrument
Pitot tube

Manometer: U-value

Inclined manometer

Pressure measurements in air ducts

Measuring points in rectangular & round duct transverse